Текст книги "Респираторная медицина. Руководство (в 2-х томах)"
Автор книги: А. Чучалин
Жанр:
Медицина
сообщить о нарушении
Текущая страница: 4 (всего у книги 191 страниц)
type: dkli00015
ЗАЩИТНЫЕ АНТИБАКТЕРИАЛЬНЫЕ МЕХАНИЗМЫ ЛЕГКИХ
Система защиты легких сложна и до сих пор не до конца понятна. Но два аспекта: антимикробные протеины фагоцитов и селективные состояния недостатка иммуноглобулинов – являются очень интересными.
Фагоциты (нейтрофилы и эозинофилы, моноциты и макрофаги) – эффекторные клетки антимикробной защиты. Они уничтожают микроорганизмы посредством оксидативных и неоксидативных механизмов.
ХГЗ, описанное выше, – хорошо изученный генетический дефект с такими механизмами. Оно обусловлено дефектом энзима NADPHоксидазы, что делает невозможным адекватную оксидативную защиту от микроорганизмов. К неоксидативным механизмам относится высвобождение антимикробных протеинов фагосом, однако генетические дефекты таких протеинов до сих пор не выяснены.
Синтез и функции иммуноглобулинов классов IgG и IgA, так же как и IgE, – процесс комплексный, а интерпретация клинических проявлений иммунодефицита, который мы наблюдаем у большинства пациентов с ХОБЛ, очень сложна. Так, полный недостаток IgA – частый иммунный дефект, который ассоциируется с синопульмональными инфекциями вирусного и бактериального генеза и часто наблюдается у больных с атопией. Генетическая основа такого дефекта абсолютно неясна, как и IgG (субкласс IgG2, IgG4). Такой же минимум генетической информации имеется о других классах иммуноглобулинов.
type: dkli00016
ПЕРВИЧНАЯ ЦИЛИАРНАЯ ДИСКИНЕЗИЯ
Первичная цилиарная дискинезия (ПЦД) представляет собой наследственную гетерогенную патологию с аутосомно-рецессивным типом наследования. Вследствие несостоятельности мерцательного реснитчатого эпителия и нарушения его цилиарной функции у больных может развиваться целый спектр поражений различных внутренних органов, однако более всего страдает респираторная система, о чем свидетельствует наличие рецидивирующих бронхитов и затяжной пневмонии. Считается, что 50 – 60% ПЦД приходится на синдром Картагенера [7]. Впервые этот синдром был описан в 1904 г. А.К. Зивертом, но более детальное описание данной патологии, ее семейных форм было представлено М. Картагенером в 1933 г. [28]. Синдром Картагенера (синдром Зиверта – Картагенера) – это триада, включающая в себя бронхоэктазы, синуситы и situs viscerus inverus. В 1970х годах R. Eliasson (1977) и B. Afzelius (1978) выявили у больных с данной триадой дефект строения аксонем ресничек мерцательного эпителия слизистой оболочки бронхов [41]. Таким образом, в основе ПЦД лежит генетически детерминированное изменение его ультраструктуры. На сегодняшний день при ПЦД их описано свыше 20 [5]. Применяя метод кандидатного картирования, хромосомы 3p, 4q, 5p, 7p, 8q, 10p, 11q, 13q, 15q, 16p, 17q и 19q обозначили как геномные регионы, которые могут быть ассоциированы с ПЦД [18]. Анализ семей с наследственной декстрапозицией указывает на связь с хромосомами 8q и 19q. При исследовании по сцеплению фенотип синдрома Картагенера в арабских семьях был картирован в области 19q (19q13.3qter) [16]. Облигатными признаками патологии считаются отсутствие или недоразвитие динеиновых ручек, отсутствие радиальных спиц, нексиновых связок, нарушение числа дублетов и синглетов. Динеиновые ручки являются носителями АТФактивности, превращающей химическую энергию АТФ в механическую энергию движения ресничек. В последние годы динеиновые дефекты связывают с мутацией в области короткого плеча хромосомы 9 (9р21р13), а причину «дефицита» динеиновых ручек – с 8q и 16pter [21]. Утрата динеиновых ручек, что происходит в 70 – 80% наблюдений ПЦД, приводит к неподвижности ресничек. В 2002 г. H. Olbrich и соавт., обследовав 7 человек из 6 семей с синдромом Картагенера, обнаружили мутацию в гене DNAH5 (axonemal heavy chain dynein type 5), расположенном в геномном регионе 5p15 – p14. Другая группа исследователей показала мутацию в гене DNAH11 (axonemal heavy chain dynein type 11). Также при изучении гена DNAH11, располагающегося в области 7р21 хромосомы, были идентифицированы мутация в 82м экзоне и гомозиготная нонсенс-мутация (R2852X) [3]. У пациента с синдромом Картагенера была установлена мутация в гене DNAI1 (IC78) (9p21 – p13) [30]. В одном из последних исследований 30 семей с ПЦД было установлено 33 новых (12 нонсенс-, 5 сплайсинг-, 8 миссинг-мутаций и 8 мутаций со сдвигом рамки считывания) и 2 известные ранее мутации в гене DNAH5 [36]. Интересно, что у 6 (32%) из 19 обследованных семей с ПЦД из Северной Америки была обнаружена новая основная мутация в 10815delIT.
