355 500 произведений, 25 200 авторов.

Электронная библиотека книг » авторов Коллектив » Новая философская энциклопедия. Том второй Е—M » Текст книги (страница 116)
Новая философская энциклопедия. Том второй Е—M
  • Текст добавлен: 31 октября 2016, 01:45

Текст книги "Новая философская энциклопедия. Том второй Е—M"


Автор книги: авторов Коллектив


Жанры:

   

Философия

,

сообщить о нарушении

Текущая страница: 116 (всего у книги 132 страниц)

МЕТОДОЛОГИЯ ЕСТЕСТВЕННЫХ НАУК– изучение методов познания мира средствами естественных наук. Методология естествознания родилась в 17 в. в трудах Ф. Бэкона и Р. Декарта, посвященных именно методу познания. В дальнейшем методологические идеи развивались в трудах Т. Гоббса, Р. Бойля, И. Ньютона, Г. В. Лейбница, И. Канта. В 17—18 вв. научное познание не выделялось из философии вообще и методология научного познания мира была включена в гносеологию в целом. Существенное изменение про-

557

МЕТОДОЛОГИЯ ЕСТЕСТВЕННЫХ НАУК изошло в 1-й пол. 19 в., когда естествознание полностью отделилось от философии и институализировалось как вполне самостоятельная область познавательной деятельности. В середине 19 в. в трудах Дж. Ст. Милля, У. Уэвелла, У. Джевон– са, Дж. Гершеля начала складываться специализированная методология естественных наук. Исключительно важную роль в формировании методологии естественных наук как специализированной формы философского исследования сыграл период второго позитивизма (конец 19 – начало 20 в.). В работах Э. Маха, А. Пуанкаре, П. Дюгема и их оппонентов Л. Больцмана и М. Планка формируются основные направления методологии естественных наук и достаточно четко определяется их проблематика. К этому же периоду можно отнести и формирование логико– методологической концепции науки. Огромным стимулом для развития методологии естественных наук стало создание специальной, затем общей теории относительности, а в 1920-х гг. – квантовой механики. Проникновение науки в области явлений, весьма далекие от повседневного опыта, обнаружение в этих областях принципиально новых закономерностей остро поставило вопрос о методах научного познания, их содержании и эффективности. Поэтому начиная с середины 1920-х гг. методологический анализ естественных наук приобретает очень широкий размах, причем очень важное место в нем занимают работы А. Эйнштейна, Н. Бора, М. Борна, В. Гейзенберга, Е. Вигнера, Г. Вейля и многих других. Существенное влияние на этот процесс оказало интенсивное развитие в 1920—30-х гг. аналитической философии, в особенности ее неопозитивистского варианта. Неопозитивизм, занявший с конца 1920-х гг. доминирующее положение в философии науки, сильно способствовал утверждению логико-методологической концепции науки и развитию методологических исследований. Этот период продолжался до 1960-х гг., когда большое распространение получают концепции социокультурной детерминации науки, для которых весьма характерна антиметодологическая направленность (Т. Кун, М. Хессе и др.). Это обстоятельство отрицательно сказалось на развитии методологии естественных наук, с начала 1980-х гг. интенсивность методологических исследований существенно снизилась. В настоящее время можно выделить три основных класса (или типа) концепций науки, конкурирующих между собой: 1) логико-методологические концепции, 2) концепции исторические и 3) концепции социокультурной детерминации науки. Для первого класса характерна высокая степень единства: все они уделяют большое внимание методологии науки. В них методология если не полностью совпадает с самой философией науки, то по крайней мере составляет ее важнейшую часть. Различия между концепциями этого класса в основном заключаются в разном понимании значимости и степени обоснованности разных методов и методологических принципов и соответственно в разном структурировании системы научного метода. Основная идея класса