355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Большая Советская Энциклопедия » Большая Советская Энциклопедия (МА) » Текст книги (страница 43)
Большая Советская Энциклопедия (МА)
  • Текст добавлен: 8 октября 2016, 22:16

Текст книги "Большая Советская Энциклопедия (МА)"


Автор книги: Большая Советская Энциклопедия


Жанр:

   

Энциклопедии


сообщить о нарушении

Текущая страница: 43 (всего у книги 155 страниц)

Макроклимат

Макрокли'мат (от макро... и климат ), климат крупных географических регионов – географических зон, материков и океанов, их больших частей, или даже всей Земли, рассматриваемый в основных своих чертах. Если такая часть земной поверхности достаточно однородна по своим географическим факторам и по условиям общей циркуляции атмосферы, она обладает и определённым М. Например, можно говорить о М. зоны пассатов, Восточной Сибири, Средиземноморского бассейна, Антарктического плато и т. п. М. характеризуется количественными показателями, относящимися ко всей рассматриваемой территории (интервалами, в которых меняются по территории те или иные климатические характеристики, или средними их значениями по территории). М. противопоставляется местный климат и микроклимат .

Макролиды

Макроли'ды , обширная группа антибиотиков , в структуру которых входит многочленный лактонный цикл. Все известные М. выделены из почвенных грибов рода Streptomyces и по строению и физиологическому действию разделяются на две подгруппы. В первую (свыше 30 антибиотиков) входят лактоны , углеродный скелет которых представляет собой насыщенную или содержащую 1—2 двойных связи жирную полиоксикислоту, причём 1 или 2 гидроксильные группы связаны с остатками углеводов. Соединения этой подгруппы (пикромицин, метимицин, нарбомицин, олеандомицин, эритромицин , ланкамицин, магнамицин , карбомицин В, макроцин, лейкомицин А и другие) – бесцветные кристаллы, хорошо растворимы в полярных органических растворителях, обладают слабоосновными свойствами; активны против большинства грамположительных и некоторых грамотрицательных бактерий (бруцелл), против риккетсий, иногда – против кокков. Механизм их действия состоит в подавлении белкового синтеза в клетках микроорганизмов. Во вторую подгруппу (около 30 антибиотиков) входят лактоны, углеродный скелет которых, помимо гидроксильных групп, содержит 4—7 сопряжённых двойных связей. У большинства М. этого типа (их называют также полиеновыми антибиотиками) 1 или 2 гидроксильные группы связаны с остатками аминосахаров. Соединения этой группы (филипин, нистатин, амфотернцин В, пимарицин, лагозин, фунгихромин и другие) – жёлтые кристаллы, разлагающиеся на свету; активны против грибов и дрожжей, но обладают слабым бактериостатическим эффектом. Механизм их действия заключается в нарушении функций цитоплазматических мембран благодаря образованию молекулярных комплексов с входящими в состав мембран стеринами. Биосинтез М. грибами-продуцентами протекает по схеме биосинтеза жирных кислот.

  Лит.: Химия антибиотиков, 3 изд., т. 1, М., 1961; Сазыкин Ю. О., Антибиотики как ингибиторы биохимических процессов, М., 1968; Механизм действия антибиотиков, [Сборник статей], перевод с английского, М., 1969; Biogenesis of antibiotic substances, Prague, 1965.

  Э. П. Серебряков.

Макролиты

Макроли'ты (от макро... и греч. líthos – камень), массивные орудия (топоры, кирки, долота и другие), изготовлявшиеся из кремнёвых желваков, обработанных посредством двусторонней оббивки грубыми сколами. Были широко распространены в раннем неолите (а частично и в позднем) на территории значительной части Европы, а также в Австралии и на Огненной Земле; в СССР макролитические орудия найдены в Верхнем Поволжье, на Украине и в некоторых других районах.

Макромеры

Макроме'ры (от макро... и греч. méros – часть, доля), крупные клетки, образующиеся при полном неравномерном дроблении яйца (например, у лягушки). Отличаются от микромеров того же зародыша большими размерами и высоким содержанием желтка в цитоплазме.

