Текст книги "Большая Советская Энциклопедия (МА)"
Автор книги: Большая Советская Энциклопедия
Жанр:
Энциклопедии
сообщить о нарушении
Текущая страница: 127 (всего у книги 155 страниц)
Создание алгебры как буквенного исчисления завершается лишь в конце рассматриваемого двухтысячелетнего периода. Специальные обозначения для неизвестных появляются у греческого математика Диофанта (вероятно, 3 век) и более систематически – в Индии в 7 веке, но обозначение буквами коэффициентов уравнения введено только в 16 веке французским математиком Ф. Виетом.
Развитие геодезии и астрономии рано приводит к детальной разработке тригонометрии, как плоской, так и сферической.
Период элементарной М. заканчивается (в Западной Европе в начале 17 века), когда центр тяжести математических интересов переносится в область М. переменных величин.
Древняя Греция. Развитие М. в Древней Греции приняло существенно иное направление, чем на Востоке. Если в отношении техники проведения вычислений, искусства решения задач алгебраического характера и разработки математических средств астрономии лишь в эллинистическую эпоху был достигнут и превзойдён уровень вавилонской М., то уже гораздо раньше М. в Древней Греции вступила в совершенно новый этап логического развития. Появилась потребность в отчётливых математических доказательствах, были сделаны первые попытки систематического построения математической теории. М., как и всё научное и художественное творчество, перестала быть безличной, какой она была в странах Древнего Востока; она создаётся теперь известными по именам математиками, оставившими после себя математические сочинения (дошедшие до нас лишь в отрывках, сохранённых позднейшими комментаторами).
Греки считали себя в области арифметики учениками финикиян, объясняя высокое развитие арифметики у них потребностями их обширной торговли; начало же греческой геометрии традиция связывает с путешествиями в Египет (7—6 век до н. э.) первых греческих геометров и философов Фалеса Милетского и Пифагора Самосского. В школе Пифагора арифметика из простого искусства счисления перерастает в теорию чисел. Суммируются простейшие арифметические прогрессии [в частности, 1 + 3 + 5+ ... + (2n – 1) = n2 ], изучаются делимость чисел, различные виды средних (арифметическое, геометрическое и гармоническое), вопросы теории чисел (например, разыскание так называемых совершенных чисел) связываются в школе Пифагора с мистическим, магическим значением, приписываемым числовым соотношениям. В связи с геометрической теоремой Пифагора был найден метод получения неограниченного ряда троек «пифагоровых чисел», то есть троек целых чисел, удовлетворяющих соотношению a2 + b2 = c2 . В области геометрии задачи, которыми занимались греческие геометры 6—5 веков до н. э. после усвоения египетского наследства, также естественно возникают из простейших запросов строительного искусства, землемерия и навигации. Таковы, например, вопросы о соотношении между длинами катетов и гипотенузы прямоугольного треугольника (выражаемом теоремой Пифагора), о соотношении между площадями подобных фигур, квадратуре круга , трисекции угла и удвоении куба . Новым, однако, является подход к этим задачам, ставший необходимым с усложнением предмета исследования. Не ограничиваясь приближёнными, эмпирически найденными решениями, греческие геометры ищут точных доказательств и логически исчерпывающих решений проблемы. Ярким примером этой новой тенденции может служить доказательство несоизмеримости диагонали квадрата с его стороной. Во 2-й половине 5 века до н. э. философская и научная жизнь Греции сосредоточивается в Афинах. Здесь протекает основная деятельность Гиппия Элидского и Гиппократа Хиосского . Первый систематический учебник геометрии приписывают Гиппократу Хиосскому. К этому времени, несомненно, уже была создана разработанная система геометрии, не пренебрегавшая такими логическими тонкостями, как доказательство случаев равенства треугольников и тому подобное. Отражением в М. первых, хотя бы и чисто умозрительных, попыток рационального объяснения строения материи явилось едва ли не самое замечательное достижение геометрии 5 века до н. э. – разыскание всех пяти правильных многогранников – результат поисков идеальных простейших тел, могущих служить основными камнями мироздания. На границе 5 и 4 веков до н. э. Демокрит , исходя из атомистических представлений, создаёт способ определения объёмов, послуживший позднее для Архимеда исходным пунктом разработки метода бесконечно малых. В 4 веке до н. э. в обстановке политической реакции и упадка могущества Афин наступает эпоха известного подчинения М. ограничениям, выдвинутым идеалистической философией. Наука о числах строго отделяется здесь от «искусства счисления», а геометрия – от «искусства измерения». Опираясь на существование несоизмеримых отрезков, площадей и объёмов, Аристотель налагает общий запрет на применение арифметики к геометрии. В самой геометрии вводится требование об ограничении построениями, осуществимыми при помощи циркуля и линейки. Наиболее значительным конкретным достижением математиков 4 века до н. э. можно считать связанные с тенденцией к логическому анализу основ геометрии исследования Евдокса Книдского .