исторических концепций состоит в том, что содержание научного метода и сама методология научного познания изменяется вместе с изменением науки. В этих концепциях выделяются три периода науки – классический, неклассический и постнеклассический. Однако в концепциях: исторического типа понятие методологии научного исследования не имеет достаточно четкого содержания (в отличие от концепций логико-методологического класса). В концепциях социокультурной детерминации науки методология научного познания или вообще игнорируется, или занимает самое незначительное место. В качестве основных направлений методологии естественных наук логико-методологической концепции науки можно выделить: 1) изучение частных методов научного познания; 2) изучение частных методов познания; 3) изучение и анализ фундаментальных методологических принципов научного познания. Общие методы, как правило, включают в себя более частные и специальные, а методологические принципы регулируют применение методов научного познания и позволяют выявлять их существенные аспекты, и, наконец, сами методы часто пересекаются между собой. К числу общих методов естественнонаучного познания относятся методы эмпирического познания – наблюдение и эксперимент, метод индукции, метод гипотез и аксиоматический метод. Частными и специальными являются: вероятностные методы; методы, используемые в обобщении и осмыслении эмпирических результатов, – единственного сходства и различия, сопутствующих изменений; методы аналогии, мысленного и математического экспериментов. Наблюдение как способ познания мира используется человечеством с древнейших времен. Начиная с 17 в. более важное место занимает метод эксперимента. Эксперимент отличается от пассивного наблюдения своим активным характером. Экспериментатор не просто наблюдает то, что происходит в ходе изучаемого явления, создает условия, при которых закономерности процессов проявляются более четко. Разработка методологии экспериментального исследования, начатая Ф. Бэконом, получила дальнейшее развитие в трудах Дж. Ст. Милля и группы методологов сер. 19 в. В работах этого периода (17 – середина 19 в.) метод эксперимента выступает в тесном единстве с методом индукции. В трудах Ф. Бэкона и Дж. Ст. Милля разрабатывается система правил индуктивного обобщения результатов эксперимента, которые одновременно являются и методами организации экспериментального исследования. Эти правила представляют собой частные методы естественнонаучного познания – методы единственного сходства и развития сопутствующих изменений и «остатков». Характерной чертой индуктивистской методологии 17 – 1-й половины 19 в. является пренебрежительное отношение к методу гипотез. Изменения, происшедшие в науке во 2-й половине 19 в., состоящие в том, что началось исследование явлений микромира, достаточно удаленных от знакомых и привычных явлений макромира, привели к осознанию принципиальной важности метода гипотез. Методологическое осмысление гипотез и их роли в научном познании, начавшееся в последней трети 19 в., получило очень сильное развитие в нач. 20 в. в связи с возникновением электронной теории и физики атомных и субатомных явлений. Фундаментальные работы А. Пуанкаре «Наука и гипотеза» и П. Дюгема «Физическая теория, ее цель и строение» знаменуют переход от эмпирико-индуктивистской концепции к гипотетико-дедуктивной модели науки. С этого времени метод эксперимента развивается в тесном взаимодействии с методом гипотез, в качестве основной задачи экспериментального исследования рассматривается проверка (подтверждение или опровержение) той или иной гипотезы. Характерной чертой этого периода является исключительно широкое распространение статистических методов обработки опытных данных. Сильнейший импульс применению статистических методов дало создание квантовой механики и ее вероятностная интерпретация. В современной на-

