412 000 произведений, 108 200 авторов.

Электронная библиотека книг » авторов Коллектив » Новая философская энциклопедия. Том второй Е—M » Текст книги (страница 90)
Новая философская энциклопедия. Том второй Е—M
  • Текст добавлен: 31 октября 2016, 01:45

Текст книги "Новая философская энциклопедия. Том второй Е—M"


Автор книги: авторов Коллектив


Жанры:

   

Философия

,

сообщить о нарушении

Текущая страница: 90 (всего у книги 132 страниц)

ЛОГИКА ФОРМАЛЬНАЯ– см. Логика.

ЛОГИЦИЗМ– одно из трех главных направлений в основаниях математики наряду с интуиционизмом и формализмом. Основополагающим фактором в становлении философии логицизма явилось развитие на рубеже 19—20 вв. логики символической, которую логицизм рассматривает, как органон математики, а точнее, сводит математические утверждения к формальным импликациям логики. Г. Фреге первый построил систему теории множеств, которая практически была логической, поскольку основной принцип свертки: каждое свойство определяет множество удовлетворяющих ему элементов – имел неограниченную общность. Эта система оказалась противоречивой, но многие конструкции из нее использовались в дальнейшем. По мере развития теории доказательств и теории моделей традиционный логицизм все больше сближается с формализмом, и сейчас многие авторы сводят их в единое металогическое на-