Эллинистическая и римская эпоха. С 3 века до н. э. на протяжении семи столетий основным центром научных и особенно математических исследований являлась Александрия. Здесь, в обстановке объединения различных мировых культур, больших государственных и строительных задач и невиданного ранее по своей широте государственного покровительства науке, греческая М. достигла своего высшего расцвета. Несмотря на распространение греческой образованности и научных интересов во всём эллинистическом и римском мире, Александрия с её «музеем», являвшимся первым научно-исследовательским институтом в современном смысле слова, и библиотеками обладала столь большой притягательной силой, что почти все крупнейшие учёные стекались сюда. Из упоминающихся ниже математиков лишь Архимед остался верным родным Сиракузам. Наибольшей напряжённостью математического творчества отличается первый век александрийской эпохи (3 век до н. э.). Этому веку принадлежат Евклид , Архимед , Эратосфен и Аполлоний Пергский .
В своих «Началах» Евклид собрал и подверг окончательной логической переработке достижения предыдущего периода в области геометрии (см. «Начала» Евклида ). Вместе с тем в «Началах» же Евклид впервые заложил основы систематической теории чисел, доказывая бесконечность ряда простых чисел и строя законченную теорию делимости. Из геометрических работ Евклида, не вошедших в «Начала», и работ Аполлония Пергского наибольшее значение для дальнейшего развития М. имело создание законченной теории конических сечений . Основной заслугой Архимеда в геометрии явилось определение разнообразных площадей и объёмов (в том числе площадей параболического сегмента и поверхности шара, объёмов шара, шарового сегмента, сегмента параболоида и т. д.) и центров тяжести (например, шарового сегмента и сегмента параболоида); архимедова спираль является лишь одним из примеров изучавшихся в 3 веке до н. э. трансцендентных кривых. После Архимеда, хотя и продолжался рост объёма научных знаний, александрийская наука уже не достигала прежней цельности и глубины; зачатки анализа бесконечно малых, содержавшиеся в эвристических приёмах Архимеда, не получили дальнейшего развития. Следует сказать, что возникший из прикладных нужд интерес к приближённому измерению величин и приближённым вычислениям не привёл математиков 3 века до н. э. к отказу от математической строгости. Все многочисленные приближённые извлечения корней и даже все астрономические вычисления производились ими с точным указанием границ погрешности, по типу знаменитого архимедова определения длины окружности в форме безукоризненно доказанных неравенств
где р – длина окружности с диаметром d . Это отчётливое понимание того, что приближённая М. не есть «нестрогая» М., было позднее надолго забыто.