558

МЕТОДОЛОГИЯ ЕСТЕСТВЕННЫХ НАУК уке метод эксперимента, метод индукции и метод гипотез образуют сложный единый комплекс, в котором отдельные части не отделяются резко друг от друга. К числу общих методов естественнонаучного познания относится также аксиоматический метод. Основные идеи аксиоматического метода были выдвинуты еще в античности. В дальнейшем аксиоматический метод получил своеобразное преломление в методе принципов И. Ньютона, который представляет собой нетривиальный синтез основных идей метода индукции и аксиоматического метода, когда индуктивные обобщения высокого уровня общности начинают использоваться как фундаментальные аксиомы, кладущиеся в основу дальнейшего исследования. В современной физике аксиоматический метод получил распространение в физике микромира (S – матричная концепция Дж. Чез, аксиоматическая квантовая теория поля в работах Н. Н. Боголюбова, Р. Иоста, А. Вайтмана). Более специальный (частный) характер носят методы аналогии, мысленного и математического эксперимента. Метод аналогий представляет собой способ формулирования гипотез, основанный на перенесении закономерностей с уже изученных явлений на еще не изученные. Сама идея использования аналогии обсуждалась еще Аристотелем, но широкое распространение этот метод получил только в науке Нового времени. Одним из наиболее ярких его применений является использование Дж. К. Максвеллом гидродинамических аналогий при получении уравнений электромагнитного поля. Метод мысленного эксперимента представляет собой специфический тип теоретического рассуждения. Он, как и многие другие методы, возник еще в античную эпоху (апории Зенона), но особое распространение получил в науке Нового времени. Многие мысленные эксперименты сыграли выдающуюся роль в развитии науки, напр, «демон» Максвелла, «поезд» и «лифт» Эйнштейна, «микроскоп» Гейзенберга. Методологическое исследование метода мысленного эксперимента началось в работах Э. Маха и П. Дюгема, при этом выявились две точки зрения на природу мысленного эксперимента: одна сближает его с обычным экспериментом (Мах), в другой подчеркивается теоретическая сущность метода (Дюгем). В 1970—80-х гг. преобладает изучение специфики мысленного эксперимента именно как специального метода теоретического уровня. С середины 1970-х гг. в практику научного познания широко вошел метод математического эксперимента. Он основан на интенсивном использовании возможностей современной вычислительной техники. Суть метода состоит во всестороннем изучении большого массива решений некоторой задачи численными методами с варьированием параметров уравнения, а иногда даже самого вида уравнения. Дальнейшее исследование заключается в обобщении результатов численных решений и выделении их инвариантных характеристик. Метод математического эксперимента получил широкое применение в области точного математизированного естествознания. Кроме изучения общих и специальных методов научного познания важнейшим разделом методологии естественных наук является анализ фундаментальных методологических принципов научного познания. Методологические принципы – это общие требования, предъявляемые к содержанию, структуре и способу организации научного знания. Они относятся к научному знанию в целом, а не к какому-то отдельному разделу или дисциплине. Методологические принципы являются ядром научного метода. Они объединяют и организуют отдельные методы и приемы в единое целое, в единый научный метод. Методологические принципы научного познания регулируют научную деятельность (их часто называют регулятивными принципами или методологическими регулятивами). Именно в силу регулятивной функции эти принципы проводят демаркацию науки от ненауки и псевдонауки. По сути дела методологические принципы создают науку. Вторая важнейшая функция методологических принципов – эвристическая. Регулируя научную деятельность, эти принципы одновременно дают и ориентацию научного поиска, его направление. В качестве методологических принципов научного познания выступают следующие: принцип подтверждаемости (принцип верификации), принцип наблюдаемости, принцип простоты, принцип соответствия, принцип инвариантности (симметрии) и принцип системности (согласованности). К ним добавляют принцип дополнительности, принцип красоты, экстремальные принципы и некоторые другие. Сложились два подхода к изучению методологических принципов. Для западной (европейской и американской) методологии науки характерен подход, который можно назвать монофундаменталистским. В этом подходе один принцип рассматривается как доминирующий (главный), а остальные как имеющие вспомогательный характер. Так, в неопозитивизме в качестве доминирующего рассматривался принцип проверяемости (верифицируемости), а в концепции Поппера основным был принцип опровергаемое™, (фальсифицируемости). В неопозитивизме были проделаны очень интересные исследования принципов наблюдаемости, простоты, согласованности, в концепции Поппера также была развита оригинальная трактовка принципа простоты. Вместе с тем монофундаментализм методологии приводил к существенной односторонности и не позволял выявить все богатство содержания принципов, квалифицировавшихся как второстепенные. В отечественной методологии науки доминировала полифундаменталистская точка зрения. Эта позиция состоит в том, что все методологические принципы обладают одинаковой важностью и значимостью в научном познании и должны исследоваться совместно. Такой подход позволяет с большей полнотой выявить разные стороны и аспекты каждого из принципов. Но еще большее значение имеет идея системы методологических принципов, т. е. рассмотрения их не просто как совокупности, но именно как системы. Такой подход позволяет существенно углубить понимание содержания самих принципов и выявить иногда совершенно неожиданные их аспекты. Методологический анализ позволяет установить эту системность, состоящую в том, что каждый из принципов, по крайней мере из числа тех, которые прошли жесткую проверку и получили признание, содержательно связан с каждым из остальных. Требования, предъявляемые разными принципами к содержанию и способу организации научного знания, пересекаются между собой, и именно поэтому методологические принципы функционируют в научном познании совместно. В системе методологических принципов можно вьщелить две подгруппы. Одна подгруппа – это принципы проверяемости (подтверждаемости), опровергаемости (фальсифицируемости) и наблюдаемости. Они в основном регулируют взаимоотношения теоретического и эмпирического уровней научного знания. Вторая подгруппа – это принципы простоты, соответствия, инвариантности (симметрии) и системности (согласованности). Эти принципы в основном функционируют на теоретическом уровне. Такое разделение в некоторой степе-

