355 500 произведений, 25 200 авторов.

Электронная библиотека книг » А. Чучалин » Респираторная медицина. Руководство (в 2-х томах) » Текст книги (страница 5)
Респираторная медицина. Руководство (в 2-х томах)
  • Текст добавлен: 7 октября 2016, 18:30

Текст книги "Респираторная медицина. Руководство (в 2-х томах)"


Автор книги: А. Чучалин


Жанр:

   

Медицина


сообщить о нарушении

Текущая страница: 5 (всего у книги 191 страниц)

Наиболее часто используется, так называемая, идеализированная модель А, в которой первые 16 генераций, включая терминальные дыхательные пути составляют проводящую зону. Следующие три генерации составляют респираторные бронхиолы, с альвеолами, число которых возрастает к периферии (переходная зона). Далее идут три генерации альвеолярных протоков и одна генерация альвеолярных мешочков, которые формируют истинную респираторную зону.

Эта идеализированная, дихотомически разветвляющаяся система чрезмерно упрощена, поскольку в некоторых отделах легких имеет место уменьшение количества генераций (менее 23, от трахеи до альвеолярных мешочков), в то время как в других отделах количество генераций может быть большим. Некоторые несоответствия данной модели были подвергнуты критике некоторыми авторами, которые предложили альтернативные модели, особенно дистальных отделов легких. В частности, предложено начинать отсчет генераций в обратном порядке – с терминальных альвеол (такая система используется для классификации рек и их притоков).

Тем не менее, модель Weibel позволяет объяснить многие явления в респираторной физиологии, например, замедление линейного воздушного потока в периферических дыхательных путях вследствие резкого увеличения площади поперечного сечения после 16-й генерации, в результате чего модель дыхательных путей может быть представлена в форме тромбона (рис. 2–2).

Результатом значительного изменения площади воздухоносных путей на уровне периферии является резкое замедление воздушного потока в области терминальных бронхиол. В проксимальных отделах имеет место конвекционный поток. При достижении дистальных отделов линейная скорость продвижения газа резко снижается и дальнейший газовый транспорт осуществляется путем молекулярной диффузии. На уровне альвеол диффузия в газовой фазе становится единственным механизмом движения газов.

path: pictures/2-2.png

Рис. 2-2. Диаграмма, демонстрирующая резкое возрастание площади поперечного сечения дыхательных путей в респираторной зоне в соответствии с моделью Weibel (West J.B. Respiratory Physiology – the Essentials. 7th ed. – Baltimore: Lippincott Williams and Wilkins, 2005).

Частицы аэрозоля, поступающие в легкие, задерживаются на уровне терминальных бронхиол и не способны продвигаться дальше из-за прекращения конвекционного потока и большой массы, делающей невозможным дальнейшее движении путем диффузии. Потому область терминальных бронхиол является преимущественным местом оседания и патогенного воздействия поллютантов.

type: dkli00019

ЛЕГОЧНЫЕ ОБЪЕМЫ И ЕМКОСТИ

Транспорт газов в легких зависит от степени и скорости изменения легочного объема. Вентиляционная функция легких необходима для обновления газового состава воздуха в альвеолах. Уровень легочной вентиляции определяется двумя характеристиками – глубиной дыхания, или дыхательным объемом (ДО – Vt), и частотой дыхательных движений. Для оценки вентиляции обычно используют показатель минутной вентиляции легких (или минутный объем дыхания МОД – Ve), обозначающий количество воздуха, выдыхаемого легкими в течение одной минуты.

