355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Большая Советская Энциклопедия » Большая Советская Энциклопедия (МА) » Текст книги (страница 131)
Большая Советская Энциклопедия (МА)
  • Текст добавлен: 8 октября 2016, 22:16

Текст книги "Большая Советская Энциклопедия (МА)"


Автор книги: Большая Советская Энциклопедия


Жанр:

   

Энциклопедии


сообщить о нарушении

Текущая страница: 131 (всего у книги 155 страниц)

 

При вычислении , S2 и D по группированным данным пользуются формулами

  ,

 

или

  ,

где r – число интервалов группировки, ak – их середины (в случае таблицы 1а – 13,07; 13,12; 13,17; 13,22 и т. д.). Если материал сгруппирован по слишком крупным интервалам, то такой подсчёт даёт слишком грубые результаты. Иногда в таких случаях полезно прибегать к специальным поправкам на группировку. Однако эти поправки имеет смысл вводить лишь при условии выполнения определённых вероятностных предположений.

  О совместных распределениях двух и большего числа признаков см. Корреляция , Корреляционный анализ , Регрессия , Регрессионный анализ .

  Связь статистических распределений с вероятностными. Оценка параметров.

  Проверка вероятностных гипотез. Выше были изложены лишь некоторые избранные простейшие приёмы статистического описания, представляющего собой довольно обширную дисциплину с хорошо разработанной системой понятий и техникой вычислений. Приёмы статистического описания интересны, однако не сами по себе, а в качестве средства для получения из статистического материала выводов о закономерностях, которым подчиняются изучаемые явления, и о причинах, приводящих в каждом отд. случае к тем или иным наблюдённым статистическим распределениям.

  Например, данные, приведённые в таблице 2а, естественно связать с такой теоретической схемой. Заболевание гриппом каждого отдельного работника универмага следует считать случайным событием, так как общие условия работы и жизни обследованных работников универмага могут определять не сам факт заболевания такого-то и такого-то работника, а лишь некоторую вероятность заболевания. Вероятности заболевания для вдыхавших сыворотку (p1 ) и для не вдыхавших (p ), судя по статистическим данным, различны: эти данные дают основания предполагать, что p1 существенно меньше p . Перед М. с. возникает задача: по наблюдённым частотам h1 = 4/501 » 0,008 и h = 150/1825 » 0,082 оценить вероятности p1 и p0 и проверить, достаточен ли статистический материал для того, чтобы считать установленным, что p1 < p (то есть что вдыхание сыворотки действительно уменьшает вероятность заболевания). Утвердительный ответ на поставленный вопрос в случае данных таблицы 2а достаточно убедителен и без тонких средств М. с. Но в более сомнительных случаях необходимо прибегать к разработанным М. с. специальным критериям.

  Данные первого столбца таблицы 1а собраны с целью установления точности изготовления деталей, расчётный диаметр которых равен 13,40 мм, при нормальном ходе производства. Простейшим допущением, которое может быть в этом случае обосновано некоторыми теоретическими соображениями, является предположение, что диаметры отдельных деталей можно рассматривать как случайные величины X , подчинённые нормальному распределению вероятностей

  P{X <x } = .   (1)

Если это допущение верно, то параметры a и s2 – среднее и дисперсию вероятностного распределения – можно с достаточной точностью оценить по соответствующим характеристикам статистического распределения (так как число наблюдений n = 200 достаточно велико). В качестве оценки для теоретической дисперсии s2 предпочитают не статистическую дисперсию D2 = S2/ n , а несмещенную оценку

  s2 = S2 / (n – 1).

  Для теоретического среднего квадратичного отклонения не существует общего (пригодного при любом распределении вероятностей) выражения несмещенной оценки. В качестве оценки (вообще говоря, смещенной) для s чаще всего употребляют s . Точность оценок  и s для a и s указывается соответствующими дисперсиями, которые в случае нормального распределения (1) имеют вид

  s2a = s2/n ~ s2 / n ,

   ~ 2s4/n ,

   ~ s2 / 2n ,

где знак ~ обозначает приближённое равенство при больших n . Таким образом, уславливаясь прибавлять к оценкам со знаком ± их среднее квадратичное отклонение, имеем при больших n в предположении нормального распределения (1):

  ,   .   (2)

Для данных первого столбца таблицы 1а формулы (2) дают

  a = 13,416 ± 0,008,

  s = 0,110 ± 0,006.

Объём выборки n = 200 достаточен для законности пользования этими формулами теории больших выборок.