559

МЕТРОДОР ни относительно, поскольку все принципы взаимосвязаны и в реальном научном познании они относятся ко всему знанию, т. е. к обоим уровням. Принцип проверяемости требует возможности эмпирического подтверждения теории. Здесь явно выступает проблема связи теоретического и эмпирического уровней. Но одновременно он накладывает очень важные требования на внутреннюю структуру теории. Эти требования состоят в первую очередь в обязательной интерпретируемости любых следствий, получаемых в рамках данной теории. Неинтерпретируемые результаты должны быть устранены. Это требование проявляется очень разнообразно, начиная от условия конечности любых выражений и кончая требованием исключения принципиально ненаблюдаемых объектов, таких, как, напр., эфир. Но проверка теории может дать и отрицательный результат. И этот аспект связан с принципом опровергаемости. Принципиальная возможность опровержения и его практическая реальность лежат в основе концепции науки Поппера. Принцип опровергаемости совместно с требованием подтверждаемос– ти образует важнейший критерий демаркации научного знания от различного рода псевдознаний. И естественным развитием этих положений является требование принципиальной наблюдаемости и исключения ненаблюдаемых объектов. В целом требования подтверждаемости, опровергаемости и наблюдаемости можно сформулировать в общем виде как обобщенный принцип проверяемости, включающий в себя разные стороны и аспекты процедуры проверки. Вторая подгруппа методологических принципов – простоты, соответствия, инвариантности и системности (согласованности) – относится гл. о. к внутренней структуре теорий и взаимоотношениям между теориями. Принцип простоты (известный еще с 14 в. как «бритва Окка– ма») направлен против произвольного размножения гипотетических сущностей. На современном уровне развития научного знания его можно сформулировать как категорическое требование: нельзя каждое явление объяснять своей собственной отдельной гипотезой. Но есть и более слабая форма, рекомендующая предпочитать теорию, основанную на меньшем числе независимых предположений. Это требование в значительной мере совпадает с требованиями, налагаемыми принципом системности научного знания. Принцип соответствия регулирует взаимоотношения между старыми и новыми теориями, сменяющими старые в процессе развития научного знания. Обычное понимание принципа соответствия состоит в том, что старая теория является некоторым предельным случаем новой и переход от новой теории к старой реализуется в виде предельного перехода (в теории относительности это предельный переход с —> оо, в квантовой механике h —> 0). Действительное содержание принципа соответствия существенно глубже; он устанавливает не просто возможность предельного перехода от новой теории к старой, но генетическую связь между ними. Старая теория не отвергается (и не опровергается) новой – она образует ступень, основание для создания новой. Фундаментальные структурные составляющие старой теории необходимым образом включаются в структуру новой теории. И именно эта генетическая связь является основой для возможности обратного перехода от новой теории к старой, причем сам этот переход совершенно необязательно является предельным переходом – существуют и другие формы связи. Такая трактовка принципа соответствия позволяет существенно расширить сферу его эффективного использования. Принцип инвариантности (симметрии) начал осознаваться и развиваться еще в конце 19 – начале 20 в., но статус методологического принципа приобрел с кон. 1920-х гг., в физике широкое использование получили теоретико-групповые методы. В настоящее время теоретико-групповые методы используются во всех областях точного математизированного естествознания. В связи с этим Е. Вигнер характеризует требования инвариантности как ядро, вокруг которого группируются все остальные элементы теории. Требования инвариантности относятся не только и не столько к явлениям, сколько к самим законам, т. е. являются как бы суперзаконами, законами законов. Последним из признанных принципов является принцип согласованности или системности научного знания. Этот принцип носит интегральный характер, являясь как бы суперпринципом, объединяющим действие всех остальных принципов. Требование системности организует в единое целое все научное знание, создавая науку, а также все методы и методологические принципы научного познания, формируя научный метод. Лит.: Бэкон Ф. Новый Органон. – В кн.: Сочинения, т. II. М, 1972; Декарт Р. Рассуждения о методе с приложениями. М., 1953; Милль Дж. Ст. Система логики, силлогистической и индуктивной. М., 1914; Пуанкаре А. О науке. М., 1983; Дюгем П. Физическая теория, ее цель и строение. СПб., 1910; Вейлъ Г. О философии математики. М– Л., 1934; Карнап Р. Философские основания физики. М., 1971; Поппер К. Логика и рост научного знания. М., 1983; Баженов Л. Б. Строение и функции естественнонаучной теории. М., 1978; Мамчур Е. А. Проблемы выбора теории. М., 1975; Меркулов И. П. Метод гипотез в истории научного познания. М, 1984; Методологические принципы физики. История и современность. М., 1975; ХакингЯ. Представление и вмешательство. М., 1998; Вигнер Е. Этюды о симметрии. М., 1971. С. В. Илларионов