431

логицизм правление. И все же отметим принципиальное методологическое отличие логицизма от формализма и от наивного платонизма. Если для формалиста абатршхлвшш о&вои и понятия – не более чем орудия, позволяющие получать реальные истины и конструкции, а для платониста математические понятия уже существуют и он открывает их свойства, то для логициста идеальные понятия – плод мощных и фундаментальных логических конструкций, а не свободной игры ума, но вопрос об их существовании до и вне построений даже не ставится. Логицизм конструирует математические понятия на базе одного из четырех фундаментальных отношений – принадлежности элемента классу «g », применения функции к аргументу именования и «часть—целое». За решение грандиозной задачи явного построения математики как логической системы, базирующейся на отношении «Е » и свободной от парадоксов, взялись УЫмхеди его ученик К Рассел, написавшие энциклопедический и скрупулезный труд. Этот труд до сих пор остается непревзойденным в части явно проделанного конструктивного моделирования сложных математических понятий через простейшие. В нем выявлены многие тонкости, которые положили начало целым направлениям исследований. Во-первых, Уайтхед и Рассел предложили во избежание парадоксов теории множеств разделить объекты на типы и строго разделять объекты разных типов. Так, исходные элементы были объектами нулевого типа, их множества – объектами первого типа, а множества объектов п-го типа – объектами п + 1 -го типа. В любом отношении равенства правая и левая части должны иметь один и тот же тип, а в отношении принадлежности teu – тип объекта /должен быть на 1 меньше типа объекта и. Эта концепция строгой типизации была затем использована в Х-исчислении, в современной информатике и когнитивной науке. Она стала общепринятой в языках программирования высокого уровня. Тип объекта обычно обозначается верхним индексом: X'. При таком ограничении языка принцип свертки BY^'Vx^x g Y <=> А(х)), введенный Фреге и позволяющий определять множества, становится логическим принципом, поскольку на А(х) не нужно накладывать никаких ограничений кроме того, что она не содержит свободно Y Поэтому типизированный язык с принципом свертки стали называть логикой высших порядков. Первым этот язык явно ввел польский логик Л. Хвистек в 1921. Далее, они заметили, что в их языке равенство может быть формально выражено через отношение принадлежности: Vxy(x = y « VZ*'(xe Z <=> ye Z)). Но принцип экстенсиональности, дающий возможность отождествлять множества с одинаковыми элементами, нужно постулировать отдельно: VXi+,YI+,(x = y <=> VzTzeX » zeY)). Для моделирования математики необходимо принять еще один принцип, говорящий о бесконечности множества объектов. Он рассматривался как нелогическая аксиома, близкая по характеру к эмпирическим обобщениям других наук. Рассел и Уайтхед отметили, что принцип свертки содержит в себе скрытый порочный круг. В дальнейшем было подтверждено, что в некоторых случаях удаление определяемого множества из универсума, пробегаемого переменными типа i + 1, входящими в А, приводит к изменению объема Y**1. Поэтому они предложили разделить множества на порядки и допускать в определениях лишь кванторы по уже определенным множествам более низких порядков. Такая система называется разветвленной иерархией типов. Она применяется в современной теории сложности и определимости. Как заметил Г. Вешмъ, верхняя грань множества действительных чисел порядка к может быть порядка к +1. К* Гёдель показал, что для некоторого ординала а совокупность множеств порядка а образует модель аксиомы свертки, а если перевести эту иерархию на язык обычной теории множеств, то на некотором ординальном шаге образуется модель теории множеств с аксиомой выбора и континуум-гипотезой. Для обхода трудностей, выявившихся в разветвленной иерархии, Рассел предложил аксиому сводимости: для каждого множества порядка п существует равнообъемное ему множество порядка 0. Л. Хвистек и Ф. П. Рамсей показали, что в этом случае можно порядки вообще не использовать. Рамсей пошел еще дальше и заметил, что все известные парадоксы устраняются уже в кумулятивной теории типов, где принадлежности имеют вид t*e Х^, j > 0. Кумулятивная теория типов оказалась равнонепротиворечива чистой теории типов. Линия логицизма была продолжена X Драпом, который заметил, что слишком часто в теории типов приходится копировать буквально одни и те же определения на разных уровнях (этот недостаток унаследован и современным программированием вместе с концепцией строгой типизации). Он предложил использовать в аксиоме свертки типизированные выражения, а затем стирать типы (бестиповое выражение, которое может быть корректно типизировано, называется стратифицированным). Получившийся вариант аксиомы свертки и аксиома объемности образуют теорию множеств NF. В NF есть, в частности, множество всех множеств, поскольку определяющее его условие х = х, очевидно, стратифицировано; натуральные числа могут определяться, по Фреге, как множества всех равномощных множеств; доказывается аксиома бесконечности, но зато индукция выполнена лишь для стратифицированных свойств. Несмотря на интенсивные и глубокие исследования, выявившие ряд интересных свойств NF, не получено соотношений между стандартными теориями множеств и NE При малейших изменениях NF становится либо противоречивой, либо достаточно слабой системой. Напр., если позволить менее строгую типизацию, разрешив объектам типа п быть членами множеств типа п + 1 и п + 2, то получается противоречие; если ослабить аксиому объемности, трактуя объекты без элементов как исходные атомы, которые могут быть различны, то уже не выводится аксиома бесконечности и имеется достаточно простая модель такой теории. Доказано, что любая модель, построенная внутри общепринятой теории множеств ZF, может быть вложена в модель NF, если обе рассмотренные теории непротиворечивы (Н. Н. Не– пейвода). Т. о., NF плохо подходит для построения конкретных множеств, но может объединять построенные в другой теории конструкции. Это позволяет рассматривать такие объекты, как категория всех категорий. Продолжением логицизма в области другого фундаментального отношения явились Х-исчисление и комбтилторша ло– гшка. Их идея – построить все математические понятия, базируясь на операции применения функции к аргументу и на кванторе образования функции Ах. Kapp* показал, что добавление импликации к неограниченному Х-исчислению приводит к противоречию, но ^.-исчисление и без логических связок является мощным выразительным средством и инструментом, широко использующимся и в современной логике, и