type: dkli00017
АНАЛИЗ ПОСЛЕДНИХ ИССЛЕДОВАНИЙ ПО ПОИСКУ ГЕНЕТИЧЕСКИХ МАРКЕРОВ ГЕНОВ БРОНХОЛЕГОЧНОЙ ПАТОЛОГИИ
В Южной Атлантике есть один маленький остров – Тристан да Кунха, который считается «островом астматиков». Каждый третий житель острова страдает БА, что абсолютно не связано с факторами внешней среды: просто из 15 первых поселенцев – жителей острова – трое страдали БА. Интересно, что эти наблюдения не связаны с состоянием атопии, так как частота позитивных аллерготестов среди жителей острова не выше, чем в других частях планеты [43]. Скорее всего, жители острова унаследовали состояние гиперреактивности бронхов.
Английское проспективное исследование показало, что среди рожденных в 1946 г. детей по достижении ими 4летнего возраста у 6,2 на 1000 человек была диагностирована БА [54]. Дальнейшее наблюдение за этими людьми показало, что среди их детей уже было 18,9 на 1000 больных БА детей. Ссылка на лучшую диагностику БА в последние годы вряд ли может объяснить такой резкий подъем.
Исследование стационарных пациентов в Германии показало, что позитивный по БА семейный анамнез встречается при экзогенноаллергической форме БА в 81% наблюдений, когда больные указывают на повторные случаи БА в семье (у родителей, братьев, сестер или детей) [43]. А среди пациентов с терапевтической патологией в Германии в 20% наблюдений имеется указание на семейную отягощенность по БА.
Считается, что наследуется состояние гиперреактивности бронхиальной системы, но то, как реализуется эта гиперреактивность, во многом зависит от факторов окружающей среды. Факторами риска развития БА у детей раннего возраста считаются:
–семейный анамнез (БА у матери – действенно больший фактор риска, чем у отца, но наибольший риск – при наличии БА у обоих родителей);
–указание на атопический статус, например атопическая экзема (нейродермит);
–повышенный уровень IgЕ в крови пуповины;
–наличие эозинофилов в крови 9месячного ребенка;
–позитивные кожные аллерготесты у ребенка после 6 лет.
В то же время имеются совершенно противоположные данные: так, в Швеции при исследовании 7000 монозиготных (однояйцевых) близнецов показано, что, несмотря на абсолютную их идентичность, только 20% пар страдают астмой [13]. Возможно, этот «астматический вклад» наследуется по какомуто единичному гену аутосомальнодоминантным путем и клиническое проявление во многом детерминировано факторами окружающей среды.
Некоторые сильные генетические компоненты БА уже известны. По данным эпидемиологических исследований, патогенез этого заболевания в значительной степени детерминирован генетическими факторами [45]. При этом результирующая клиническая картина заболевания у пациентов проявляется под воздействием экзогенных факторов – это так называемая фенотипическая манифестация генетической предрасположенности.