Для характеристики вентиляционной функции используются статические и динамические объемы. Под статическими легочными объемами понимают те характеристики легких, которые регистрируются в момент отсутствия воздушного потока. Общий объем, которого достигают легкие при максимальном вдохе, традиционно принято считать суммой четырех объемов. Этим четырем легочным объемам присвоены названия, которые используются более 100 лет после внедрения спирометрии в клиническую практику. В число традиционно измеряемых объемов входят остаточный объем легких (ОО – RV), резервный объем выдоха (РОвыд. – ERV), ДО и резервный объем вдоха (РОвд. – IRV). Сумму двух и более стандартно измеряемых объемов принято называть термином «емкость». Традиционно выделяют емкости, которых также четыре: общая емкость легких (ОЕЛ), функциональная остаточная емкость (ФОЕ – FRC), емкость вдоха (Евд. – IC) и жизненная емкость легких (ЖЕЛ – VC). Ниже представлено более подробное описание каждого из этих терминов (рис. 2–3).

path: pictures/2-3.png

Рис. 2-3. Основные легочные объемы (West J.B. Respiratory Physiology – the Essentials. 7th ed. – Baltimore: Lippincott Williams and Wilkins, 2005).

Один из самых распространенных методов оценки легочной функции называется спирометрией, которая и позволяет измерить некоторые из вышеперечисленных объемов и емкостей. Во время спирометрии испытуемый вдыхает и выдыхает, выполняя различные респираторные маневры, при этом регистрируются изменения объема газа в легких. С помощью спирометрии можно измерить изменения газового объема в легких в пределах, достигаемых испытуемым произвольно.

Общая емкость легких (ОЕЛ – TLC) включает в себя весь объем воздуха, который находится в легких после достижения максимально глубокого вдоха. Другими словами, ОЕЛ – это общее количество газа, содержащегося в легких во время выполнения максимального инспираторного усилия.

Максимальный объем воздуха в легких и дыхательных путях (ОЕЛ) и другие объемы и емкости у здорового человека определяются целым рядом факторов, главными из которых являются:

1) рост, масса тела, возраст, расовая принадлежность, конституциональные и индивидуальные особенности человека и его респираторной системы;

2) эластические свойства легочной ткани и дыхательных путей;

3) сократительные характеристики диафрагмы и других дыхательных мышц.

Схематическое изображение статических легочных объемов и емкостей представлено на рис. 2-3.

СТРУКТУРА СТАТИЧЕСКИХ ОБЪЕМОВ И ЕМКОСТЕЙ

При спокойном спонтанном дыхании с каждым дыхательным циклом человек вдыхает и выдыхает объем воздуха, который называется дыхательным объемом. Минутная вентиляция (МОД) – это общее количества воздуха, которое проходит через легкие в течение 1 мин и равняется дыхательному объему (Vt), умноженному на частоту дыхания (R):

Ve = Vt x R.

Она, определяется метаболическими потребностями субъекта и эффективностью газообмена. Необходимая минутная вентиляция достигается различными комбинациями частоты дыхания и дыхательного объема, что называется дыхательным паттерном, или дыхательным стереотипом. При измерении ДО не всегда удается получить показатель, свойственный индивидууму в покое, так как на получение этого параметра оказывают влияние и спирометр, и короткое время исследования. Уровень ДО у взрослого здорового человека весьма вариабелен и может изменяться при нагрузке и перемене положения тела, а в состоянии покоя он составляет примерно около 500 мл. ДО, как и другие параметры, составляющие структуру статических объемов (за исключением остаточного объема), измеряют спирометрическим методом, путем расчета средней величины как минимум из четырех дыхательных циклов при спокойном стабильном дыхании.

Максимальная вентиляция легких – это объем возду-ха, который перекачивают легкие за 1 мин при выполнении максимальных по частоте и глубине дыхательных движений. Эта величина чаще всего имеет теоретическое значение, так как невозможно поддерживать максимально возможный физически уровень вентиляции в течение одной минуты даже при максимальной физической нагрузке из-за наступающей гипокапнии. Поэтому для его косвенной оценки используют показатель максимальной произвольной вентиляции легких (МВЛ). Он измеряется при выполнении стандартного 12-секундного маневра с максимальными по амплитуде дыхательными движениями с частотой дыхания 60 в минуту.