432

ЛОГИЧЕСКАЯ СЕМАНТИКА в информатике, и в когнитивной науке, и в философии, и в ИИ. Используются оба его варианта – бестиповое и типизированное. Рассмотрены и системы Х-исчисленпя с типовой неопределенностью, но для них, в отличие от теории NF, построен ряд моделей. Л. Хвистек и С Леамжкшт развивали другие логические основания для общей теории. Теория именования (онтологии) имеет следующий исходный принцип: VxX(x€ ХоЗу(у€ xAVyz(ye x&z€ х=>уе z)& Vy(ye x=>ye X))). Эту аксиому можно интерпретировать следующим образом. Элементами классов могут быть лишь единичные непустые имена и они являются элементами, если именуемые ими сущности входят в класс. Онтология выступает как система– ядро (в терминологии современной информатики), дающая собственные расширения при пополнении новыми понятиями. Мереология – теория, базирующаяся на соотношении «часть—целое». Честь ее создания также принадлежит Лесьневскому. Громадный потенциал, заключенный в данных концепциях, остается пока практически неиспользуемым, поскольку современные работы в данных областях носят скорее комментаторский характер. П. Мартин-Леф, соединяя идеи комбинаторной логики и логицизма с интуиционизмом, приложил их для создания теории конструкций, конструктивно описывающей сложные понятия современных языков программирования. Сама по себе идея типов и порядков имеет громадное общенаучное и общеметодологическое значение. В частности, она может быть использована для классификации уровней знаний и умений человека. Так, знания первого уровня (выражающиеся импликацией Vx(P,&...&Pn => Q) и умения первого уровня (функции из объектов в объекты) соответствуют стереотипному реагированию, уровню компилятора текстов, техника, рабочего-исполнителя. Знания и умения второго уровня (напр., импликации Vx(Vy(P => Q) => Vy(P, => Q,)) и операторы из условий в умения соответствуют уровню ремесленника, интерпретатора текстов, рабочего-наладчика либо инженера обычной квалификации и т. д. Лишь считанные единицы в истории человечества могли подниматься до знаний и умений седьмого уровня. Лип: Логицизм (Яновская С. А).– В кн.: Философская энциклопедия, т 3. M 1964; Whitehead I, Russell В. Principia Mathematics Oxf., 1910—13; Chwistek L Antynomie logQd fonralnej.– «Przegland FHozofiki», x. 20,1921; Ramsey F. P. The foundations of mathematics and other logical essays. N. Y-L, 1931; Quit* W. v. O. Mathematical Logic. Cambr. (Mass.), 1951; Lesniewski S. Ober die Grundlagen der Ontologie.– Comptes Rendus de brsoive, v. 23, 1930; Chwistek L Neue Grundlagen der Logik und Mathematik.– «Mathematische Zeitschrift», v 30,1929, p. 704-724; x 34, 1932, p. 527-534; Chwistek L Granice nanti. Lwow-Warszawa, 1935. H. H. Непейвода

ЛОГИЧЕСКАЯ ИСТИННОСТЬ– см. Логюса тшхазыва– ншшуЛогшкаиредшкатм.