Клиницисты всегда обращали внимание на семейную агрегацию этого заболевания; не хватало только соответствующих молекулярно-генетических технологий. Современные технологии позволили изучить роль генов в патогенезе БА, которые сегодня изучаются структурно и функционально, вплоть до их молекулярных деталей. Поиск естественно встречающихся дефектов в кандидатных генах наряду с анализом трансгенных экспериментальных моделей и рекомбинантных штаммов животных – это многообещающая возможность приблизить решение проблемы комплексной генетической предрасположенности к заболеваниям.
Предшествующие исследования на семьях больных не подтвердили гипотезы о простом менделевском наследовании БА в целом, что определило продолжение активных генетических исследований [1].
В Австралии для определения кандидатного гена БА провели мутационный скрининг гена IFNгамма [19]. Ген IFNгамма расположен на хромосоме 12 – в регионе генома, связанном с БА. Было проведено исследование ПЦР геномной ДНК соответствующих регионов у 265 пациентов из двух популяций – Западной Австралии и Венесуэлы. Мутации в гене IFNгамма оказались недостоверными, что не позволило считать этот ген маркером БА в этих популяциях.
В Австралии изучали семейную агрегацию БА среди местного населения [26]. Пробандами выступали люди, рожденные в 1961 г. Всего изучено 7394 семьи с 41 506 членами семей. Главной задачей этого популяционного исследования было выяснение вопроса о наличии действительной семейной агрегации БА в семьях, ее связи с факторами внешней среды и генетическими факторами. Были применены и проанализированы различные модели наследования БА – регрессивное моделирование в сочетании с эффектом «родитель – ребенок», олигогенное моделирование, неменделевское распределение наследования, менделевская модель, кодоминантная модель, доминантная модель, а также рассчитаны соответствующие коэффициенты наследования. Показано, что, вопервых, скорее всего, имеется не один главный локус, ответственный за БА, вовторых, гены БА в популяции наследуются кодоминантно, а факторы окружающей среды в развитии БА у жителей Австралии не являются доминирующими; тем самым был доказан вклад генетических факторов в развитие БА.
В Германии изучили ассоциацию высоких уровней сывороточного IgE с HLADR и маркерами на хромосоме 5q31 и хромосоме 11q13 [53]. Предварительные исследования выявили связь между общими сывороточными концентрациями IgE и областью хромосомы 5q31, а также с локусом атопии хромосомы 11q13. Этим данным противоречили другие, указывающие на то, что управляемая антигенами продукция IgE контролируется в основном комплексом генов II класса ГКГ. Настоящее же исследование проанализировало ассоциацию между фенотипом высоких уровней сывороточного IgE и шестью микросателлитными маркерами хромосом 5q31 и 11q13, а также и HLADRB1 в рандомизированной выборке взрослых. 129 человек с уровнями IgE выше 200 МЕ/мл и 266 контрольных персон с IgE ≤ 200 МЕ/мл были генотипированы на 5 микросателлитных маркеров хромосомы 5q31, а именно на D5S436, D5S393, D5S210, IL4 и IL9; на один микросателлит хромосомы 11q13, а именно FCERIB, и все они типированы на HLADRB1. Результаты анализировали в соответствии с тестом Фишера. Показано, что ни один из маркеров не ассоциировался достоверно с высокими уровнями IgE, хотя была найдена слабая ассоциация высоких уровней IgE с генами IL9, FCER1B и HLADRB1 при сравнении с контролем.
Генетический контроль взаимосвязи БА с уровнями сывороточного IgE изучали в изолированной популяции Финляндии [31]. Учитывая, что геномный регион хромосомы 5 предварительно применялся для изучения уровней IgE, а также бронхиальной гиперреактивности, т.е. наследственной предрасположенности к астме, решили изучить данный регион. Чтобы подтвердить эту связь, ограничить исследуемую область генома, и использовали изолированную популяцию. 16 полиморфных маркеров, включая гены IL4 и L9, были упорядочены и генотипированы в 157 ядерных семьях. В результате не было обнаружено генетической связи в сиблинговых и кузиновых парах между этими маркерами на хромосоме 5q как с сывороточным уровнем IgE, так и с БА. Также провели анализ ассоциаций гаплотипов. При этом установили, что в данной изолированной финской популяции вариации аллелей хромосомы 5q31 не участвуют в наследовании уровней сывороточного IgE и развития БА.