Максимальный объем воздуха, который способен вдохнуть человек после спокойного вдоха, называется резервным объемом вдоха (РОвд.). Этот показатель для человека среднего возраста и средних антропометрических данных составляет от 1,5 до 2 л.

Максимальный объем воздуха, который человек дополнительно может выдохнуть после окончания спокойного выдоха, называется резервным объемом выдоха (РОвыд.). Сильное влияние на этот показатель оказывает гравитационный фактор, поэтому он выше в вертикальном положении, чем в горизонтальном, и может уменьшаться при ожирении.

Остаточный объем (ОО) – объем воздуха, который остается в легких после максимального выдоха и не может выдыхаться обследуемым ни при каких условиях. Другими словами, это объем газа, остающийся в легких после максимального экспираторного усилия. В разных возрастных группах ОО определяется в большей степени комбинированным эффектом мышц выдоха (экспираторные мышцы) и внутренними механическими свойствами легких. С возрастом ОО увеличивается.

Легочные емкости. Жизненная емкость легких (ЖЕЛ) – это объем, который вдыхается и выдыхается при выполнении максимальных инспираторных (вдох) и экспираторных (выдох) усилиях. Другими словами, это разница между ОЕЛ и ОО. Измерение ЖЕЛ – это один из наиболее простых и распространенных методов исследования. ЖЕЛ включает в себя дыхательный объем, резервный объем вдоха, резервный объем выдоха. У лиц среднего возраста ЖЕЛ варьирует в пределах 3,0 – 5,0 л и более. В зависимости от методики измерения ЖЕЛ различают ЖЕЛ вдоха, когда после полного выдоха производится максимально глубокий вдох, и ЖЕЛ выдоха, когда после полного вдоха производится максимальный выдох.

Емкость вдоха (Евд.) равна сумме дыхательного объема и резервного объема вдоха. У человека Евд. составляет в среднем 2,0 – 2,5 л и не зависит от положения тела.

Функциональная остаточная емкость (ФОЕ) – объем воздуха в легких после спокойного выдоха. Иногда ФОЕ еще называют конечным экспираторным объемом. При достижении ФОЕ внутренняя эластическая отдача легких уравновешивается наружной эластической отдачей грудной клетки, создавая отрицательное плевральное давление. У здоровых взрослых лиц это происходит примерно на уровне 50% ОЕЛ, и при плевральном давлении – 5 см вод.ст. ФОЕ является суммой резервного объема выдоха и остаточного объема. ФОЕ измеряется методами бодиплетизмографии и разведения газов или газовой дилюции. На величину ФОЕ существенно влияют уровень физической активности человека и положение тела в момент измерения. ФОЕ меньше в горизон-тальном положении тела, чем в положении сидя или стоя, из-за высокого стояния купола диафрагмы. ФОЕ может уменьшаться, если тело находится в воде или при ожирении вследствие уменьшения общей растяжимости грудной клетки.

Общая емкость легких (ОЕЛ) – объем воздуха в легких по окончании полного вдоха. ОЕЛ рассчитывают двумя способами:

ОЕЛ = ОО + ЖЕЛ

или

ОЕЛ = ФОЕ + Евд..

ОЕЛ может быть измерена с помощью плетизмографии или методом газовой дилюции.

Показатели статических легочных объемов и емкостей играют важную роль при оценке функции легких у здоровых лиц и в диагностике легочных заболеваний. Для определения легочных объемов и емкостей обычно используются методы спирометрии, пневмотахометрии с интеграцией показателей и бодиплетизмографии. Статические легочные объемы могут снижаться при любых состояниях, ограничивающих расправление легких. Это могут быть заболевания, вызывающие уменьшение числа функционирующих альвеол (ателектаз, резекция, рубцовые изменения легких), поражения плевры, уменьшающие податливость легочной ткани, болезни грудной клетки и живота, нейромышечные заболевания.