МЕТРОДОРиз Лампсака (МлтробЪрос о Лацуакпуос) (2-я половина 5 в. до н. э.) – один из двух известных учеников Анаксагора, вслед за учителем занимавшийся толкованием поэм Гомера (ср. Архелай, который продолжил физическую линию учения Анаксагора). Упоминание об авторитете Метродора-экзегета имеется у Платона (Plat. Ion 530c). В сочинении «О Гомере» Метродор развивал представление о великих поэмах как нравственной аллегории (Diog. L. II11 ) и наряду с этим первым попытался истолковать Гомера как аллегорическое натурфилософское учение, рассматривая характеры человеческих персонажей «Илиады» как части физического космоса, а персонажей-богов – как отдельные части человеческого тела (см. Philod. Неге. Pap. VII3 f. 90, Tatian. 21). Упоминание Метродора Порфирием позволяет предположить, что в своем сочинении он также обсуждал семантику отдельных слов (ср. Porf. Quaest. Нот. ad Iliadem 1,147, 18 Schrader). Фрагм.: DK II, p. 49—50; Лебедев. Фрагменты, с. 539. Лит.: Lamberton R., Keaney J. J. (eds.). Homer's Ancient Readers. Princeton, 1992. M. A. Солопова

МЕТРОДОРиз Лампсака (Мт^трооюрос о Лацуакплюс) (330– 277 до н. э.) – др.-греч. философ, последователь Эпикура и его любимый ученик. Эпикур посвятил ему сочинение в 5 кн. «Метродор», 28-ю книгу сочинения «О природе» написал в форме обращения к Метродору, в завещании напоминал, чтобы 20-го числа каждого месяца эпикурейцы отмечали память его и Метродора. В гномологиях часто одни и те же изречения приписывались и Эпикуру, и Метродору, а сам Эпикур счи-