Существенным недостатком всей М. древнего мира было отсутствие окончательно сформированного понятия иррационального числа. Как уже было указано, это обстоятельство привело философию 4 века до н. э. к полному отрицанию законности применения арифметики к изучению геометрических величин. В действительности, в теории пропорций и в исчерпывания методе математикам 4 и 3 веков до н. э. всё же удалось косвенным образом осуществить это применение арифметики к геометрии. Ближайшие века принесли не положительное разрешение проблемы путём создания фундаментального нового понятия (иррационального числа), а постепенное её забвение, ставшее возможным с постепенной утратой представлений о математической строгости. На этом этапе истории М. временный отказ от математической строгости оказался, однако, полезным, открыв возможность беспрепятственного развития алгебры (допускавшейся в рамках строгих концепций евклидовых «Начал» лишь в чрезвычайно стеснительной форме «геометрической алгебры» отрезков, площадей и объёмов). Значительные успехи в этом направлении можно отметить в «Метрике» Герона . Однако самостоятельное и широкое развитие настоящего алгебраического исчисления встречается лишь в «Арифметике» Диофанта , посвященной в основном решению уравнений. Относя свои исследования к чистой арифметике, Диофант, естественно, ограничивается, в отличие от практика Герона, рациональными решениями, исключая тем самым возможность геометрических или механических приложений своей алгебры. Тригонометрия воспринимается в древнем мире в большой мере как часть астрономии, а не как часть М. К ней так же, как и к вычислительной геометрии Герона, не предъявляется требований полной строгости формулировок и доказательств. Гиппарх первый составил таблицы хорд, исполнявшие роль наших таблиц синусов. Начала сферической тригонометрии создаются Менелаем и Клавдием Птолемеем .
В области чистой М. деятельность учёных последних веков древнего мира (кроме Диофанта) всё более сосредоточивается на комментировании старых авторов. Труды учёных-комментаторов этого времени [Паппа (3 век), Прокла (5 век) и других], при всей их универсальности, не могли уже в обстановке упадка античного мира привести к объединению изолированно развивавшихся алгебры Диофанта, включенной в астрономию тригонометрии, и откровенно нестрогой вычислительной геометрии Герона в единую, способную к большому развитию науку.
Китай. Наличие у китайских математиков высокоразработанной техники вычислений и интереса к общим алгебраическим методам обнаруживает уже «Арифметика в девяти главах», составленная по более ранним источникам во 2—1 веках до н. э. Чжан Цаном и Цзин Чоу-чаном. В этом сочинении описываются, в частности, способы извлечения квадратных и кубических корней из целых чисел. Большое число задач формулируется так, что их можно понять только как примеры, служившие для разъяснения отчётливо воспринятой схемы исключения неизвестных в системах линейных уравнений. В связи с календарными расчётами в Китае возник интерес к задачам такого типа: при делении числа на 3 остаток есть 2, при делении на 5 остаток есть 3, а при делении на 7 остаток есть 2, каково это число? Сунь-цзы (между 2 и 6 веками) и более полно Цинь Цзю-шао (13 век) дают изложенное на примерах описание регулярного алгоритма для решения таких задач. Примером высокого развития вычислительных методов в геометрии может служить результат Цзу Чун-чжи (2-я половина 5 века), который показал, что отношение длины окружности к диаметру лежит в пределах
3,1415926 < p < 3,1415927.
Особенно замечательны работы китайцев по численному решению уравнений. Геометрические задачи, приводящие к уравнениям третьей степени, впервые встречаются у астронома и математика Ван Сяо-туна (1-я половина 7 века). Изложение методов решения уравнений четвёртой и высших степеней было дано в работах математиков 13—14 веков Цинь Цзю-шао, Ли Е, Ян Хуэя и Чжу Ши-цзе .
Индия. Расцвет индийской М. относится к 5—12 векам (наиболее известны индийские математики Ариабхата , Брахмагупта , Бхаскара ). Индийцам принадлежат две основные заслуги. Первой из них является введение в широкое употребление современной десятичной системы счисления и систематическое употребление нуля для обозначения отсутствия единиц данного разряда. Происхождение употреблявшихся в Индии цифр, называемых теперь «арабскими», не вполне выяснено. Второй, ещё более важной заслугой индийских математиков является создание алгебры, свободно оперирующей не только с дробями, но и с иррациональными и отрицательными числами. Однако обычно при истолковании решений задач отрицательные решения считаются невозможными. Вообще следует отметить, что в то время как дробные и иррациональные числа с самого момента своего возникновения связаны с измерением непрерывных величин, отрицательные числа возникают в основном из внутренних потребностей алгебры и лишь позднее (в полной мере в 17 веке) получают самостоятельное значение. В тригонометрии заслугой индийских математиков явилось введение линий синуса, косинуса, синус-верзуса.