Для сопоставимости результатов измерений легочных объемов и емкостей полученные данные должны соотноситься со стандартными условиями температуры тела (37 0;С), давления (101 кПа), относительной влажности (100%). Это стандартное состояние обозначается аббревиатурой BTPS (body temperature, pressure, saturated).

ОБЩАЯ И АЛЬВЕОЛЯРНАЯ ВЕНТИЛЯЦИЯ

Легкое состоит из большого количества альвеолярных единиц разного размера и формы. Альвеолярная единица может быть схематически представлена как сферическая структура, содержащая газ (альвеолярный объем – Va), соединяющая с окружающим воздухом трубкой (мертвое пространство – Vd). Альвеолярный объем может изменяться под влиянием внешних факторов. Газообмен между кровью и вдыхаемым воздухом происходит именно в альвеолярном пространстве (альвеолярные протоки, альвеолярные мешочки и собственно альвеолы). В мертвом пространстве газообмен отсутствует. Объем легких (VL) определяется суммой этих двух объемов:

VL=Va+Vd.

Во время спонтанного дыхания объем легких варьирует с изменением дыхательного объема (Vt), который может быть измерен при вдохе и выдохе.

Поскольку не весь воздух, вдыхаемый в легкие и выдыхаемый из них, участвует в газообмене, альвеолярная вентиляция всегда меньше общей вентиляции. Часть общей минутной вентиляции не достигает альвеол, а поступает только в дыхательные пути (анатомическое мертвое пространство), где не происходит газообмена. Анатомическое мертвое пространство может быть измерено методом Fowler. Часть воздуха поступает в альвеолы, которые не перфузируются или перфузируются на уровне, недостаточном для газообмена (альвеолярное мертвое пространство). Сумма этих двух пространств называется физиологическим или функциональным мертвым пространством. С показателями минутной вентиляции (Ve) и альвеолярной вентиляции (Va) оно связано следующим уравнением:

Vd:Ve=Vd:Vt=1 – Va:Ve.

Отношение объема мертвого пространства к дыхательному объему редко меньше чем 0,3.

НЕРАВНОМЕРНОСТЬ ВЕНТИЛЯЦИИ

Газообмен наиболее эффективен, если альвеолярная вентиляция и капиллярная перфузия распределены равномерно по отношению друг к другу. Но альвеолы не всегда вентилируются равномерно, даже в здоровом легком. В норме вентиляция обычно осуществляется преимущественно в верхних отделах легких, в то время как перфузия – преимущественно в нижних. Таким образом, незначительная степень вентиляционно-перфузионной неравномерности может быть зарегистрирована у здорового человека на высоте уровня моря. Вентиляционно-перфузионное распределение становится более равномерным при физической нагрузке.

Объяснение топографической неравномерности вентиляции показано на рис. 2–4, А. Показано, что внутриплевральное давление в меньшей степени отрицательно на уровне нижних отделов легких, чем верхних. Это объясняется гравитационным фактором (т.е. массой самого легкого). Следствием является то, что объем альвеол в покое меньше, как видно по кривой давление – объем, а изменения объема для данного внутриплеврального давления выше, так как альвеолы функционируют в пределах более крутого участка кривой давление – объем. Поэтому вентиляция (изменение объема по отношению к объему в покое) выше в нижних отделах, чем в верхних, хотя если здоровый человек выполнит небольшой вдох от уровня остаточного объема, отмечается другая картина в распределении вентиляции. В этом случае вентилироваться будут преимущественно верхние отделы легких, так как генерируется меньшее внутриплевральное отрицательное давление, а на уровне нижних отделов оно практически достигает атмосферного (рис. 2–4, Б). При таком небольшом давлении базальные отделы не будут растягиваться и вентилироваться, а газ будет поступать только в верхние отделы. Таким образом, и топографическая неравномерность вентиляции, и региональные различия внутриплеврального давления в значительной степени объясняются деформацией легкого вследствие гравитационного фактора.