  Дальнейшие сведения об оценке параметров теоретических распределений вероятностей см. в статьях Статистические оценки , Доверительные границы . О способах, при помощи которых по данным первого столбца таблицы 1а можно было бы проверить исходные гипотезы нормальности распределения и независимости наблюдений, см. в статьях Распределения , Непараметрические методы , Статистическая проверка гипотез .

  При рассмотрении данных следующих столбцов таблицы 1а, каждый из которых составлен на основе 10 измерений, употребление формул теории больших выборок, установленных лишь в качестве предельных формул при n ® ¥, может служить только для первой ориентировки. В качестве приближённых оценок параметров a и s по-прежнему употребляются величины  и s , но для оценки точности и надёжности таких оценок необходимо применять теорию малых выборок . При сравнении по правилам М. с. выписанных в последних строках таблицы 1а значений  и s для трёх выборок с нормальными значениями a и s, оцененными по первому столбцу таблицы, можно сделать следующие выводы: первая выборка не даёт оснований предполагать существенного изменения хода производственного процесса, вторая выборка даёт основание к заключению об уменьшении среднего диаметра а , третья выборка – к заключению об увеличении дисперсии.

  Все основанные на теории вероятностей правила статистической оценки параметров и проверки гипотез действуют лишь с определённым значимости уровнем w < 1, то есть могут приводить к ошибочным результатам с вероятностью a = 1 – w. Например, если в предположении нормального распределения и известной теоретической дисперсии s2 производить оценку a по  по правилу

  ,

то вероятность ошибки будет равна a, связанному с k соотношением (см. таблицу 3);

  .

  Вопрос о рациональном выборе уровня значимости в данных конкретных условиях (например, при разработке правил статистического контроля массовой продукции) является весьма существенным. При этом желанию применять правила лишь с высоким (близким к единице) уровнем значимости противостоит то обстоятельство, что при ограниченном числе наблюдений такие правила позволяют сделать лишь очень бедные выводы (не дают возможности установить неравенство вероятностей даже при заметном неравенстве частот и т. д.).

Таблица 3. – Зависимость a и w = 1 – a от k .


k1,96 2,58 3,00 3,29
a 0,050 0,010 0,003 0,001
w 0,950 0,990 0,997 0,999

  Выборочный метод. В предыдущем разделе результаты наблюдений, используемых для оценки распределения вероятностей или его параметров, подразумевались (хотя это и не оговаривалось) независимыми (см. Вероятностей теория и особенно Независимость ). Хорошо изученным примером использования зависимых наблюдений может служить оценка статистического распределения или его параметров в «генеральной совокупности» из N объектов по произведённой из неё «выборке», содержащей n < N объектов.

  Терминологическое замечание. Часто совокупность n наблюдений, сделанных для оценки распределения вероятностей, также называют выборкой. Этим объясняется, например, происхождение употребленного выше термина «теория малых выборок». Эта терминология связана с тем, что часто распределение вероятностей представляют себе в виде статистического распределения в воображаемой бесконечной «генеральной совокупности» и условно считают, что наблюдаемые n объектов «выбираются» из этой совокупности. Эти представления не имеют отчётливого содержания. В собственном смысле слова выборочный метод всегда предполагает исходную конечную генеральную совокупность.

  Примером применения выборочного метода может служить следующий. Пусть в партии из N изделий имеется L дефектных. Из партии отбирается случайным образом n < N изделий (например, n = 100 при N = 10 000). Вероятность того, что число l дефектных изделий в выборке будет равно m , равна

  P {l = m } =

  Таким образом, l и соответствующая относительная частота h = l/n оказываются случайными величинами, распределение которых зависит от параметра L или, что то же самое, от параметра Н = L / N . Задача оценки относительной частоты Н по выборочной относительной частоте h очень похожа на задачу оценки вероятности р по относительной частоте h при n независимых испытаниях. При больших n с вероятностью, близкой к единице, в задаче об оценке вероятности имеет место приближённое равенство р ~ h , а в задаче об оценке относительной частоты – приближённое равенство H ~ h . Однако в задаче об оценке Н формулы сложнее, а отклонения h от Н в среднем несколько меньше, чем отклонения h от р в задаче об оценке вероятности (при том же n ). Таким образом, оценка доли Н дефектных изделий в партии по доле h дефектных изделий в выборке при данном объёме выборки n производится всегда (при любом N ) несколько точнее, чем оценка вероятности р по относительной частоте h при независимых испытаниях. Когда N/n ® ¥, формулы задачи о выборке переходят асимптотически в формулы задачи об оценке вероятности р . См. также Выборочный метод .