Средняя Азия и Ближний Восток. Арабские завоевания и кратковременное объединение огромных территорий под властью арабских халифов привели к тому, что в течение 9—15 веков учёные Средней Азии, Ближнего Востока и Пиренейского полуострова пользовались арабским языком. Наука здесь развивается в мировых торговых городах, в обстановке широкого международного общения и государственной поддержки больших научных начинаний. Блестящим завершением этой эпохи явилась в 15 веке деятельность Улугбека , который при своём дворе и обсерватории в Самарканде собрал более ста учёных и организовал долго остававшиеся непревзойдёнными астрономические наблюдения, вычисление математических таблиц и т. п.
В западноевропейской науке длительное время господствовало мнение, что роль «арабской культуры» в области М. сводится в основном к сохранению и передаче математикам Западной Европы математических открытий древнего мира и Индии. (Так, сочинения греческих математиков впервые стали известны в Западной Европе по арабским переводам.) В действительности вклад математиков, писавших на арабском языке, и в частности математиков, принадлежавших к народам современной советской Средней Азии и Кавказа (хорезмийских, узбекских, таджикских, азербайджанских), в развитие науки значительно больше.
В 1-й половине 9 века Мухаммед бен Муса Хорезми впервые дал изложение алгебры как самостоятельной науки. Термин «алгебра» производят от начала названия сочинения Хорезми «Аль-джебр», по которому европейские математики раннего средневековья познакомились с решением квадратных уравнений. Омар Хайям систематически изучил уравнения третьей степени, дал их классификацию, выяснил условия их разрешимости (в смысле существования положительных корней). Хайям в своём алгебраическом трактате говорит, что он много занимался поисками точного решения уравнений третьей степени. В этом направлении поиски среднеазиатских математиков не увенчались успехом, но им были хорошо известны как геометрические (при помощи конических сечений), так и приближённые численные методы решения. Заимствовав от индийцев десятичную систему счисления с употреблением нуля, математики Средней Азии и Ближнего Востока применяли в больших научных вычислениях по преимуществу шестидесятиричную систему (по-видимому, в связи с шестидесятиричным делением углов в астрономии).
В связи с астрономическими и геодезическими работами большое развитие получила тригонометрия. Аль-Баттани ввёл в употребление тригонометрические функции синус, тангенс и котангенс, Абу-ль-Вефа – все шесть тригонометрических функций, он же выразил словесно алгебраические зависимости между ними, вычислил таблицы синусов через 10' с точностью до 1/604 и таблицы тангенсов и установил теорему синусов для сферических треугольников. Насирэддин Туси достиг известного завершения разработки сферической тригонометрии, аль-Каши дал систематическое изложение арифметики десятичных дробей, которые справедливо считал более доступными, чем шестидесятиричные. В связи с вопросами извлечения корней аль-Каши сформулировал словесно формулу бинома Ньютона, указал правило образования коэффициентов . В «Трактате об окружности» (около 1427) аль-Каши, определяя периметры вписанного и описанного 3×228 -угольников, нашёл p с семнадцатью десятичными знаками. В связи с построением обширных таблиц синусов аль-Каши дал весьма совершенный итерационный метод численного решения уравнений.