Не существует простых критериев для оценки неравномерности распределения вентиляции к кровотоку. Повышение соотношения объема мертвого пространства к дыхательному объему (Vd/Vt) или повышенная разница парциального напряжения кислорода в артериях и альвеолах (A-aDO2) являются неспецифическими критериями неравномерности распределения газообмена, однако эти изменения могут быть вызваны и другими причинами (снижение дыхательного объема, повышенное анатомическое мертвое пространство).

Рис. 2-4. Топографическая неравномерность вентиляции в легком.

path: pictures/2-4a.png

a-вдох на уровне функциональной остаточной емкости (West J.B. Respiratory Physiology – the Essentials. 7th ed. – Baltimore: Lippincott Williams and Wilkins, 2005)

path: pictures/2-4b.png

b – при низких легочных объемах (West J.B. Respiratory Physiology – the Essentials. 7th ed. – Baltimore: Lippincott Williams and Wilkins, 2005)

Наиболее важными особенностями альвеолярной вентиляции являются:

–интенсивность обновления газового состава, определяемая соотношением альвеолярного объема и альвеолярной вентиляции;

–изменения альвеолярного объема, которые могут быть связаны с увеличением или уменьшением размеров вентилируемых альвеол либо с изменением количества альвеол, вовлеченных в вентиляцию;

–межальвеолярная «неравномерность» распределения респираторных газов, которая приводит к «параллельной неравномерности»;

–внутриальвеолярная «неравномерность» распределения респираторных газов (стратификация), которая приводит к «последовательной неравномерности»;

–различия внутрилегочных характеристик сопротивления и эластичности, приводящие к асинхронности альвеолярной вентиляции.

Поток газов внутрь альвеол и наружу определяется механическими характеристиками легких и дыхательных путей, а также силами (или давлением), воздействующими на них. Механические характеристики определяются главным образом сопротивлением дыхательных путей потоку воздуха и эластическими свойствами легочной паренхимы, которые, в свою очередь, обусловлены:

–соотношением разницы ротового и альвеолярного давления и вызванным этим перепадом ротового потока;

–эластичностью легких, измеренной с помощью комплайенса (растяжимости – CL), равняющегося отношению между изменением легочного объема к соответствующим изменением транспульмонального давления.

Хотя существенные изменения размеров альвеол могут произойти за очень короткий промежуток времени (диаметр может измениться в полтора раза в течение одной секунды), линейная скорость потока воздуха внутри альвеол очень мала.

Размеры альвеолярного пространства таковы, что смешивание газа в альвеолярной единице происходит практически мгновенно как при нагрузке, так и в покое, вследствие дыхательных движений, кровотока и движения молекул (диффузии). В норме региональные различия в размерах альвеол сравнительно малы. Изменения объема альвеолы в 3 раза вызывает изменение ее радиуса в полтора раза. При эмфиземе же альвеолы могут увеличиваться в объеме до 10 раз.

Соотношение вентиляции и объема альвеол (т.е. степени вовлеченности альвеол в вентиляционный процесс) зависит от степени воздушности легочной ткани и дыхательной фазы (вдох или выдох), а также других факторов. Хорошо известен парадокс, когда при ухудшении легочной функции степень неравномерности распределения вентиляции снижается, как результат полного функционального выключения плохо вентилируемых альвеол.

Неравномерность альвеолярной вентиляции обусловлена и гравитационным фактором – разницей транспульмонального давления в верхних и нижних отделах грудной клетки (апико-базальным градиентом). В вертикальном положении в нижних отделах это давление выше примерно на 8 см вод.ст. (0,8 кПа). Апико-базальный градиент всегда присутствует независимо от степени воздухонаполненности легких и в свою очередь определяет наполнение воздухом альвеол в разных отделах легких.