  Дальнейшие задачи математической статистики. Упоминавшиеся выше способы оценки параметров и проверки гипотез основаны на предположении, что число наблюдений, необходимых для достижения заданной точности выводов, определяют заранее (до проведения испытаний). Однако часто априорное определение числа наблюдений нецелесообразно, так как, не фиксируя число опытов заранее, а определяя его в ходе эксперимента, можно уменьшить его математическое ожидание. Сначала это обстоятельство было подмечено на примере выбора одной из двух гипотез по последовательности независимых испытаний. Соответствующая процедура (впервые предложенная в связи с задачами приёмочного статистического контроля ) состоит в следующем: на каждом шаге по результатам уже проведённых наблюдений решают а) провести ли следующее испытание, или б) прекратить испытания и принять первую гипотезу, или в) прекратить испытания и принять вторую гипотезу. При надлежащем подборе количеств, характеристик подобной процедуры можно добиться (при той же точности выводов) сокращения числа наблюдений в среднем почти вдвое по сравнению с процедурой выборки фиксированного объёма (см. Последовательный анализ ). Развитие методов последовательного анализа привело, с одной стороны, к изучению управляемых случайных процессов , с другой – к появлению общей теории статистических решений. Эта теория исходит из того, что результаты последовательно проводимых наблюдений служат основой принятия некоторых решений (промежуточных – продолжать испытания или нет, и окончательных – в случае прекращения испытаний). В задачах оценки параметров окончательные решения суть числа (значение оценок), в задачах проверки гипотез – принимаемые гипотезы. Цель теории – указать правила принятия решений, минимизирующих средний риск или убыток (риск зависит и от вероятностных распределений результатов наблюдений, и от принимаемого окончательного решения, и от расходов на проведение испытаний и т. п.).

  Вопросы целесообразного распределения усилий при проведении статистического анализа явлений рассматриваются в теории планирования эксперимента , ставшей важной частью современной М. с.

  Наряду с развитием и уточнением общих понятий М. с. развиваются и её отдельные разделы, такие, как дисперсионный анализ , статистический анализ случайных процессов , статистический анализ многомерный . Появились новые оценки в регрессионном анализе (см. также Стохастическая аппроксимация ). Большую роль в задачах М. с. играет так называемый байесовский подход (см. Статистические решения ).

  Историческая справка. Первые начала М. с. можно найти уже в сочинениях создателей теории вероятностей – Я. Бернулли (конец 17 – начало 18 веков), П. Лапласа (2-я половина 18 – начало 19 веков) и С. Пуассона (1-я половина 19 века). В России методы М. с. в применении к демографии и страховому делу развивал на основе теории вероятностей В. Я. Буняковский (1846). Решающее значение для всего дальнейшего развития М. с. имели работы русской классической школы теории вероятностей 2-й половины 19 – начала 20 веков (П. Л. Чебышев , А. А. Марков , А. М. Ляпунов , С. Н. Бернштейн ). Многие вопросы теории статистических оценок были по существу разработаны на основе теории ошибок и метода наименьших квадратов [К. Гаусс (1-я половина 19 века) и А. А. Марков (конец 19 – начало 20 веков)]. Работы А. Кетле (19 век, Бельгия), Ф. Гальтона (19 век, Великобритания) и К. Пирсона (конец 19 – начало 20 веков, Великобритания) имели большое значение, но по уровню использования достижений теории вероятностей отставали от работ русской школы. К. Пирсоном была широко развёрнута работа по составлению таблиц функций, необходимых для применения методов М. с. В создании теории малых выборок, общей теории статистических оценок и проверки гипотез (освобожденной от предположений о наличии априорных распределений), последовательного анализа весьма значительна роль представителей англо-американской школы [Стьюдент (псевдоним У. Госсета), Р. Фишер, Э. Пирсон – Великобритания, Ю. Нейман, А. Вальд – США], деятельность которых началась в 20-х годах 20 века. В СССР значительные результаты в области М. с. получены В. И. Романовским, Е. Е. Слуцким, которому принадлежат важные работы по статистике связанных стационарных рядов, Н. В. Смирновым, заложившим основы теории непараметрических методов М. с., Ю. В. Линником, обогатившим аналитический аппарат М. с. новыми методами. На основе М. с. особенно интенсивно разрабатываются статистические методы исследования и контроля массового производства, статистические методы в области физики, гидрологии, климатологии, звёздной астрономии, биологии, медицины и другие.