560

МЕХАНИЦИЗМ тал, что Метродор – «из тех, кто охотно идет по пятам» (Sen. Ер. ad Luc. LU, 3). Метродор был плодовитым автором. Им написаны книга «Против лекарей», «О чувствах», «Против Ти– мократа» (брат Метродора, предавший Эпикура и написавший клеветническое сочинение о нем), «Против диалектиков», «Против софистов», «О дороге к мудрости», «О перемене», «О богатстве», «Против Демокрита», «Против Платонова Евти– фрона», «О поэзии», «О богах» и др. Отрицал значение традиционной образованности, поэзии и риторики; считал, что научное познание самостоятельной ценности не имеет; полемизировал с Демокритом по поводу природы человека; критиковал Навсифана; выступал против участия в политической жизни. В трактате «Об изменении» имеются суждения, проливающие свет на содержание эпикурейских представлений о богах, существующих «в виде чисел» кат' api0uov (Filod. De pietate, fr. 123 Gomperz-Koerte, 12, ср. Diog. L. X, 139). фрагм.: Korte A. Metrodori Epicurei Fragments. – «Jahrbucher Klassischer Philologie», Suppl. XVII, 1890, S. 529-70. Лит.: Keenan J. A Papyrus Letter about Epicurean Philosophy Books. – «The P. Gety Museum Journal», 1977, 5, p. 91—94; Laurenti R. Filodemo e il pensiero economico degli epicurei. Mil., 1973; Philippson R. Papyrus Herculansis 831. – «The American Journal of Philology», LX1V, 1943, p. 148—162; Sudhaus S. Eine erhaltene Abhandlung das Metrodor – «Hermes», 1906,41. S. 48-58. M. M. Шахнович

МЕТРОДОР СТРАТОНИКЕЙСКИЙ(Мчтрооюрсч; 6 iTpaxovuceuc) (конец 2 в. до н. э.) – греческий философ-академик, один из ближайших приверженцев Карнеада (Index Academicorum Philosophorum Herculan. 26; Cic. Or. 1,45). Согласно Диогену Лаэртию (X, 9), до встречи с Карнеадом был эпикурейцем (однако учеником самого Эпикура он быть не мог, как о том сообщает Диоген). Наибольшую известность имела его интерпретация взгляда Карнеада на мудреца, который может «ничего не воспринимать чувствами, но все же иметь мнения» (Cic. Acad. 2,78). По мнению Клитомаха, Кар– неад высказывал это мнение в учебных целях («диалектически»), сам его не поддерживая (т. е., по Клитомаху, Карнеад осуществлял эпохе в абсолютном смысле и на самом деле воздерживался от каких бы то ни было суждений), Метродор, напротив, считал, что это собственная позиция Карнеада (т. е. последний осуществлял эпохе в нестрогом смысле и от суждений не воздерживался). Цицерон в этом вопросе был сторонником Клитомаха, с ним солидарны и современные исследователи, мнение же Метродора нашло понимание у Филона из Ларисы. Лит.: Striker G. Sceptical strategies, in: SchofieldM., BurnyeatM., Barnes J. (ed.). Doubt and Dogmatism. Oxf., 1980, p. 54-83; Sedley D. The Motivation of Greek Scepticism, in: Burnyeat M. (ed.). The Skeptical Tradition. Berkeley, 1983, p. 9-29. M. А. Солопова