В норме вдыхаемый газ смешивается практически мгновенно с альвеолярным газом. Состав газа в альвеолах практически гомогенен в любой респираторной фазе и в любой момент вентиляции. На скорость внутриальвеолярного смешивания оказывают влияние следующие факторы.

–Размеры альвеолярного пространства, которые определяют дистанцию, по-крываемую диффузией. Линейная скорость движения вдыхаемого газа в альвеолярном пространстве существенно замедляется, поскольку на уровне ацинуса общая площадь поперечного сечения очень велика. Поэтому смешение альвеолярного газа здесь происходит путем молекулярной диффузии.

–Сосудистая пульсация системного и легочного кровообращения стимулирует внутриальвеолярное смешивание и поток газа в бронхиолах.

–Межальвеолярные и бронхиолоальвеолярные коллатерали способствуют коллатеральной вентиляции, а также межальвеолярному и внутриальвеолярному смешиванию газов.

Любое повышение альвеолярного транспорта кислорода и углекислого газа, например, при физической нагрузке сопровождается повышением градиентов концентрации газов, которые способствуют возрастанию альвеолярной стратификации. Нагрузка стимулирует альвеолярное смешивание путем повышения потока вдыхаемого воздуха и возрастания кровотока. Из патологических состояний наиболее частой причиной возникновения внутриальвеолярной стратификации является аномальное увеличение размеров альвеол из-за перерастяжения и/или разрушения структуры легочной ткани. Это происходит при эмфиземе легких, когда механического продвижения и скорости диффузии становится недостаточно для преодоления альвеолярной дистанции без существенного концентрационного градиента. Альвеолярная стратификация затрудняет газообмен и формирует дополнительное препятствие диффузии между газовой фазой и кровью. Это повышает альвеолокапиллярный градиент давления для кислорода и углекислоты.

Феномен коллатеральной вентиляции, впервые описанный Алленом и Юнгом в 1931 г., очень важен для оптимального функционирования легких, особенно когда поражены мелкие дыхательные пути вследствие болезни бронхов. Функция альвеол при окклюзии дыхательных путей в этом случае поддерживается с помощью коллатеральной вентиляции. Существует три типа коллатеральных соединений.

–Интеральвеолярные (или поры Кона). Каждая альвеола в норме имеет около 50 интеральвеолярных соединений от 3 до 13 микрон в диаметре. Эти поры увеличиваются в размере с возрастом, а также при патологических состояниях, таких, как бронхит и эмфизема.

–Бронхоальвеолярные соединения (или каналы Ламберта), которые присутствуют в норме у детей и взрослых и иногда достигают в диаметре 30 микрон.

–Межбронхиолярные соединения (каналы Мартина), которые не встречаются у здорового человека, однако появляются при некоторых заболеваниях, поражающих дыхательные пути и легочную паренхиму.

Гравитация также оказывает влияние на легочный кровоток. Региональная перфузия единицы легочного объема возрастает по направлению от верхушек к базальным отделам легких в большей степени, чем это происходит с вентиляцией, поэтому в норме вентиляционно-перфузионное отношение (Vа/Qс) снижается от верхушек к нижним отделам. На вентиляционно-перфузионные отношения оказывает влияние целый ряд факторов:

–положение тела (в горизонтальном положении отсутствует разница между перфузией верхних и нижних отделов, а появляется вентиляционно-перфузионный градиент между передними и задними отделами);

–возраст (распределение региональной перфузии становится более равномерным с возрастом, как результат изменения механических свойств легочной ткани);

–растяжение легких (чем больше легочная ткань растянута, тем больше разница между апикальной и базальной региональной перфузией).