Западная Европа до 16 века. 12—15 века являются для западноевропейской М. по преимуществу периодом усвоения наследства древнего мира и Востока. Тем не менее уже в этот период, не приведший ещё к открытию особенно значительных новых математических фактов, общий характер европейской математической культуры отличается рядом существенных прогрессивных черт, обусловивших возможность стремительного развития М. в последующие века. Высокий уровень требований быстро богатеющей и политически независимой буржуазии итальянских городов привёл к созданию и широкому распространению учебников, соединяющих практическое общее направление с большой обстоятельностью и научностью. Меньше чем через 100 лет после появления в 12 веке первых латинских переводов греческих и арабских математических сочинений Леонардо Пизанский (Фибоначчи) выпускает в свет свои «Книгу об абаке» (1202) и «Практику геометрии» (1220), излагающие арифметику, коммерческую арифметику, алгебру и геометрию. Эти книги имели большой успех. К концу рассматриваемой эпохи (с изобретением книгопечатания) учебники получают ещё более широкое распространение. Основными центрами теоретической научной мысли в это время становятся университеты. Прогресс алгебры как теоретической дисциплины, а не только собрания практических правил для решения задач, сказывается в ясном понимании природы иррациональных чисел как отношений несоизмеримых величин [английский математик Т. Брадвардин (1-я половина 14 века) и Н. Орем (середина 14 века)] и особенно во введении дробных (Н. Орем), отрицательных и нулевых [французский математик Н. Шюке (конец 15 века)] показателей степеней. Здесь же возникают первые, предваряющие следующую эпоху идеи о бесконечно больших и бесконечно малых величинах. Широкий размах научных исследований этой эпохи нашёл отражение не только в многочисленных переводах и изданиях греческих и арабских авторов, но и в таких начинаниях, как составление обширных тригонометрических таблиц, вычисленных с точностью до седьмого знака Региомонтаном (И. Мюллером). Значительно совершенствуется математическая символика (см. Знаки математические ). Развиваются научная критика и полемика. Поиски решения трудных задач, поощряемые обычаем публичных состязаний в их решении, приводят к первым доказательствам неразрешимости. Уже Леонардо Пизанский в сочинении «Цветок» (около 1225), в котором собраны предложенные ему и блестяще решенные им задачи, доказал неразрешимость уравнения: х3 + 2x2 + 10x = 20 не только в рациональных числах, но и при помощи простейших квадратичных иррациональностей (вида и т. п.).
Западная Европа в 16 веке. Этот век был первым веком превосходства Западной Европы над древним миром и Востоком. Так было в астрономии (открытие Н. Коперника ) и в механике (к концу этого столетия уже появляются первые исследования Г. Галилея ), так в целом обстоит дело и в М., несмотря на то, что в некоторых направлениях европейская наука ещё отстаёт от достижений среднеазиатских математиков 15 века и что в действительности большие новые идеи, определившие дальнейшее развитие новой европейской М., возникают лишь в следующем, 17 веке. В 16 же веке казалось, что новая эра в М. начинается с открытием алгебраического решения уравнений третьей (С. Ферро , около 1515, и позднее и независимо Н. Тартальей , около 1530; об истории этих открытий см. Кардано формула ) и четвёртой (Л. Феррари , 1545) степеней, которое считалось в течение столетий неосуществимым. Дж. Кардано исследовал уравнения третьей степени, открыв так называемый неприводимый случай, в котором действительные корни уравнения выражаются комплексно. Это заставило Кардано, хотя и очень неуверенно, признать пользу вычислений с комплексными числами. Дальнейшее развитие алгебра получила у Ф. Виета – основателя настоящего алгебраического буквенного исчисления (1591) (до него буквами обозначались лишь неизвестные). Учение о перспективе, развивавшееся в геометрии ещё ранее 16 века, излагается немецким художником А. Дюрером (1525). С. Стевин разработал (1585) правила арифметических действий с десятичными дробями.
Россия до 18 в. Математическое образование в России находилось в 9—13 веках на уровне наиболее культурных стран Восточной и Западной Европы. Затем оно было надолго задержано монгольским нашествием. В 15—16 веках в связи с укреплением Русского государства и экономическим ростом страны значительно выросли потребности общества в математических знаниях. В конце 16 века и особенно в 17 веке появились многочисленные рукописные руководства по арифметике, геометрии, в которых излагались довольно обширные сведения, необходимые для практической деятельности (торговли, налогового дела, артиллерийского дела, строительства и пр.).
В Древней Руси получила распространение сходная с греко-византийской система числовых знаков, основанная на славянском алфавите (см. Славянские цифры ). Славянская нумерация в русской математической литературе встречается до начала 18 века, но уже с конца 16 века эту нумерацию всё более вытесняет принятая ныне десятичная позиционная система.