ЛОГИЧЕСКАЯ СЕМАНТИКА– раздел логической науки, в кагором изучают отношения выражений языка к обозначаемым объектам и выражаемому содержанию. Если семантика как раздел семиотики имеет дело с общими аспектами интерпретации любого типа знаковых систем, то логическая семантика имеет дело с особого рода знаковыми системами – языками, построенными для целей логики. Приписывание значений выражениям исследуемого (объектного) языка осуществляется посредством особого рода правил, называемых семантическими. Эти правила в свою очередь описываются в каком-то понятном, заранее интерпретированном языке, называемом в этом случае метаязыком (для данного объектного языка). Метаязык для описания семантических правил содержит термины, как относящиеся к описанию выражений объектного языка, так и описывающие вне– языковые (по отношению к объектному языку) сущности: 1. Выражение «победитель под Иеной» обозначает Наполеона; 2. Формула «Vjc (х>уК выражает свойство сбыть минимальным элементом»; 3.1 выполняет формулу «je2 = Ь; 4. Предложение «Бэкон современник Шекспира» истинно, если и только если Бэкон и Шекспир жили в одно время. Понятия «обозначает», «выражает», «выполняет», «истинно» и т. п. – семантические, они устанавливают отношения между выражениями знаковой системы и объектами или положениями дел в области интерпретации. Проблемы логической семантики тесно связаны с целым рядом традиционных философских вопросов, таких, как исследование понятий истинности и аналитической истинности, проблема унжеремммж и онтологических предпосылок в логике, анализ содержания модальных высказываний, высказываний с временными, эпистемическими терминами, проблема информативности логических форм, типология семантических категорий и их связь с теоретико-познавательными категориями и др. Связь логики с философией в значительной степени осуществляется именно через логическую семантику. Многие проблемы логической семантики и большинство основных ее понятий, таких, как «смысл», «значение», «обозначение», «имя», «суждение», «истинность», «ложность», «логическая истинность», «аналитическая истинность», «логическое следование» и т. д., не являются новыми в философии и логике. Собственно логика никогда не разрабатывалась в отрыве от анализа семантических проблем. Начало современной логической семантики восходит к работам Готлоба Фреге. Однако ее разработку как особого раздела логической науки можно датировать началом 30-х гг. В это время выходят работы А. Тарского по логической семантике и методологии дедуктивных наук. В 1935 вышла его работа «Понятие истины в формализованных языках», имевшая решающее значение для становления логической семантики как самостоятельного раздела логической науки. В1942—47 выходит трехтомное «Исследование по семантике» Р. Карнапа. Значительной вехой в разработке логической семантики явились доказательство К. Геделем семантической полноты первопорядкового исчисления предикатов и установление неполноты исчислений предикатов высших порядков, а также доказательство А. Тарским неопределимости понятия истинности средствами исследуемого языка. В послевоенные годы наблюдается интенсивное развитие логической семантики. Значительные результаты получены в моделей теорем в узком смысле – в теории, рассматривающей связь между синтаксическими свойствами формул и свойствами их моделей (А. Мальцев, 1970; Р. Робинсон, 1967). Появилась как отдельное направление теория моделей. Строятся семантики для различного типа модальных логак (С. Крипке, Я. Хинтикка, С. Кангер, Р. Монтегю и др.), шитушщшжшетс– юмлогшкш(Э. Бет, С. Крипке), релевантных и немонотонных и многих других классов логик. Были построены семантики с