Но не вся кровь, перфузирующая легкие, участвует в газообмене. В норме небольшая порция крови может перфузировать невентилируемые альвеолы, и происходит так называемое шунтирование. При различных патологических состояниях шунт может нарастать и оказывать влияние на газообмен. Нарушение газового состава крови часто является результатом аномальных вентиляционно-перфузионных отношений. У здорового человека отношение Va/Qc может варьировать от нуля (циркуляторный шунт) до бесконечности (вентиляция мертвого пространства), однако в большей части легочной паренхимы вентиляционно-перфузионное отношение составляет примерно 0,8. Экстремальные показатели регистрируются только в небольших участках легочной ткани. Состав альвеолярного воздуха оказывает влияние на кровоток в легочных капиллярах. При низком со-держании кислорода (гипоксия), а также понижении содержания углекислоты (гипокапния) в альвеолярном воздухе отмечаются повышение тонуса гладкой мускулатуры легочных сосудов и их констрикция с возрастанием сосудистого сопротивления.

type: dkli00020

ЛЕГОЧНОЕ КРОВООБРАЩЕНИЕ

Основными составляющими легочного газообмена являются вентиляция и перфузия. Исследованию вентиляционной способности легких у больных, страдающих заболеваниями легких, уделяется особое внимание, тогда как легочное кровообращение оценивается недостаточно полно из-за отсутствия неинвазивных методов, позволяющих изучить гемодинамику в легких.

ДАВЛЕНИЕ В СИСТЕМЕ ЛЕГОЧНОЙ АРТЕРИИ

Давление в системе легочной артерии очень низкое по сравнению с давлением в большом круге кровообращения. Считается, что нормальное систолическое давление в легочной артерии равно 25 – 30 мм рт.ст., диастолическое давление – 8 мм рт.ст., среднее давление – 15 – 20 мм рт.ст., т.е. среднее давление в системе легочной артерии приблизительно в 6 раз ниже, чем среднее давление в большом круге кровообращения. Поскольку давление в легочной артерии такое низкое, то в перераспределении кровотока внутри легкого большую роль играет гидростатическое давление. Высота легкого взрослого человека приблизительно равна 30 см, поэтому гидростатическая разница в давлении между верхушкой легкого и его основанием равна 30 см крови, что эквивалентно 23 мм рт.ст., т.е. имеется существенная разница давлений в капиллярах на разных уровнях легкого.

Для изучения перераспределения давления в легочных капиллярах использовались как прямое измерение гидростатического давления в капиллярах, так и косвенные методы исследования (например, измерение давления пропотевшей жидкости на плевральной поверхности изолированного легкого). Исследования показали, что давление в легочных капиллярах приблизительно в 2 раза ниже, чем давление в легочной артерии, и в 2 раза выше, чем давление в легочной вене. Вероятно, перераспределение давления в легочных капиллярах происходит таким образом, чтобы как можно больший объем крови соприкоснулся с альвеолярным газом при минимальной нагрузке на правые отделы сердца.

Давление в легочной артерии сильно варьирует от систолы к диастоле (25 и 8 мм рт.ст. соответственно), что позволяет обеспечить хороший кровоток в легочных капиллярах.

В настоящее время выделяют два типа легочных капилляров, которые расположены в альвеолярной стенке (альвеолярные и экстраальвеолярные). Давление в альвеолярных легочных капиллярах приблизительно равно давлению в альвеолах и зависит от фазы вдоха и выдоха. На вдохе, когда легкое расширено, давление в капиллярах такого типа становится на несколько сантиметров ниже альвеолярного из-за поверхностного натяжения внутри альвеол, и, наоборот, на выдохе давление в капиллярах близко к альвеолярному давлению. Давление в экстраальвеолярных капиллярах не зависит от давления в альвеолах, но так же зависит от фазы вдоха и выдоха. Диаметр этих капилляров определяется радиальной тягой окружающих альвеолярных стенок, поэтому на вдохе, когда легкое увеличивается в объеме, диаметр этих капилляров увеличивается, на выдохе – уменьшается из-за наличия эластической ткани в межальвеолярных перегородках.