Макромолекула

Макромоле'кула , буквально – большая молекула , молекула полимера ; построена по принципу повторения идентичных (у М. гомополимера) или различных (у М. сополимера) структурных единиц – мономерных (повторяющихся) звеньев. В линейных М. эти звенья соединены ковалентно в цепочку, длина которой характеризуется степенью полимеризации (то есть числом повторяющихся звеньев) или молекулярной массой . Совокупность М. данного полимера, в отличие от молекул низкомолекулярного вещества, представляет собой набор цепей, в случае, например, гомополимеров, имеющих одинаковую химическую структуру, но разную длину. Для гомополимеров этот набор количественно описывается функцией распределения по степеням полимеризации (или молекулярно-массовым распределением). Для гомологического ряда сополимеров одинакового среднего состава наблюдается также композиционная неоднородность М. (собственно неоднородность состава) и конфигурационная неоднородность (различное чередование звеньев разных типов). Будучи построенной из большого числа (от сотен до миллионов) элементарных звеньев, каждая отдельная М. представляет собой миниатюрный статистический ансамбль, подчиняющийся законам термодинамики малых систем и проявляющий такие свойства макроскопических физических тел, как изменчивость размеров (геометрических) и формы, не связанные с химическими превращениями.

  Последняя особенность связана с одним из главных свойств М. – их гибкостью, то есть способностью полимерных цепей изменять свою конформацию в результате внутримолекулярного, микроброунового теплового движения звеньев (в случае так называемой термодинамической гибкости) или же под влиянием внешних механических, в частности гидродинамических, факторов (кинетическая гибкость). Гибкость обусловлена возможностью вращения атомов цепи и звеньев в целом вокруг простых (одинарных) связей. Гибкость М. следует отличать от подвижности, которую ограничивают внешние факторы – взаимодействие с растворителем или соседними макромолекулярными цепями. Непосредственной мерой гибкости является величина потенциала торможения внутреннего вращения атомов и звеньев, который зависит от структуры повторяющихся звеньев и имеет квантовомеханическую природу.

  Термодинамическая гибкость М. определяется по их геометрическим размерам, стереохимическим и некоторым другим характеристикам. Основной стереохимической характеристикой М. является конфигурация – полное пространственное распределение атомов, образующих М., которое определяется длинами соответствующих связей и величинами валентных углов и не может быть изменено без разрыва химических связей. Как известно, при одной и той же общей конфигурации М. может принимать несколько конформаций ; таким образом, конформация представляет собой переменную статистическую величину – она характеризует распределение в пространстве атомов и атомных групп при неизменных валентных углах, но переменных ориентациях связей. Изменение ориентации происходит вследствие относительных поворотов этих атомов и групп под действием теплового движения звеньев. В отсутствие взаимодействий с другими М. (например, в разбавленном растворе) вытянутая поначалу гипотетическая полимерная цепь в результате ряда элементарных поворотов приобретает конформацию так называемого статистического клубка. Размеры такого клубка выражаются, например, через среднеквадратичное расстояние между его концами. Сопоставление этих размеров с теми, которые М. приобрела бы при отсутствии торможения внутреннего вращения (они рассчитываются теоретически), позволяет оценить термодинамическую гибкость. Размеры М., необходимые для расчётов гибкости, могут быть найдены дифракционными или гидродинамическими методами, а некоторые конфигурационные характеристики – динамо– или электрооптическими (двойное лучепреломление в потоке, эффект Керра).

  В отличие от термодинамической, или равновесной, гибкости, кинетическая гибкость не является постоянной характеристикой М., а зависит от скорости внешнего деформирующего воздействия.

  Учесть влияние скорости воздействия на кинетическую гибкость М. можно, зная её релаксационный спектр (см. Релаксационные явления в полимерах ). Между равновесной и кинетической гибкостью имеется определённая связь, ибо в конечном счёте обе эти характеристики определяются потенциалом торможения.

  С позиций статистической физики способность М. к деформациям можно характеризовать конформационным набором, который называется также статистическим весом (или конформационной энтропией). С уменьшением степени полимеризации уменьшается и число возможных конформаций. Относительно короткие М. олигомеров , или мультимеров, вообще почти не деформируемы, но лишь потому, что в них мало число звеньев, а потенциал торможения – конечная мера гибкости – тот же, что в длинных цепях. Статистическим весом можно характеризовать и конфигурацию, что становится вполне очевидным в случае сополимеров. Число возможных способов распределения разных звеньев вдоль цепи определяет конфигурационную энтропию М.; отрицательное значение этой величины представляет собой меру информации , которую может содержать М. Способность М. к хранению информации является одной из самых важных их характеристик, значимость которой стала понятна лишь после открытия генетического кода .