МЕТРОДОР ХИОССКИЙ(Мчтрооюрсч; о Xioc) (нач. 4 в. до н. э.) – греческий философ, один из самых значительных последователей Демокрита, ученик демокритовцев Несса с Хиоса и Метродора из Абдеры. Автор сочинения «О природе», которое он начинает со скептического утверждения о том, что «никто из нас ничего не знает, мы даже того не знаем, знаем мы или не знаем, ни того, существует ли вообще что-либо» (В1DK = Euseb. Pr. Eu. XIV). Но скептицизм вступления (оказавший, по мнению Евсевия, влияние на самого Пиррона, см. XIV 19,9) не помешал Метродору далее излагать догматическое учение в духе атомизма Демокрита: Вселенная бесконечна, она состоит из атомов и пустоты, и в ней бесконечное число космосов. В отличие от Демокрита Метродор считал Вселенную вечной; если бы она возникла, то возникла из не-сущего (что невозможно), а бесконечность следует из ее вечности; у нее нет начала, откуда бы она начиналась, нет ни границы, ни конца (Euseb. Pr. Eu. 18,11). Второй сохранившийся фрагмент соч. «О природе» гласит: «О чем ни подумаешь, все существует». У Евсевия имеется также отдельная глава «Против последователей Метродора и Протагора, по учению которых следует верить одним только чувствам» (XIV, 20, 1—14), в которой он, в частности, представляет учение Метродора как один из источников, критикуемых Платоном в «Теэтете» за релятивизм в учении о познании. Доксографы упоминают также о взглядах Метродора на различные метеорологические явления. Метродор представляет интерес как одно из звеньев цепи, связывающей Демокрита с Эпикуром через ученика Метродора Диогена из Смирны, чьим учеником называют Анак– сарха, приближенного Александра Македонского и одного из учителей Пиррона, учение которого в свою очередь оказало влияние на Навсифана, учителя Эпикура (см. Clem. Strom. I 14, 64). Это преемство может служить объяснением как истории знакомства Эпикура с атомизмом Демокрита, так и традиционной эпикурейской критики Демокрита за скептицизм. Opam.:DK II, 231-234. Лит.: Маковельский А.О. Древнегреческие атомисты. Баку, 1946; BrunschwigJ. Le fragment DK 70 В 1 de Metrodore de Chio, in: Algra K. Van Der Horst P. W. (eds.). Polyhistor Studies in the History and Historiography of Ancient Philosophy, presented to J. Mansfeld. Leiden, 1996, p. 21-38. M. А. Солопова «МЕХАНИСТЫ» – направление в советской философии 1920-х гг., сформировавшееся в острой полемике с «диалекти ками»-деборинцами. Ведущими теоретиками «механистов» были Л. И. Аксельрод-Ортодокс, И. И. Скворцов-Степанов, К. А. Тимирязев, В. Н. Сарабьянов, А. И. Варьяш, С. С. Перов и др. Все они были подвергнуты резкой и уничижительной критике, которая упрекала «механистов» в подмене философии наиболее общими выводами современного естествознания, в сведении высших форм движения материи к механическим и физико-химическим взаимодействиям, в подмене марксистской диалектики теорией т. н. «равновесия». Почти все «механисты» критически относились к витализму и были убеждены в том, что «механическое понимание» природы единственно правильное для марксизма. Соч.: Аксельрод-Ортодокс Л. И. Против идеализма. Критика некоторых идеалистических течений философской мысли. М, 1922; Сарабьянов В. Исторический материализм. М., 1922; Скворцов-Степанов И. И. Диалектический материализм и деборинская школа. М.– Л., 1928; Варьяш А. И. Логика и диалектика. М., 1928. А. И. Абрамов

МЕХАНИЦИЗМ– метод познания, основанный на признании механической формы движения материи единственно объективной. В своем конкретном применении механицизм выступает как крайняя форма редукционизма. Для него характерны отрицание качественной специфики более сложных материальных образований, сведение сложного к простым элементам, целого – к сумме его частей. Выдвигая на первый план механические формы движения, механицизм переносит понятия механики в область физики, химии и биологии и в духе механики трактует такие философские категории, как причинность, взаимосвязь и др.

561

МЕЦЖЕР В16– 18 вв. механицизм приобрел значение господствующего направления, что было обусловлено особым положением в этот период механики как науки, ранее других получившей законченную систематическую разработку и широкое практическое применение. Механицизм нашел распространение в мировоззрении естествоиспытателей (Галилей, Ньютон, Лаплас), философов-материалистов (Гоббс, Ламетри, Гольбах). Декарт, выделяя «душу» в качестве отличия человека от остального мира (не имеющего в себе источника движения), приравнивал любые др. организмы к искусным механическим автоматам. Вольф полагал, чтопознание истины возможно «потому, что мир есть машина». Типичными представителями механицизма в 19 в. были Бюхнер, К. Фогт, Я. Моле– шотт, Е. Дюринг. Механицизм как философская позиция обусловил мировоззренческий кризис в 19 в. в ряде отраслей естествознания и связанных с ними областях философии: новые открытия, радикально преобразовавшие естественно-научное познание и углубившие его основы, требовали отказа от редукционизма. Б. А. Старостин