В штате Колорадо (США) с 1998 г. проводится большое национальное исследование «Кандидатные гены и БА» [46]. Изучают вопросы патофизиологии БА, генетики и физиологии цитокинов, физиологии генов, генетики IL4, физиологии IL4, генетики маркеров связи, генетического полиморфизма. Результаты этого исследования должны внести ясность в решение вопроса о генах БА.
В штате Аризона (США) проведено исследование связи циркулирующих в крови эозинофилов с маркерами хромосомы 5q [38]. Хорошо известно, что эозинофилия сопряжена с риском развития БА, при этом ее генетическая регуляция не изучена. Изучались связи между циркулирующими эозинофилами и 9 маркерами хромосомы 5q31 – 33 у сиблинговых пар (sibpair analysis). Показано, что контролирующие эту связь локусы могут быть представлены на этой хромосоме, контролирующей циркуляцию эозинофилов пропорционально общему числу клеток белой крови.
В 1999 г. в Германии создан банк данных, содержащий 88 исследований по связям и 72 исследования мутаций при БА и аллергии, который постоянно пополняется [24].
В то время как многие генетические исследования по БА сфокусированы на молекулах и генах, которые участвуют в процессах воспаления и иммуномодуляции, позиционное клонирование гена ADAM33 открыло новые возможности в респираторных исследованиях. Ученые, открывшие роль гена ADAM33 при БА, описывают, как «длинная и путаная дорога сначала завела» их «так далеко – к позиционному клонированию гена ADAM33, а потом вернулась обратно к истокам – его возможной роли в формировании бронхиального древа» [27].
Табачный дым и пылевые загрязнения (в том числе и профессиональные) – известные факторы риска ХОБЛ. Хотя курение в данном случае – важнейший фактор риска, только у 15% курильщиков развивается эта болезнь. Семейные исследования, проведенные в ФРГ, показали, что для развития ХОБЛ существует важная полигенная компонента. Исследования 252 пар среди монозиготных близнецов и родных братьев-сестер курильщиков подтвердили повышенную частоту риска развития ХОБЛ по сравнению с пробандами, не имеющими родных сибсов. На сегодняшний день можно с уверенностью говорить о роли гена, подавляющего альфа1протеазу в развитии ХОБЛ (APIген). Но APIген содержит огромное число секвенц-вариаций, из которых за данный функциональный дефект отвечает точечная мутация на 5м экзоне. По соседству с APIгеном располагается ген, подавляющий протеазу ACT, две секвенц-вариации которого также «вносят вклад» в развитие ХОБЛ. Другие кандидатные гены ХОБЛ – гены коллагеназы (MMP1) и ген желатиназы В (MMP9). Генами – кандидатами воспалительного процесса при ХОБЛ являются гены системы лимфогематопоэза – ген фактора некроза опухоли альфа (TNFальфа) и гены интерлейкинов. Кандидатными генами для компенсации оксидативного стресса являются гены супероксиддисмутазы и гены микросомальной эпоксидгидролазы [55].
Ген ткани ингибитора металлопротеиназ (TIMP2) существенно предрасполагает к развитию ХОБЛ, причем исследования в этом направлении настолько интенсивны, что практически ежегодно идут новые сообщения об изученных полиморфизмах [20].
Интересны данные по изучению генетики легочной гипертензии. Семейную идиопатическую легочную гипертензию (ИЛГ) изучали как в спорадических случаях, так и в семьях с накопленными случаями данного заболевания. Показано, что болезнь наследуется аутосомно-доминантным путем. Дефект находится в области гена костного морфогенетического рецептора протеина типа II, который кодируется как трансформированный ростовой фактор бета. Показано также, что чисто спорадических случаев данного заболевания не существует, так как при тщательном генетическом семейном анализе обнаружено, что в основе заболевания всегда имеет место мутация данного гена. Анализ наблюдений ассоциации ИЛГ с наследственной геморрагической телеангиэктазией показал, что в развитие ИЛГ может быть также вовлечена мутация гена активин-рецепторкиназы 1. В связи с полученными данными развиваются подходы для генетического консультирования и помощи в семьях с повторными случаями данного заболевания.