  С равновесной и кинетической гибкостью М. связаны уникальные механические свойства полимеров, в частности высокоэластичность (см. Высокоэластическое состояние ). С конформационной энтропией полиэлектролитов и сополимеров связана возможность превращения химической энергии в механическую (см. Хемомеханика ). С конфигурационной энтропией связана способность М. к образованию устойчивых вторичных молекулярных структур, достигающих высокой степени совершенства и обладающих специфическими свойствами в М. важнейших биополимеровбелков и нуклеиновых кислот . Применительно к биополимерам можно вместо конфигурационной энтропии пользоваться термином «конфигурационная информация», которая, в соответствии со сказанным выше, определяет единственность (то есть нестатистичность, в отличие от синтетических М.) конформаций белковых М., предопределяющую их способность быть ферментами , переносчиками кислорода и т. п. В синтетических сополимерах вторичные молекулярные структуры возникают вследствие избирательных взаимодействий определённым образом расположенных вдоль цепи звеньев разных типов; эти структуры лишь умеренно специфичны, но могут служить простейшими моделями запоминания на уровне М.

  Лит.: Волькенштейн М. В.. Конфигурационная статистика полимерных цепей, М. – Л., 1959; его же, Молекулы и жизнь, М., 1965; Цветков В. Н., Эскин В. Е., Френкель С. Я., Структура макромолекул в растворах, М., 1964; Моравец Г., Макромолекулы в растворе, перевод с английского, М., 1967; Бирштейн Т. М., Птицын О. Б., Конформации макромолекул, М., 1964; Флори П., Статистическая механика цепных молекул, перевод с английского, М., 1971; Френкель С. Я., Гибкость макромолекул, в книге: Энциклопедия полимеров, т. 1, М., 1972; Макромолекула, там же, т. 2, М., (в печати).

  С. Я. Френкель.

Макронуклеус

Макрону'клеус (от макро... и лат. nucleus – ядро), большее (соматическое) ядро у инфузорий . У большинства инфузорий М. характеризуется высокой степенью полиплоидии , то есть содержит от нескольких десятков до нескольких тысяч хромосомных наборов; делится путём перешнуровки, реже – почкуется, при этом между дочерними ядрами распределяются целые хромосомные наборы. При половом процессе у инфузорий – конъюгации – М. разрушается и заменяется новым, развивающимся из генеративного ядра – микронуклеуса ; при этом (а также при каждом делении) хромосомные наборы М. умножаются путём эндомитоза (автономного удвоения числа хромосом). Генетический аппарат М. активен, синтезирует все типы рибонуклеиновой кислоты и направляет все биосинтетические процессы в клетке. У группы низших многоядерных инфузорий М. остаются диплоидными, не способны делиться; при каждом делении особи имеющиеся М. распределяются между дочерними инфузориями, а недостающие М. возникают вновь из микронуклеусов.

  И. Б. Райков.

Макрорельеф

Макрорелье'ф (от макро... и рельеф ), крупные формы рельефа, определяющие общий облик большого участка земной поверхности: горные хребты, плоскогорья, равнины, низменности.

Макроспора

Макроспо'ра (от макро... ), крупная спора разноспоровых высших растений; то же, что мегаспора .

Макроспорангий

Макроспора'нгий (от макро... и спорангий ), орган разноспоровых растений, в котором развиваются мегаспоры ; то же, что мегаспорангий .

Макроспориозы

Макроспорио'зы , широко распространённые болезни растений, вызываемые несовершенными грибами рода Macrosporium. Проявляются в виде различных по форме, величине и окраске пятен, состоящих преимущественно из отмерших клеток, с ярко выраженной концентрической зональностью. На пораженной ткани образуется бархатистый оливково-чёрный налёт. Наиболее вредоносны М. картофеля и томатов (возбудитель Macrosporium solani), М. винограда (М. vitis), М. хлопчатника (М. nigricantium). Распространяются возбудители конидиями, зимуют в растительных остатках. При сильном заражении растения погибают.

  Меры борьбы: правильный севооборот: возделывание устойчивых сортов; уничтожение растительных остатков; глубокая зяблевая вспашка; оптимальные сроки посева и посадки растений; опрыскивание растений фунгицидами.

Макроспорофилл

Макроспорофи'лл (от макро... и спорофилл ), лист, на котором развиваются только макроспорангии, или мегаспорангий ; то же, что мегаспорофилл .