  Существует несколько журналов, публикующих работы по М. с., в том числе «Annals of Statistics» (до 1973 «Annals of Mathematical Statistics»), «International Statistical Institute Review», «Biometrika», «Journal of the Royal Statistical Society». Имеются научные ассоциации, поддерживающие исследования по М. с. и её применениям. Важную роль играет Международный статистический институт (ISI) с центром в Амстердаме и созданная при нём Международная ассоциация по статистическим методам в естественых науках (IASPS).

  Лит.: Крамер Г., Математические методы статистики, перевод с английского, М., 1948; Ван-дер-Варден Б. Л., Математическая статистика, перевод с немецкого, М., 1960; Смирнов Н. В., Дунин-Барковский И. В., Курс теории вероятностей и математической статистики для технических приложений, 3 изд., М., 1969; Большев Л. Н., Смирнов Н. В., Таблицы математической статистики, М., 1968; Линник Ю. В., Метод наименьших квадратов ..., 2 изд., М., 1962; Хальд А., Математическая статистика с техническими приложениями, перевод с английского, М., 1956; Андерсон Т., Введение в многомерный статистический анализ, перевод с английского, М., 1963; Кендалл М. Дж., Стьюарт А., Теория распределений, перевод с английского, М., 1966.

  А. Н. Колмогоров, Ю. В. Прохоров.

Рис. 2. Гистограмма распределения диаметров 200 деталей. Длина интервала группировки 0,25 мм .

Рис. 3. Гистограмма распределения диаметров 200 деталей. Длина интервала группировки 0,01 мм .

Рис. 1. Гистограмма распределения диаметров 200 деталей. Длина интервала группировки 0,05 мм .

Математическая физика

Математи'ческая фи'зика , теория математических моделей физических явлений; занимает особое положение и в математике, и в физике, находясь на стыке этих наук.

  М. ф. тесно связана с физикой в той части, которая касается построения математической модели, и в то же время – раздел математики, поскольку методы исследования моделей являются математическими. В понятие методов М. ф. включаются те математические методы, которые применяются для построения и изучения математических моделей, описывающих большие классы физических явлений.

  Методы М. ф. как теории математических моделей физики начали интенсивно разрабатываться в трудах И. Ньютона по созданию основ классической механики, всемирного тяготения, теории света. Дальнейшее развитие методов М. ф. и их успешное применение к изучению математических моделей огромного круга различных физических явлений связаны с именами Ж. Лагранжа , Л. Эйлера , П. Лапласа , Ж. Фурье , К. Гаусса , Б. Римана , М. В. Остроградского и многих других учёных. Большой вклад в развитие методов М. ф. внесли А. М. Ляпунов и В. А. Стеклов . Начиная со 2-й половины 19 века методы М. ф. успешно применялись для изучения математических моделей физических явлений, связанных с различными физическими полями и волновыми функциями в электродинамике, акустике, теории упругости, гидро– и аэродинамике и ряде других направлений исследования физических явлений в сплошных средах. Математические модели этого класса явлений наиболее часто описываются при помощи дифференциальных уравнений с частными производными, получивших название уравнений математической физики . Помимо дифференциальных уравнений М. ф., при описании математических моделей физики применение находят интегральные уравнения и интегро-дифференциальные уравнения, вариационные и теоретико-вероятностные методы, теория потенциала, методы теории функций комплексного переменного и ряд других разделов математики. В связи с бурным развитием вычислительной математики особое значение для исследования математических моделей физики приобретают прямые численные методы, использующие ЭВМ, и в первую очередь конечно-разностные методы решения краевых задач. Теоретические исследования в области квантовой электродинамики, аксиоматической теории поля и ряде других направлений современной физики привели к созданию нового класса математических моделей, составивших важную отрасль М. ф. (например, теория обобщённых функций, теория операторов с непрерывным спектром).

  Постановка задач М. ф. заключается в построении математических моделей, описывающих основные закономерности изучаемого класса физических явлений. Такая постановка состоит в выводе уравнений (дифференциальных, интегральных, интегро-дифференциальных или алгебраических), которым удовлетворяют величины, характеризующие физический процесс. При этом исходят из основных физических законов, учитывающих только наиболее существенные черты явления, отвлекаясь от ряда его второстепенных характеристик. Такими законами являются обычно законы сохранения, например, количества движения, энергии, числа частиц и т. д. Это приводит к тому, что для описания процессов различной физической природы, но имеющих общие характерные черты, оказываются применимыми одни и те же математические модели. Например, математические задачи для простейшего уравнения гиперболического типа

  ,

полученного первоначально (Ж. Д’Аламбер , 1747) для описания свободных колебаний однородной струны, оказываются применимыми и для описания широкого круга волновых процессов акустики, гидродинамики, электродинамики и других областей физики. Аналогично, уравнение

  ,

краевые задачи для которого первоначально изучались П. Лапласом (конец 18 века) в связи с построением теории тяготения (см. Лапласа уравнение ), в дальнейшем нашло применение при решении многих проблем электростатики, теории упругости, задач установившегося движения идеальной жидкости и т. д. Каждой математической модели физики соответствует целый класс физических процессов.