433

ЛОГИЧЕСКАЯ СИМАНТИКА истинностными провалами и пресыщенными оценками, ситуационные семантики. В настоящее время интенсивно разрабатываются семантики интенсиональных и эпистемических контекстов. В последние десятилетия намечается сближение семантики и прагматики. Строятся семантики, в которых учитываются определенные прагматические аспекты: контексты употребления высказываний, определенные характеристики субъекта познавательной деятельности (его знания, установки и т. п.). Так, возможные миры в семантике могут трактоваться как объективные или субъективные обстоятельства, которые мы учитываем при истинностной оценке высказываний, и даже как цели. В таком случае вместо термина «возможные миры» используют термин «точки соотнесения» (Д. Скотт, Р. Монтегю) (см. Возможных миров семантика). Новый подход к анализу понятия истинности и семантических парадоксов наметился в последние годы в работах С. Крип– ке, Р. Мартина, П. Вудруффа. Несемантические предикаты рассматриваются как всюду определенные, а семантические – как не всюду определенные. В семантике Крипке возможно построение самоприменимых высказываний, утверждающих собственную истинность или неистинность, однако парадоксы не возникают. Это достигается за счет того, что предикат истинности не является всюду определенным. В настоящее время неортодоксальный анализ парадоксов семантических, как и в целом проблема истинности, находятся в центре внимания логиков и философов. Построение теоретической семантики начинается с описания объектного языка, семантику которого мы строим. Семантика как строгая наука может быть построена только для языков с точным образом заданной структурой. Формальные системы, удовлетворяющие сильному требованию эффективности, т. е. системы, для которых принадлежность к следующим классам объектов – исходным символам, термам, формулам (предложениям), аксиомам, доказательствам – устанавливается эффективным образом (эти классы выражений разрешимы), Называют логистическими системами. Такого рода системы представляют собой неинтерпретированные исчисления и являются предметом логического синтаксиса. Формальные, логистические системы являются именно теми «языками» логики с точным образом заданной структурой, путями и способами интерпретации которых занимается логическая семантика. Именно благодаря интерпретации формальная система выступает как формализация некоторой содержательной теории. Под интерпретацией языка словаря а имеется в виду функция /, приписывающая значения исходным символам, т. е. элементам из о: каждой индивидной константе сопоставляются некоторые объекты области рассмотрения (универсума рассмотрения U); каждой ^-местной предикатной (функциональной) константе – ^-местное отношение (функция) на U. Каждому типу переменных сопоставляется соответствующая область объектов, по которым они пробегают. Приписывание значений сложным выражениям определяется семантическими правилами. Интерпретация логических констант задается правилами истинности. Реляционную систему M называют возможной реализацией языка Z, если существует такая интерпретация / на область U, что М=> U, /(g) >. Возможная реализация M есть модель множества высказывании Г, если и только если каждое высказывание из Г истинно в этой реализации. M является моделью (дедуктивной) теории, если в ней истинны все аксиомы теории. Противоречивая теория не имеет моделей (см. Моделей теория). Не всякий класс выражений, обладающих некоторым интересующим нас содержательным свойством (напр., класс истинных предложений некоторой теории) можно задать процессом порождения – представить как множество слов (выражений), доказуемых в некотором исчислении (формальной системе). Свойство D формализуемо, если существует такая формальная система L, что все выражения (формулы), доказуемые в этой системе, обладают свойством D (напр., все доказуемые предложения истинны приданной интерпретации). В этом случае говорят, что система семантически непротиворечива относительно свойства D. И если имеет место обратное – все выражения (формулы), обладающие свойством Д доказуемы в формальной системе, то система семантически полна относительно этого свойства. Так, класс логически истинных утверждений логики высказываний может быть представлен как класс формул, доказуемых в некотором исчислении (исчислении высказываний), и такая формализация является полной; аналогично, класс общезначимых формул логики предикатов – как класс формул, доказуемых в исчислении предикатов. Таким путем определенные содержательные, семантические свойства можно представить в исчислениях с точным образом заданными правилами образования и преобразования. Задача теоретической семантики – введение семантические понятий логически корректным образом и установление условий их адекватности некоторым исходным содержательным понятиям. Согласно Тарскому, возможны два подхода, два пути введения семантических понятий: 1) семантические понятия (напр., понятие истинного высказывания) вводятся в метаязык как первичные, исходные, а их свойства определяются системой аксиом; 2) семантические понятия вводятся посредством определений. В первом случае семантическая теория строится как самостоятельная дедуктивная теория с собственной системой аксиом и требуются специальные доказательства непротиворечивости и полноты построенной теории. Согласно второму подходу, метатеория в качестве первичных, неопределяемых терминов не содержит никаких семантических терминов, относящихся к объектному языку. К метаязыку данного объектного языка предъявляются следующие требования: 1) в нем имеются средства для описания синтаксических свойств объектного языка, в частности имеются средства для построения имен выражений объектного языка; 2) метаязык должен быть настолько богат, чтобы для каждой формулы (предложения) существовала формула (предложение) метаязыка, являющаяся переводом первой, другими словами, все то, что можно утверждать в терминах объектного языка, может быть сказано в метаязыке; 3) метаязык должен содержать логико-математическую часть. Сам факт возможности определения семантических понятий на базе несемантических понятий имеет важный философский смысл и, кроме того, играет особо существенную роль в разработке методологии дедуктивных наук. Преимущество указанного пути построения семантики состоит в том, что мы получаем своего рода «гарантию», что связанные с употреблением семантических терминов парадоксы не появятся в этом случае. Если несемантическая часть метаязыка непротиворечива, то добавление семантических терминов, вводи-