Макроструктура металла

Макрострукту'ра металла (от макро... и лат. stuctura – строение), строение металла, видимое невооружённым глазом или с помощью лупы, то есть при увеличениях до 25 раз. М. изучают на плоских образцах – темплетах , вырезанных из изделия или заготовки, а также на изломах изделия. Для выявления М. поверхность темплета тщательно шлифуют, затем травят растворами кислот или щелочей. При исследовании М. можно обнаружить нарушения сплошности металла (раковины, рыхлость, газовые пузыри, расслоения, трещины и т. д.), выявить распределение примесей и неметаллических включений, форму и расположение кристаллитов (зёрен) в разных частях изделия, а иногда даже особенности строения отдельных зёрен металла (см. Металлография ). Изучение М. позволяет сделать заключение о качестве заготовки и правильности ведения технологического процесса при литье, обработке давлением или сварке изделия. В некоторых случаях качество металла характеризуется видом излома, позволяющим установить, как проходит поверхность разрушения (по телу или по границам зёрен), выяснить причины разрушения и т. д.

  В. Ю. Новиков.

Макросъёмка

Макросъёмка, фото– или киносъёмка средних и мелких макроскопических, то есть видимых глазом, объектов или деталей в крупных масштабах (от 1: 5 до 20: 1). Производится с помощью специальных (микроанастигматы) или обычных фото– или киносъёмочных объективов . М. при больших увеличениях позволяет показать на снимке или экране не только видимые, но и неразличимые невооружённым глазом детали и структуру объекта. Широко применяется в различных областях науки, техники и сельского хозяйства как метод объективной документации и исследований.

  М. выполняется с коротких расстояний (от 6 до 1,05 фокусного расстояния оптической системы), требуя дополнительного растяжения камеры съёмочного аппарата, равного f’/m, где f’ – фокусное расстояние объектива, 1/m – масштаб съёмки. Увеличение растяжения камеры достигается посредством сильно выдвигающихся оправ объективов, удлинительных колец и приставок или специальной аппаратуры. Иногда применяют насадочные линзы , укорачивающие f’. Объекты М. устанавливаются на предметных столиках, облегчающих наводку, установку необходимого освещения и фона. Укрупнение масштаба при М. сильно снижает освещённость изображения на фотоматериале, что требует увеличения экспозиции в (1+ 1/m)2 раз по сравнению с обычной съёмкой и уменьшает глубину резко изображаемого пространства, увеличение которой достигается диафрагмированием объектива.

  Лит.: Миненков И. Б., Макрофотография, М., 1960; Овсянников Н. А., Специальная фотография, М., 1966; Нисский А. В., Специальные виды киносъёмки, 2 изд., М., 1970.

  И. Б. Миненков.

Макрофаги

Макрофа'ги (от макро... и греч. phágos – пожиратель), полибласты, клетки мезенхимальной природы в животном организме, способные к активному захвату и перевариванию (см. Фагоцитоз ) бактерий, остатков погибших клеток и других чужеродных или токсичных для организма частиц. Термин «М.» введён И. И. Мечниковым (1892). К М. относят моноциты крови, гистиоциты соединительной ткани, эндотелиальные клетки капилляров (синусоидов) кроветворных органов, купферовские клетки печени, клетки стенки альвеол лёгкого (лёгочные М.) и стенки брюшины (перитонеальные М.). Установлено, что у млекопитающих предшественники М. образуются в костном мозге. Активными фагоцитарными свойствами обладают также клетки ретикулярной ткани кроветворных органов, объединяемые с М. в ретикуло-эндотелиальную (макрофагическую) систему, выполняющую в организме защитную функцию.

  Н. Г. Хрущев.

Макрофиллы

Макрофи'ллы (от макро... и греч. phýllon – лист), крупные листья высших растений, происходящие из видоизменённых (обычно уплощённых) ветвей, принявших листовидную форму. Для М. характерно образование в листовых следах прорывов – лакун (в отличие от микрофиллов , в которых такие лакуны не образуются). Макро– и микрофильные растения берут начало от псилофитовидных, у которых тело было представлено осевыми дихотомически ветвящимися участками – теломами . В ходе дальнейшей эволюции у одних растений – микрофильных – на осях возникали выросты в виде шипов, придатков, в которые входили ответвления осевого цилиндра без листовых прорывов, у других – макрофильных – мелкие веточки (системы теломов) плотно скучивались, уплощались, срастались, принимая листовидную форму, с образованием в центральном цилиндре лакун. М. характерны для многих папоротникообразных, саговников и всех покрытосеменных.