Эволюция – это логичное объяснение межпопуляционных различий специфических аллельных частот, если вовлеченные гены имеют связанные друг с другом функции, гетерогенные аллели имеют схожие функциональные последствия, вовлеченные гены не связаны хромосомально между собой [33]. Такая комбинация факторов может привести к биологически логичным, повышающим стойкость к выживанию взаимовлияниям генов и окружающей среды. Было показано существование постоянства между частотами аллелей в генах, которые связаны с иммунным ответом Тхелперов 2 (Th2) у людей с различным происхождением, но проживающих в климатически сходных регионах. Ответы Th2 развились у млекопитающих для противостояния паразитарной инфекции, особенно против гельминтов. Современный человек произошел из тропической Африки, где он постоянно сталкивался с гельминтами. Сравнительно недавно человечество мигрировало в более холодные и сухие климатические зоны, которые для большинства гельминтов оказались неблагоприятными, поэтому у них появились сложности с размножением. Генетическая тенденция к сильным ответам Th2 привела к лабильности здоровья. С одной стороны, человек приобрел устойчивость к паразитарной инфекции, а с другой стороны, у него повысилась врожденная предрасположенность к аллергическим и атопическим заболеваниям. В данных процессах участвуют специфические аллели интерлейкина4 и его рецепторов, интерлейкинов-10 и 13, бетацепь рецептора IgЕ, адренергический рецептор бета1, альфацепь фактора некроза опухоли. Данные полиморфизмы, специфичные для популяции, имеют большое значение для развития заболеваний. Высокая частота БА у мигрантов из тропических регионов, переехавших в более умеренный климат, связана именно с этими процессами. Следует отметить высокую вероятность того, что повышающаяся ассимиляция в западное общество 2 млрд человек из тропиков может привести к быстрому росту заболеваемости БА, поскольку такое население уже имеет высокую генетическую предрасположенность к аллергическим заболеваниям.
Большое распространение бронхолегочной патологии в развивающихся странах – предмет для беспокойства в будущем [37]. Поэтому сегодня на первый план для исследователей выдвигается изучение генов, взаимодействующих с окружающей средой. Окружающая среда – это ключ к пониманию генетики. Генетические результаты не могут иметь большого смысла, если окружающую среду не брать во внимание. Ученые постепенно приходят к выводу, что изучение генотипов только в изолятах может завести в тупик. С другой стороны, целый ряд генетических факторов, сцепленных с определенным заболеванием индивидуума, приводит к развитию болезни в том случае, если конкретные пусковые механизмы окружающей среды тоже имеют место. Это и объясняет тот факт, почему так трудно определить генетические маркеры для МФЗ, и подчеркивает необходимость мультидисциплинарных подходов для объективной оценки генетических данных.
9
СПИСОК ЛИТЕРАТУРЫ
1. Фогель Ф., Мотульски А.М. Генетика человека. – 1990.
2. Babadjanova G., Allolio B., Beuschlein F. et al. Polymorphism of the glycogen synthase gene and non-insulin-dependent diabetes mellitus in the Russian population // Metab. Clin. and Exper. – 1997. – Vol. 46. – 2. – P. 121 – 122.
3. Bartoloni L., Blouin J.L., Pan Y. et al. Mutations in the DNAH11 (axonemal heavy chain dynein type 11) gene cause one form of situs inversus totalis and most likely primary ciliary dyskinesia // Proc. Natl. Acad. Sci. USA. – 2002. – Vol. 16. – P. 10282 – 10286.
4. Borth W. 2-macroglobulin, a multifunctional bindinig protein with targeting Characteristics // FASEB J. – 1992. Vol. 6. – P. 3345 – 3353.
5. Bush A., O'Callaghan C., Boon A. Primary ciliary dyskinesia // Arch. Dis. Child. – 2002. Vol. 87. – 5. – P. 363 – 365.
6. Chodhari R., Mitchison H.M., Meeks M. Cilia, primary ciliary dyskinesia and molecular genetics // Paediatr Respir Rev. – 2004. – Vol. 5. – 1. – P. 69 – 76.
7. Clarke L., Grubb B.R., Gabriel S.E. Defective epithelial chloride transport in a gene-targeted mouse model of cystic fibrosis // Science. – 1992. – Vol. 257. – P. 1125 – 1128.