СОСУДИСТОЕ СОПРОТИВЛЕНИЕ В СИСТЕМЕ ЛЕГОЧНОЙ АРТЕРИИ

Сосудистое сопротивление в системе легочной артерии определяется как:

path: pictures/01-asd.png

СКОРОСТЬ ПОТОКА В ЛЕГОЧНОЙ АРТЕРИИ

В нормальных условиях сосудистое сопротивление в легких составляет 5 л/мин. Поток крови определяется артериовенозной разницей давлений приблизительно равной 10 мм рт.ст. До настоящего времени механизмы регуляции сосудистого сопротивления изучены недостаточно полно, хотя известно, что при повышении артериального или венозного давления в малом круге кровообращения происходит снижение сосудистого сопротивления. Такая реакция необходима прежде всего для того, чтобы уменьшить нагрузку на правые отделы сердца. Показано, что при физической нагрузке, когда происходит повышение артериального и венозного давления, сосудистое сопротивление падает.

Известны два механизма регуляции легочного сосудистого сопротивления – открытие ранее закрытых капилляров (рекуррентные капилляры) и увеличение диаметра капилляров. В экспериментах на животных было показано, что повышение давления в легочной артерии от 0 до 15 см вод.ст. увеличивало число открытых капилляров на миллиметр длины альвеолярной стенки в два раза, а при повышении давления на 50 см вод.ст. средний диаметр капилляров увеличивался приблизительно от 3,5 до 7 mm.

Предполагают, что открытие ранее закрытых капилляров основано на свойст-вах плотной сети многочисленно связанных капиллярных сегментов. Для каждого капиллярного сегмента предопределено свое критическое давление, при котором происходит его открытие. Увеличение диаметра капилляров, очевидно, связано с выпиранием капиллярной стенки из-за повышения внутрикапиллярного давления. За счет раскрытия рекуррентных микрососудов и расширения капилляров увеличиваются площадь микроваскулярного русла и время контакта крови с альвеолярным газом, что в свою очередь облегчает газообмен.

Важную роль в регуляции сосудистого сопротивления играет объем легкого: при увеличении легочного объема сосудистое сопротивление сначала падает, а затем повышается. В норме на уровне функциональной остаточной емкости легкого сосудистое сопротивление минимально. Повышение легочного сосудистого сопротивления при уменьшении объема легкого связано с уменьшением диаметра экстраальвеолярных капилляров, так как диаметр этих сосудов поддерживается радиальной тягой окружающей паренхимы, поэтому наименьший диаметр этих капилляров будет при коллапсе легкого. Кроме того, при уменьшении легочного объема сосудистое сопротивление чрезвычайно чувствительно к вазоконстрикторным веществам типа серотонина, которые вызывают сокращение гладкой мускулатуры стенки сосудов.

В нижних отделах легкого на сосудистое сопротивление оказывает влияние и извилистый ход микрососудов. В верхних отделах легкого повышение сосудистого сопротивления, вероятно, вызвано поперечным сужением капилляров.

Многие биологически активные вещества оказывают влияние на сосудистое сопротивление. Так, например, серотонин, гистамин и норэпинефрин вызывают сокращение гладкой мускулатуры стенки легочных сосудов, поэтому сосудистое сопротивление повышается, а ацетилхолин и изопротеренол расслабляют сосуды, и сопротивление падает.

РАСПРЕДЕЛЕНИЕ ЛЕГОЧНОГО КРОВОТОКА

Распределение легочного кровотока в здоровом легком неравномерно. У человека в вертикальном положении скорость кровотока линейно снижается к верхушке легкого. В горизонтальном положении скорость кровотока в верхушке легкого и его основании будет приблизительно одинаковой, однако можно обнаружить различия в кровотоке между соседними отделами легкого, расположенными выше и ниже исследуемых участков. При физической нагрузке в вертикальном положении различия в кровоснабжении верхних и нижних отделов легкого уменьшаются.


    Ваша оценка произведения:

Популярные книги за неделю