434

ЛОГИЧЕСКАЯ СИМАНТИКА мых указанным путем по определению, не ведет к противоречию. Но задача построения непротиворечивой системы таких определений сложная. В частности, указанный способ введения семантических терминов возможен лишь при условии, что метаязык существенно богаче объектного языка в том смысле, что метаязык дополнительно содержит переменные категорий более высокого порядка. Этот список условий далеко не полон. Уточнение классического, аристотелевского понятия истинности применительно к языкам с точно заданной структурой было предложено А. Тарским. Согласно Тарскому, предикат «быть истинным» должен удовлетворять следующей схеме (I): X – истинно тогда и только тогда, когда /?, где вместо р подставляется некоторое высказывание, а вместо X– его имя. Примерами такого рода подстановок будут эквивалентности: 1. «Der Schnee ist wei?» истинно = Снег бел; 2. «23 > 3» истинно = 23 > 3 и т. д. (I) представляет собой общую схему такого рода эквивален– тностей, которые устанавливают условия истинности конкретных высказываний языка. Схема (I) не является определением понятия истинности (истинного высказывания). Но она устанавливает условие адекватности вводимого семантического понятия. Введенное строгим образом семантическое понятие истинности будет адекватным, если оно охватывает все случаи применения исходного интуитивного понятия истинного высказывания, а это имеет место, если для него верны (могут быть доказаны) все случаи подстановки в схему (I). Подстановки в схему не являются тавтологиями: в левой части эквивалентности речь идет о высказывании (дается определенная его оценка), а в правой – об определенном положении дел, утверждаемом этим высказыванием. Понятие истинности является одним из центральных понятий логической семантики. Но для логических систем различного типа (модальных, интуиционистских, временных, эпистемических и т. д.) оно уточняется с учетом предпосылок и характера этих систем. На базе понятия истинности может быть определено понятие семантической определимости свойств, отношений, операций в языке рассматриваемой теории (см. Определимость). Это понятие связано с анализом выразительных возможностей языков и теорий. Синтаксис достаточно богатых систем (содержащих рекурсивную арифметику) выразим в самом объектном языке. Согласно теореме Тарского, понятие истинности (класс всех истинных высказываний) непротиворечивой формализованной теории, содержащей рекурсивную арифметику, не определимо в языке этой теории. Т. о., теорема говорит об ограниченности выразительных возможностей достаточно богатых систем со стандартной формализацией. С другой стороны, теорема позволяет выявить важные характеристики самого понятия истинности. Так, любой эффективно порождаемый (рекурсивно перечислимый) предикат семантически определим в первопорядковой арифметике Р. Соответственно, предикат, не определимый в Р (или системах, содержащих Р), не является рекурсивно перечислимым. Т. о., класс истинных утверждений первопорядковой арифметики в принципе неформализуем. Для уточнения логических понятий (L-истинность, [сложность, общезначимость, L-эквивалентность и т. д.), а также модальных понятий недостаточно обращения к положениям Дел в действительности (в данном мире) – как это имело место в случае классического понятия истинности. Необходимо обращение к альтернативным положениям дел. Так возникают семантики возможных миров: описания состояний (Р. Карнап), модельные множества (Я. Хинтикка), реляционные семантики (С. Крипке), окрестностные семантики (Р. Монтегю) (см. Возможных миров семантика). Понятие логической истинности для интерпретированной языковой системы может быть уточнено как истинность во всех возможных реализациях (т. е. истинность во всех возможных областях при любых интерпретациях). В отличие от истинности предполагается, что предложение логически (или аналитически) истинно, если его истинность может быть установлена на основе одних лишь семантических правил, без обращения к внеязыковым фактам. В логической семантике различают теорию референции, базирующуюся на понятии истинности, и теорию смысла. Уточнение понятия смысла наталкивается на принципиальные трудности, вызванные многогранностью и неоднозначностью этого понятия. Существуют различные методы семантического анализа смысла и значения выражений языка, рассматриваемые в логической семантике: метод отношения именования (Г. Фреге), метод экстенсионала и интенсиона– ла (Р. Карнап, Р. Монтегю), теория неполных символов (Б. Рассел), концепция жестких десигнаторов (С. Крипке) и др. Отношение именования имеет место между выражением языка и конкретным или абстрактным объектом, именем которого оно выступает. Метод отношения именования базируется на принципах: предметности, однозначности и взаимозаменимости (см. Именования теория). Однако замена тождественных по значению выражений в неэкстенсиональных контекстах приводит к противоречиям (см. Антиномия отношения именования). Метод экстенсионала и интенсионала предполагает обращение к семантикам возможных миров (см. Интенсионал, Интенсиональный контекст). Тождества интенсионалов двух выражений достаточно для их замены в модальных контекстах, но недостаточно для взаимозаменимости в иных неэкстенсиональных контекстах. Согласно концепции неполныхсимволов Б. Рассела, не всякое выражение, имеющее структуру обозначающего выражения, действительно является десигнативным выражением (именем). К числу неполных символов относятся определенные дескрипции (автор «Гамлета», нынешний король Франции, т. е. выражения вида (• х)А(х)), неопределенные дескрипции, выражения для классов. Значения приписываются не самим неполным символам, а контекстам, в которые они входят. Неполные символы вводятся (и устраняются) посредством контекстуальных определений. Для определенных дескрипций, напр.: B((vc)A(x)) <^> 3x(Vy(A(y) = {y = х))&В(х)). Введение дескрипций, выражений для классов в качестве неполных символов не предполагает включения в универсум рассмотрения теории описываемых ими сущностей. Высказывания, в которых встречаются выражения, относящиеся к такого рода вызывающим возражения сущностям как воображаемые объекты, классы, числа и т. п., могут быть заменены посредством контекстуальных определений высказываниями, в которых встречаются лишь собственные имена и предикатные знаки. Отметим несколько направлений в разработке логической семантики. По идейной, философской установке, положенной в основу семантических исследований, можно выделить следующие подходы:

435

«ЛОГИЧЕСКИЕ ИССЛЕДОВАНИЯ» 1) номиналистический (Ст. Лесьневский, Р. Мартин и др.), 2) конструктивный (А. А. Марков, Р. Гудстейн, Н. А. Шанин, работы Ст. Клини по реализуемости и др.), 3) экстенсиональный (теоретико-множественный) (подавляющее большинство работ, включающее работы А. Тарского и его школы), 4) интенсиональный (Г. Фреге, А. Чёрч, Р. Монтегю и др.). Именно логическая семантика, опирающаяся на теорию познания, дает ключ к пониманию феномена многообразия логических систем (принимаемых типов рассуждений). Можно выделить два рода предпосылок, от которых зависят логики. Во-первых, это предпосылки – назовем их предпосылками онтологического характера, – налагаемые на миры, на объекты универсума рассмотрения (напр., «воображаемые миры» Н. А. Васильева или идеальные и реальные объекты Д. Гильберта). Во-вторых, это предпосылки, связанные с концептуальным аппаратом познающего субъекта: принимаемыми понятиями истинности, ложности, логического следования, отрицания, суждения и т. д. Кроме того, построение семантик все более богатых логических систем предполагает введение в семантику все более сильных абстракций и идеализации. Вводятся такие объекты, как истинностные значения, возможные миры, мыслимые положения дел, отношения, заданные на возможных мирах и семействах возможных миров, невозможные возможные миры и т. д. Выявление, как и порождение, такого рода конструктов, «идеальных образов» в логической семантике, анализ их правильности и границ использования позволяет вскрывать философские аспекты логики, ее связь с теорией познания. Следует различать вопросы семантики логических языков и вопросы применения средств и методов логической семантики к анализу естественных языков, поскольку методы семантического анализа смысла и значения выражений, разработанные в логической семантике, могут применяться и к анализу естественных языков. Однако эти методы не являются в последнем случае достаточными. Необходимо учитывать определенные лингвистические характеристики выражений естественного языка. Смысл выражений зависит также от коммуникативных аспектов, от контекста употребления, от пресуппозиций носителя языка (ср. идеи «языковых игр» Л. Витгенштейна, понимание смысла как способа употребления в языке, согласно К. Айдукевичу, или понятие языковой значимости у Ф. де Соссюра). Разработка искусственных языков логики, «моделирующих» различные логические структуры и способы рассуждения, позволяет все более точным образом репрезентировать логическую форму предложений естественных языков. С другой стороны, интенсивная разработка различного типа модальных и интенсиональных логик, построение точных семантик для них позволяет включать в сферу логического анализа все более широкий круг контекстов естественных языков. Лет.: Карнап Р Значение и необходимость. М, 1959; Хинтшаса Я. Логико-эпистемологические исследования. М., 1980; Монтегю Р. Прагматика и интенсиональная логика.– В кн.: Семантика модальных и интенсиональных логик. М., 1981; Смирнов В. А Современные семантические исследования модальных и интенсиональных логик.– Там же; Кринке С. Семантическое рассмотрение модальной логики.– Там же; Он же. Тождество и необходимость.– В кн.: Новое в зарубежной лингвистике, вып. XII1. М., 1982; Куайн У. Референция и модальность.– Там же; Льюис К. Виды значения.– В кн.: Семиотика. М., 1983; Смирнова ЕЛ– Логическая семантика и философские основания логики. М, 1986; Она же. Основы логической семантики. М., 1990; Даммит М. Что такое теория значения,– В кн.: Философия, логика, язык. М., 1987; Финн В. К Правдоподобные выводы и правдоподобные рассуждения.