8. Cookson W., Young R.P., Sandford A.J. et al. Maternal inheritance of atopic IgE responsiveness on chromosome 11q // Lancet. 1992. – Vol. 340. – P. 381 – 384.
9. Crowley J.J., Sharp H.L., Freier E. Fatal liver disease associated with 1-antitrypsin deficiency PI M1/PI Mduarte // Gastroenterology. – 1987. – Vol. 93. – P. 242 – 244.
10. Crystal R.G. Cystic fibrosis // In: Human gene transfer. Collogue INSERM. – 1991. – P. 319 – 322.
11. Davies K. Fast forward for gene therapy // Nature. – 1993. – Vol. 361. – P. 672 – 673.
12. Devriendt K., Zhang J., van Leuven F. A cluster of 2-macroglobulin-related genes (a2M) on human chromosome 12p: cloning of the pregnancy-zone protein gene and an a2M pseudigene // Gene. – 1989. – Vol. 81. – P. 325 – 334.
13. Edford-Lubs M.L. Allergy in 7000 twin pairs // Acta Allergol. – 1971. – Vol. 26. – P. 249.
14. Erlich H.A., Gelfand D., Sninsky J.J. Recent advances in the polymerase chain reaction // Science. – 1991. – Vol. 252. – P. 1643 – 1651.
15. Ferrie R.M., Schwarz J.J., Robertson N.H. et al. Development, multiplexing and application of ARMS tests for common mutations in the CFTR gene // Amer. J. Hum. Genet. – 1992. – Vol. 51. – P. 251 – 262.
16. Fliegauf M., Omran H. Novel tools to unravel molecular mechanisms in cilia-related Disorders // Trends Genet. – 2006. – Vol. 22. – 5. – P. 241 – 245.
17. Gadek J.E., Pacht E.R. The proteinase-antiproteinase balance within the human lung: implications for the pathogenesis of emphysema // Lung. – 1990. – Vol. 168. – P. 552 – 564.
18. Geremek M., Witt M. Primary ciliary dyskinesia: genes, candidate genes and chromosomal regions // J. Appl. Genet. – 2004. – Vol. 45. – 3. – P. 347 – 361.
19. Hayden C., Pereira E., Rye P. Mutation screening of interferon-gamma (IFN-gamma) as a candidate gene for asthma // Clin. Exp. Allergy. – 1997. – Vol. 27. – 12. – P. 1412 – 1416.
20. Hirano K., Sakamoto T., Uchida Y. et al. Tissue inhibitor of metalloproteinases-2 gene polymorphism in chronic obstructive pulmonary disease // Eur. Respir. J. – 2001. – Vol. 18. – P. 748 – 752.
21. Holzbaur E., Vallee E. DYNEINS: molecular structure and cellular function // Annu. Rev. Cell Biol. – 1994. – Vol. 10. – P. 339 – 372.
22. Hubbard R., Sellers S., Czerski D. Biochemical efficiecy and safety of monthly augmentation therapy for a1-antitrypsin deficiency // J. Amer. Med. Ass. – 1988. – Vol. 260. – P. 1259 – 1264.
23. Humbert M. Trembath R.C. Genetics of pulmonary hypertension: from bench to betside // Eur. Respir. J. – 2002. – Vol. 20. – P. 741 – 749.
24. Immervoll T., Wjst M. Currens status of the asthma and allergy database // Nucleic Acids Res. – 1999. – Vol. 27. – 1. – P. 213 – 214.
25. Janus E.D., Philipps N.T., Carrell R.W. Smoking, lung function and 1-antitrypsin deficiency // Lancet. – 1985. – P. 152 – 154.
26. Jenkins M.A., Hopper J.L., Giles G.G. Regressive logistic modelling of familial aggregation for asthma in 7,394 population-based nuclear families // Genet. Epidemiol. – 1997. – Vol. 14. – 3. – P. 317 – 332.
27. Kabesch M., Kauffmann F., von Mutius E. New ways in respiratory genetics // Eur. Respir. J. – 2006. – Vol. 28. – P. 1079 – 1080.
28. Kartagener M. Zur Pathogenese der Bronchiektasien // Beitr. Klein. Erforsch. Tuberk. Lungenkr. – 1933. – Bd. 83. – S. 489 – 501.