  Для М. ф. характерно также то, что многие общие методы, используемые для решения задач М. ф., развились из частных способов решения конкретных физических задач и в своём первоначальном виде не имели строгого математического обоснования и достаточной завершённости. Это относится к таким известным методам решения задач М. ф., как Ритца и Галёркина методы , к методам теории возмущении, преобразований Фурье и многим другим, включая метод разделения переменных. Эффективное применение всех этих методов для решения конкретных задач является одной из причин для их строгого математического обоснования и обобщения, приводящего в ряде случаев к возникновению новых математических направлений.

  Воздействие М. ф. на различные разделы математики проявляется и в том, что развитие М. ф., отражающее требования естественных наук и запросы практики, влечёт за собой переориентацию направленности исследований в некоторых уже сложившихся разделах математики. Постановка задач М. ф., связанная с разработкой математических моделей реальных физических явлений, привела к изменению основной проблематики теории дифференциальных уравнений с частными производными. Возникла теория краевых задач , позволившая впоследствии связать дифференциальные уравнения с частными производными с интегральными уравнениями и вариационными методами.

  Изучение математических моделей физики математическими методами не только позволяет получить количественные характеристики физических явлений и рассчитать с заданной степенью точности ход реальных процессов, но и даёт возможность глубокого проникновения в самую суть физических явлений, выявления скрытых закономерностей, предсказания новых эффектов. Стремление к более детальному изучению физических явлений приводит к всё большему усложнению описывающих эти явления математических моделей, что, в свою очередь, делает невозможным применение аналитических методов исследования этих моделей. Это объясняется, в частности, тем, что математические модели реальных физических процессов являются, как правило, нелинейными, то есть описываются нелинейными уравнениями М. ф. Для детального исследования таких моделей успешно применяются прямые численные методы с использованием ЭВМ. Для типичных задач М. ф. применение численных методов сводится к замене уравнениями М. ф. для функций непрерывного аргумента алгебраическими уравнениями для сеточных функций, заданных на дискретном множестве точек (на сетке). Иными словами, вместо непрерывной модели среды вводится её дискретный аналог. Применение численных методов в ряде случаев позволяет заменить сложный, трудоёмкий и дорогостоящий физический эксперимент значительно более экономичным математическим (численным) экспериментом. Достаточно полно проведённый математический численный эксперимент является основой для выбора оптимальных условий реального физического эксперимента, выбора параметров сложных физических установок, определения условий проявления новых физических эффектов и т. д. Таким образом численные методы необычайно расширяют область эффективного использования математических моделей физических явлений.

  Математическая модель физического явления, как всякая модель, не может передать всех черт явления. Установить адекватность принятой модели исследуемому явлению можно только при помощи критерия практики, сопоставляя результаты теоретических исследований принятой модели с данными экспериментов.

  Во многих случаях об адекватности принятой модели можно судить на основании решения обратных задач М. ф., когда о свойствах изучаемых явлений природы, недоступных для непосредственного наблюдения, делаются заключения по результатам их косвенных физических проявлений.

  Для М. ф. характерно стремление строить такие математические модели, которые не только дают описание и объяснение уже установленных физических закономерностей изучаемого круга явлений, но и позволяют предсказать ещё не открытые закономерности. Классическим примером такой модели является теория всемирного тяготения Ньютона, позволившая не только объяснить движение известных к моменту её создания тел Солнечной системы, но и предсказывать существование новых планет. С другой стороны, появляющиеся новые экспериментальные данные не всегда могут быть объяснены в рамках принятой модели. Для их объяснения требуется усложнение модели.

  Лит.: Тихонов А. Н., Самарский А. А., Уравнения математической физики, 4 изд., М., 1972; Владимиров В. С., Уравнения математической физики, 2 изд., М., 1971; Соболев С. А., Уравнения математической физики, М., 1966; Курант Р., Уравнения с частными производными, перевод с английского, М., 1964; Морс Ф. М., Фешбах Г., Методы теоретической физики, перевод с английского, т. 1—2, М., 1958.

  А. Н. Тихонов, А. А. Самарский, А. Г. Свешников.


    Ваша оценка произведения:

Популярные книги за неделю