Наиболее древнее известное нам математическое произведение относится к 1136 и принадлежит новгородскому монаху Кирику. Оно посвящено арифметико-хронологическим расчётам, которые показывают, что в то время на Руси умели решать сложную задачу вычисления пасхалий (определения на каждый год дня наступления праздника пасхи), сводящуюся в своей математической части к решению в целых числах неопределённых уравнений первой степени. Арифметические рукописи конца 16—17 веков содержат, помимо описания славянской и арабской нумерации, арифметические операции с целыми положительными числами, а также подробное изложение правил действия с дробями, тройное правило и решение уравнений первой степени с одним неизвестным посредством правила ложного положения. Для целей практического использования общих правил в рукописях рассматривалось много примеров реального содержания, и излагался так называемый дощаный счет – прототип русских счётов . Подобным же образом была построена и первая арифметическая часть знаменитой «Арифметики» Л. Ф. Магницкого (1703). В геометрических рукописях, в большинстве своём преследовавших также практические цели, содержалось изложение правил определения площадей фигур и объёмов тел, часто приближённых, использовались свойства подобных треугольников и теорема Пифагора.
3. Период создания математики переменных величин.
С 17 века начинается существенно новый период развития математики. «Поворотным пунктом в математике была Декартова переменная величина. Благодаря этому в математику вошли движение и тем самым диалектика и благодаря этому же стало немедленно необходимым дифференциальное и интегральное исчисление...» (Энгельс Ф., см. Маркс К. и Энгельс Ф., Сочинения, 2 изд., т. 20, с. 573). Круг количественных отношений и пространственных форм, изучаемых теперь М., уже не исчерпывается числами, величинами и геометрическими фигурами. В основном это было обусловлено явным введением в М. идей движения и изменения (см. Переменные и постоянные величины ). Уже в алгебре в скрытом виде содержится идея зависимости между величинами (значение суммы зависит от значений слагаемых и т. д.). Однако чтобы охватить количественные отношения в процессе их изменения, надо было самые зависимости между величинами сделать самостоятельным предметом изучения. Поэтому на первый план выдвигается понятие функции , играющее в дальнейшем такую же роль основного и самостоятельного предмета изучения, как ранее понятия величины или числа. Изучение переменных величин и функциональных зависимостей приводит далее к основным понятиям математического анализа, вводящим в М. в явном виде идею бесконечного, к понятиям предела , производной , дифференциала и интеграла . Создаётся анализ бесконечно малых, в первую очередь в виде дифференциального исчисления и интегрального исчисления , позволяющий связывать конечные изменения переменных величин с их поведением в непосредственной близости отдельных принимаемых ими значений. Основные законы механики и физики записываются в форме дифференциальных уравнений , и задача интегрирования этих уравнений выдвигается в качестве одной из важнейших задач М. Разыскание неизвестных функций, определённых другого рода условиями, составляет предмет вариационного исчисления . Таким образом, наряду с уравнениями, в которых неизвестными являются числа, появляются уравнения, в которых неизвестны и подлежат определению функции.
Предмет изучения геометрии также существенно расширяется с проникновением в геометрию идей движения и преобразования фигур. Геометрия начинает изучать движение и преобразования сами по себе. Например, в проективной геометрии одним из основных объектов изучения являются сами проективные преобразования плоскости или пространства. Впрочем, сознательное развитие этих идей относится лишь к концу 18 века и началу 19 века. Гораздо раньше, с созданием в 17 веке аналитической геометрии , принципиально изменилось отношение геометрии к остальной М.: был найден универсальный способ перевода вопросов геометрии на язык алгебры и анализа и решения их чисто алгебраическими и аналитическими методами, а с другой стороны, открылась широкая возможность изображения (иллюстрирования) алгебраических и аналитических фактов геометрически, например при графическом изображении функциональных зависимостей (см. Координаты ).