– «Итоги науки и техники». Сер.: Теория вероятности, математическая статистика, теоретическая кибернетика. М., 1988, с. 3—84; Frege G Uber Sinn und Bedeutung.– «Zeitschrift furPhikxDphkundphiksop^ №2AjdukiewkzK. Sprache und Sinn.– «Erkenntnis», 1934, Bd. 4, H. 2; Tarski A Der Wirurteitstegriffin den formalisierten Sprachen.– «Studia phitosophka», 1936, Bd. 1; Carnap Я Introduction to Semantics. Studies in Semantics. Carrion, 1942, Ы. 1 ; Frassen В. С van. Presupposition, Supervaluations and nee Logic– The Logical Щц of Doing Things. New Haven, 1969; Martin Я (ed.) The Paradox of the Liar, Yale University Press, 1970; Martin Я (ed.) Recent Essays on Truth and the uar Paradox. Oxf., 1984; Montague Я Formal Philosophy. L, 9fJ4; Kripke S. Outline of theory of truth.– «The Journal of Philosophy», 1975, vol. 72; Gupta A Truth and Paradox.– «Journal of Philosophical Logic», 1982, vol. 11, № 2; YabbS. Grounding, Dependence and foradox.– Ibkl, N1; Epstein Я L The semantic foundations of logic, c 1; Proportional logics. Dordrecht. 1990. E. Д Смирнова ¦ЛОГИЧЕСКИЕ ИССЛЕДОВАНИЯ» (Logische Untersuchungen, 1900—01) – признанное одним из самых значительных в философии 20 в. двухтомное сочинение Э. Гус– серля. ВI томе («Пролегомены к чистой логике») подвергнут резкой критике псшхамогизм – влиятельная на рубеже веков программа обоснования логики с помощью психологии, т. е. «выведения» понятий и законов из наблюдения за процессами индивидуального сознания. Поскольку сам Гуссерль отдал дань психологизму в своей первой работе «Философия арифметики», эта критика является и самокритикой. В I– X главах содержится размежевание с различными концепциями, отнесенными к психологизму (Дж. Ст. Миллъ, Т. Липпс, X. Зигварт, Б. Эрдманн и др.). В I томе также набросан (в XI главе) проект «чистой логики» как учения о категориях значений и предметностей, о законах и теориях, коренящихся в этих категориях, логики как теории о «чистых» возможных типах теории, т. е. как «наукоучения». Эта программа – вместе с заявлениями о «тождественно единой истине», о принципиальном отделении идеального от реальности и ее предметов – у некоторых современников создавала впечатление, будто Гуссерль будет осуществлять кардинальный логицистский проект, основывающийся на идеализме платоновского типа (который, впрочем, в I томе также был подвергнут критике как «метафизическое гипостазирова– ние всеобщего»). Тем неожиданнее оказалась расшифровка программы во II томе. В 1-й его части («Исследования по феноменологии и теории познания») в центре анализа – феномены, которые первоначально предстают как комплексные «данности», единицы сознания. При этом от языковых выражений Гуссерль отделяет физический феномен, в котором выражение конституируется с его физической стороны. Затем внимание перемещается к акту сознания, в котором выражение выступает в его созерцательной полноте (Husserl Е. Logische Untersuchungen, Bd. 2,1. Teu. Halle, 1922, S. 37). Чисто внешние стороны феномена вместе со всеми их конкретно-эмпирическими сторонами и характеристиками оставлены в стороне. Но принципиальное отношение феномена к языково-логическим формам, к актам сознания, к данности с помощью созерцания (интуиции) постоянно принимается в расчет, в чем с самых первых шагов состоит специфика феноменологии Гуссерля. В 1-м исследовании 1– й части II тома («Выражение и значение») анализ движется от выражения к его значению (Bedeutung) И к его смыслу (Sinn); тем самым «смыслодающая» функция феномена усматривается в его связи с предметностями сознания. Последние не тождественны предметностям вне сознания, а коррелятивны основным типам языковых выражений


    Ваша оценка произведения:

Популярные книги за неделю