29. Kerem B.S., Rommins J.M., Buchanan J.A. et al. Identification of the cystic fibrosis gene: genetic analysis // Science. – 1989. – Vol. 245. – P. 1073 – 1080.
30. Kispert A., Petry M., Olbrich H. et al. Genotype-phenotype correlations in PCD patients carrying DNAH5 mutations // Thorax. – 2003. – Vol. 58. – 6. – P. 552 – 554.
31. Laitinen T., Kauppi P., Ignatius J. et al. Genetic control of serum IgE levels and asthma: linkage and linkage disequlibrium studies in an isolated population // Hum. Mol. Genet. – 1997. – Vol. 6. – 12. – P. 2069 – 2076.
32. Laurell C.B., Eriksson S. The electrophoretic 1-globulin pattern of serum in 1-antitrypsin deficiency // Scand. J. Clin. Lab. Invest. – 1963. – Vol. 15. – P. 132 – 140.
33. Le Souёf P.N., Candelaria P., Goldblatt J. Evolution and respiratory genetics // Eur. Respir. J. – 2006. – Vol. 28. – P. 1258 – 1263.
34. Leto T.L., Lomax K.J., Volpp B.D. et al. Cloning of a 67-kD neutrophyl oxidase factor with similarity to a non-catalytic region of p60c-src // Science. – 1990. – Vol. 248. – P. 727.
35. Lomas D.A., Wang Z.M., Rubin H. Inhibition of neutrophil chemotaxis by active site mutants of 1-antichymotrypsin. Part 2 // Amer. Rev. Resp. Dis. – 1992. – Vol. 145. – P. A201.
36. Luisetti M., Seersholm N. 1-Antitrypsin deficiency. 1: Epidemiology of 1-antitrypsin deficiency // Thorax. – 2004. – Vol. 59. – P. 164 – 169.
37. Martinez F.M. Genes, environments, development and asthma: A reappraisal // Eur. Respir. J. – 2007. (in press).
38. Martinez F.D., Solomon S., Holberg C.J. et al. Linkage of circulating eosiniphils to markers on chromosome 5q // Am. J. Respir. Crit. Care Med. – 1998. – Vol. 158. – 6. – P. 1739 – 1744.
39. Marx J. Dissecting the complex diseases // Science. – 1990. – Vol. 247. – P. 1540 – 1542.
40. McIntosh I., Cutting G.R. Cystic fibrosis transmembrane conductance regulator and the ethiology and pathogenesis of cystic fibrosis // FASEB J. – 1992. – Vol. 6. – P. 2775 – 2782.
41. Meeks M., Bush A. Primary ciliary dyskinesia // Ped. Pulm. – 2000. – Vol. 29. – P. 307 – 316.
42. Meisen C. Molekular biologische Untersuchungen bei PI-Z-bedingter Alpha-1-Antitrypsin-Defizienz // Diss. Bonn. – 1988.
43. Nolte D. Asthma // München-Wien-Baltimore. – 1998.
44. Poller W., Faber J.P., Klobeck G. Cloning of the human alpha2-macroglobulin gene and detection of mutations in two functional domains: bait region and thiolester site // Hum. Genet. – 1992. – Vol. 88. – P. 313 – 319.
45. Pyeritz R.E. A revolution in medicine like no other // FASEB J. – 1992. – Vol. 6. – P. 2761 – 2766.
46. Rosenwasser L.J. Structure/function variants as candidate genes in asthma: linkage vs. association for relevance // Clin. Exp. Allergy. – 1998. – Vol. 28. – P. 90 – 92.
47. Royer-Pokora B., Kunkel L.M., Monaco A.P. Cloning the gene for an inherited human disorder – chronic granulomatous disease – on the basis of its chromosomal location // Nature. – 1986. – Vol. 322. – P. 32 – 37.
48. Sambrook J., Fritsch E.F., Maniatis T. Molecular cloning // Cold Spring Harbor. – 1989.
49. Sefton L., Kelsey G., Kearney P. A physical map of the human PI and AACT genes // Genomics. – 1990. – Vol. 7. – P. 382 – 388.
50. Shero J.H., McCormick M.K., Antonarakis S.E. et al. Yeast artificial chromosome vectors for efficient clone manipulation and mapping // Genomics. – 1991. – Vol. 10. – P. 505 – 508.