  Лит.: Мейер К. И., Морфогения высших растений, М., 1958; Имс А. Дж., Морфология цветковых растений, перевод с английского, М., 1964.

  Л. В. Кудряшов.

Макроцистис

Макроци'стис (Macrocystis), род морских бурых водорослей из порядка ламинариевых. Самые крупные водоросли: длина до 45 м. Состоят из гибкого разветвленного ствола с ризоидами и листообразных пластин с воздушными пузырями, поддерживающими ветви и пластины у поверхности. 3 вида. Распространены в умеренных водах Южного и Северного (только у берегов Калифорнии) полушарий. Используются для получения главным образом солей альгиновых кислот.

Макроэволюция

Макроэволю'ция , совокупность процессов эволюции живых форм, протекающих на надвидовом уровне, то есть после установления практически полной межвидовой изоляции и прекращения нивелировки достигнутых различий путём скрещиваний. В 1-й половине 20 века термин «М.» употреблялся некоторыми биологами (немецким – Р. Вольтерек, 1920, советским – Ю. А. Филипченко, 1927, немецким – Р. Гольдшмидт, 1940) в связи с принимаемыми ими двумя типами наследственной изменчивости – внутривидовой (основанной на менделирующих, то есть подчиняющихся Менделя законам , мутациях) и особой (неменделирующей) изменчивости, определявшей, по мнению этих учёных, возникновение надвидовых таксонов. Большинство биологов, изучающих механизм эволюции, считает, что основу образования видов, родов, семейств и т. д. составляют одни и те же микроэволюционные процессы; в связи с этим противопоставление М. имикроэволюции не оправдано.

  Лит.: Тимофеев-Ресовский Н. В., Воронцов Н. Н., Яблоков А. В., Краткий очерк теории эволюции, М., 1969; Philiptschenko Y., Variabilität und Variation, В., 1927; Goldschmidt R., The material basis of evolution, New Haven, 1940.

  Н. В. Тимофеев-Ресовский.

Макроэргические соединения

Макроэрги'ческие соедине'ния (отмакро... и греч. érgon – деятельность, работа), высокоэргические, высокоэнергетические соединения, природные соединения, содержащие богатые энергией, или макроэргические, связи; присутствуют во всех живых клетках, участвуя в процессах накопления и превращения энергии. К М. с. относятся главным образом аденозинтрифосфорная кислота (АТФ) и вещества, способные образовывать АТФ в ферментативных реакциях переноса преимущественно фосфатных групп. Все известные М. с. содержат фосфорильную (– PO2-3 или ацильную  группу и описываются формулой , где Х – атом N, О, S или С, а Y – атом Р или С. Реакционная способность М. с. связана с повышенной электрофильностью (сродством к электрону) атома Y, что обусловливает, в частности, высокую свободную энергию гидролиза М. с., равную 25,1—58,6 кдж/моль (6—14 ккал/моль ) (см. Биоэнергетика ). К М. с. относятся также нуклеозидтри– (или ди)-фосфорные кислоты, пирофосфорная и полифосфорная кислоты, креатинфосфорная, фосфопировиноградная, дифосфоглицериновая кислоты, ацетил– и сукцинилкоферменты А, аминоацильные производные адениловой и рибонуклеиновых кислот и другие. М. с. связаны между собой ферментативными реакциями переноса фосфорильных групп, причём промежуточным продуктом обычно служит АТФ – кофермент многих ферментативных реакций. В целом биологическое значение АТФ и связанных с ней М. с. обусловлено их центральным положением на пересечении путей обмена веществ и энергии: они обеспечивают осуществление различных видов работы, играют ответственную роль в фотосинтезе, биолюминесценции, в биосинтезе белков, жиров, углеводов, нуклеиновых кислот и других природных соединений.

  От М. с. следует отличать фосфорильные, ацильные и другие соединения, не имеющие макроэргических связей и потому не способные образовывать АТФ в реакциях переноса фосфорильных и ацильных групп: нуклеозидмонофосфорные кислоты, нуклеиновые кислоты, фосфосахара, фосфолипиды и другие. Однако окисление некоторых из этих соединений может вести к образованию М. с. (см. Окислительное фосфорилирование ). См. также Аденозинфосфорные кислоты и Биоэнергетика .

  Лит.: Скулачев В. П., Аккумуляция энергии в клетке, М., 1969.

  В. П. Скулачев.


    Ваша оценка произведения:

Популярные книги за неделю