МЕЦЖЕР(Metzger) Элен (1889-1944, Освенцим, Польша) – французский историк и философ науки. Научную деятельность начала в качестве кристаллографа, но вскоре увлеклась историей науки. В 1918 была опубликована ее докторская диссертация «Генезис науки о кристаллах», в которой было показано, как в конце 18 в. из конгломерата различных наук (физики, минералогии и химии) выделилась особая научная дисциплина – кристаллография. В дальнейшем ее интересы смещаются в область истории химии. В 1927 выходит в свет 1-й том «Химических доктрин во Франции», охватывающий период с начала 17 по конец 18 в. (2-й том так и не был написан). В 1930 она опубликовала труд «Химия» в 13-м томе «Истории мира». В книге «Философия материи Лавуазье» ( 1935) Мецжер проанализировала философские основания химических теорий Лавуазье. В 1926 выходит ее труд «Научные концепты», посвященный специально философии науки и удостоенный премии Академии гуманитарных и политических наук. В 1987'вышел крупный том ее статей, написанных в период 1914—39 и посвященных философскому методу в истории наук. Многим замыслам Мецжер не суждено было осуществиться (ее жизнь трагически оборвалась в газовой камере Освенцима). В заметке М. Боас, посвященной памяти Мецжер, о ней говорится как об одном из «выдающихся французских историков науки, немало сделавшей для привнесения нового духа и стиля в историю химии». Предмет исследования Мецжер – история идей, она не касается истории жизни ученых, элиминируя тем самым из своей работы биографические данные и психологию изучаемых авторов. Она считает, что невозможно определить механизм связи эволюции доктрин, экспериментальных открытий итех– нических изобретении химии с определенной эпохой, пока не будет проанализирована и изложена история идей. Главное для нее – это показать формирование самих основ теорий, их модификацию под давлением внутренней логики или же под давлением внешних влияний (социальных или научных). Мецжер выдвинула одну из первых моделей некумулятивного развития науки, предвосхитив ряд принципиальных положений концепции Куна и оказав на него заметное влияние. Согласно Мецжер, необходимо отделять период становления (генезиса) определенной науки от стадии ее существования как уже оформленной научной дисциплины. В фазе генезиса наука не является автономной системой, развивающейся по своим внутренний законам. Ее эволюция в значительной мере определяется и направляется господствующими философскими течениями. На этом этапе обычно существует плюрализм мнений ученых, множественность концепций и отсутствие общепринятой теории. Такая эпистемологическая ситуация, которую Мецжер называет «интеллектуальной анархией», во многом определяется отсутствием четкого осознания предмета познания и специализации в среде исследователей. Зрелая фаза науки характеризуется ее дисциплинарной структурой – наличием собственного предмета и методов исследования, а также организованной группы ученых, работающих в рамках общепризнанной теории. Переход от плюрализма к такой теории, согласно Мецжер, совершается внезапно, без видимой связи с предшествующими работами. Причем новая концепция быстро завоевывает популярность у многих ученых, которые вербуются нередко из числа ее бывших противников, как бы обращенных в новую веру. С утверждением общепринятой концепции ученые свою главную задачу видят в расширении области ее применения. Их работа сводится к усовершенствованию принятой теории, не затрагивающему ее основные принципы. Однако в ходе этого спокойного эволюционного развития постепенно обнаруживаются трудности и аномалии, которые приводят в итоге к кризису общепризнанной концепции и стремлению найти ей замену. Мецжер доказывала также, что развитие науки тесно связано с общим ходом цивилизации, поэтому социальное значение тех или иных научных достижений зависит от их соот ветствия путям развития и потребностям общества. Соч.: La genese de la science de cristaux. P., 1918; Les conceptes de la science. P., 1926; Les doctrines chimiques en France. P., 1927; Newton, Stahl, Boerhave et la doctrine chimique. P., 1930; La methode philosophique en histoire des sciences. P., 1987. Лит.: Boas M. Helene Metzger (1889-1944). – В кн.: Archives internationales d'histoire des sciences. P., 1955, p. 432. В. С. Черняк


    Ваша оценка произведения:

Популярные книги за неделю