Алгебра 17 и 18 веков в значительной мере посвящена следствиям, вытекающим из возможности изучать левую часть уравнения Р(х) = 0 как функцию переменного х . Этот подход к делу позволил изучить вопрос о числе действительных корней, дать методы их отделения и приближённого вычисления, в комплексной же области привёл французского математика Ж. Д’Аламбера к не вполне строгому, но для математиков 18 века достаточно убедительному доказательству «основной теоремы алгебры» о существовании у любого алгебраического уравнения хотя бы одного корня. Достижения «чистой» алгебры, не нуждающейся в заимствованных из анализа понятиях о непрерывном изменении величин, в 17—18 веках были тоже значительны (достаточно указать здесь на решение произвольных систем линейных уравнений при помощи определителей, разработку теории делимости многочленов, исключения неизвестных и т. д.), однако сознательное отделение собственно алгебраических фактов и методов от фактов и методов математического анализа типично лишь для более позднего времени (2-я половина 19 века – 20 век). В 17—18 веках алгебра в значительной мере воспринималась как первая глава анализа, в которой вместо исследования произвольных зависимостей между величинами и решения произвольных уравнений ограничиваются зависимостями и уравнениями алгебраическими.
Создание новой М. переменных величин в 17 веке было делом учёных передовых стран Западной Европы, в первую очередь И. Ньютона и Г. Лейбница . В 18 веке одним из основных центров научных математических исследований становится также Петербургская академия наук, где работал ряд крупнейших математиков того времени иностранного происхождения (Л. Эйлер, Д. Бернулли) и постепенно складывается русская математическая школа, блестяще развернувшая свои исследования с начала 19 века.
17 век. Охарактеризованный выше новый этап развития М. органически связан с созданием в 17 веке математического естествознания, имеющего целью объяснение течения отдельных природных явлений действием общих, математически сформулированных законов природы. На протяжении 17 века действительно глубокие и обширные математические исследования относятся лишь к двум областям естественных наук – к механике [Г. Галилей открывает законы падения тел (1632, 1638), И. Кеплер – законы движения планет (1609, 1619), И. Ньютон – закон всемирного тяготения (1687)] и к оптике [Г. Галилей (1609) и И. Кеплер (1611) сооружают зрительные трубы, И. Ньютон развивает оптику на основе теории истечения, Х. Гюйгенс и Р. Гук – на основе волновой теории]. Тем не менее рационалистическая философия 17 века выдвигает идею универсальности математического метода (Р. Декарт , Б. Спиноза , Г. Лейбниц), придающую особенную яркость устремлениям этой, по преимуществу философской, эпохи в развитии М.
Серьёзные новые математические проблемы выдвигают перед М. в 17 веке навигация (необходимость усовершенствования часового дела и создания точных хронометров), а также картография, баллистика, гидравлика. Авторы 17 века понимают и любят подчёркивать большое практическое значение М. Опираясь на свою тесную связь с естествознанием, М. 17 века смогла подняться на новый этап развития. Новые понятия, не укладывающиеся в старые формально-логические категории М., получали своё оправдание в соответствии реальным соотношениям действительного мира. Так, например, реальность понятия производной вытекала из реальности понятия скорости в механике; поэтому вопрос заключался не в том, можно ли логически оправдать это понятие, а лишь в том, как это сделать.
Математические достижения 17 века начинаются открытием логарифмов (Дж. Непер , опубликовавший свои таблицы в 1614). В 1637 Р. Декарт публикует свою «Геометрию», содержащую основы координатного метода в геометрии, классификацию кривых с подразделением их на алгебраические и трансцендентные. В тесной связи с возможностью представить корни уравнения Р(х) = 0 точками пересечения кривой y = Р(х) с осью абсцисс в алгебре исследуются действительные корни уравнения любой степени (Р. Декарт, И. Ньютон, М. Ролль ). Исследования П. Ферма о максимумах и минимумах и разыскании касательных к кривым уже содержат в себе по существу приёмы дифференциального исчисления, но самые эти приёмы ещё не выделены и не развиты. Другим источником анализа бесконечно малых является развитый И. Кеплером (1615) и Б. Кавальери (1635) «неделимых» метод , примененный ими к определению объёмов тел вращения и ряду других задач. Так, в геометрической форме были по существу созданы начала дифференциального и интегрального исчисления.