51. Stites D.P., Stobo J.D., Fudenberg H.H. et al. Allergic disease in basic and clinical immunology // Eds. Los Altos, California. – 1982.
52. Tsui L.C., Buchwald M., Barker D. et al. Cystic fibrosis locus defined by a genetically linked polymorphic DNA marker // Science. – 1985. – Vol. 230. – P. 1054 – 1057.
53. Ulbrecht M., Eisenhut T., Bonisch J. et al. High serum IgE concentrations:association with HLA-DR and markers on chromosome 5q31 and chromosome 11q13 // J. Allergy Clin. Immunol. – 1997. – Vol. 99. – P. 828 – 836.
54. Wadsworth M. Inter-generational differences in child health. In: Measuring socio-demographic change // OPCS Occasional Paper (London). – 1985. – Vol. 34. – P. 51 – 58.
55. Walter К., Gottlieb D.J., O`Connor G.T. Environmental and genetic risk factor and gene-environment interactions in the pathogenesis of chronic obstructive lung disease // Environ. Health Perspect. – 2000. – Vol. 108. – 4. – P. 733 – 742.
56. Weissenbach J., Gyapay G., Dib C. et al. A second-generation linkage map of the human genome // Nature. – 1992. – Vol. 359. – P. 794 – 801.
document:
$pr:
version: 01-2007.1
codepage: windows-1251
type: klinrek
id: kli8450652
: 02.1. РЕСПИРАТОРНАЯ ФУНКЦИЯ ЛЕГКИХ
meta:
author:
fio[ru]: З.Р. Айсанов, Е.Н. Калманова, Ж.К. Науменко
codes:
next:
type: dklinrek
code: I.II
Настоящая глава посвещена вентиляции и кровотоку, которые лежат в основе газообмена. Хотя легкие выполняют целый ряд нереспираторных функций, такие, как метаболическая и удаление патологических компонентов из циркуляторного русла, тем не менее дыхательная функция является основной. При болезнях органов дыхания нарушаются вентиляция, кровоток и газообмен, что приводит к дыхательной недостаточности и смерти.
type: dkli00018
ВЕНТИЛЯЦИЯ
Дыхательные пути представляют собой последовательность разветвляющихся трубок. При делении они становятся уже и короче, а количество их возрастает по мере проникновения в легкие. Бронхи, включая терминальные бронхиолы, представляют собой проводящие дыхательные пути, основной функцией которых является доставка воздуха в газообменные отделы легких. Поскольку проводящие дыхательные пути не содержат альвеол, они представляют собой анатомическое мертвое пространство .
Каждой респираторной бронхиоле соответствует респираторная единица – ацинус. Каждая терминальная бронхиола делится на респираторные бронхиолы, от стенок которых отпочковываются единичные альвеолы. Далее идут альвеолярные ходы – структуры, полностью связанные с альвеолами. Этот отдел легких, где присутствуют альвеолы, называется респираторной зоной. Отдел, расположенный дистальнее к терминальным бронхиолам, называется еще переходной, или респираторной, зоной, так как отделы респираторных бронхиол, где отсутствуют альвеолы, не выполняют респираторной функции. Расстояние от терминальной бронхиолы до наиболее дистально расположенных альвеол составляет всего лишь 5 мм, тем не менее респираторная зона составляет большую часть легких (ее объем около 2 – 3 л).
Сегодняшние представления о морфологии дыхательных путей с функциональной точки зрения во многом базируются на работах E. Weibel. В этих работах измерялись количество, длина, ширина и углы деления дыхательных путей. Были предложены модели, которые хотя и являются идеализированными, тем не менее позволяют проводить различные виды анализов респираторных кривых (таких, как кривая давление – объем) (рис. 2–1).
path: pictures/2-1.png
Рис. 2-1. Дыхательные пути человека в соответствии с моделью A. Weibel (AD, AS – альвеолярные мешочки, BL – бронхиолы, BR – бронхи, RBL – респираторные бронхиолы, TBL – терминальные бронхиолы, Z – генерации дыхательных путей. RBL, AD и AS формируют промежуточную и респираторную зоны (Weibel E.R. Morphometry of the Human Lung. – Berlin: Springer-Verlag, 1963).