Текст книги "Большая Советская Энциклопедия (МА)"
Автор книги: Большая Советская Энциклопедия
Жанр:
Энциклопедии
сообщить о нарушении
Текущая страница: 15 (всего у книги 155 страниц)
Магнитное поле
Магни'тное по'ле, силовое поле, действующее на движущиеся электрические заряды и на тела, обладающие магнитным моментом , независимо от состояния их движения. М. п. характеризуется вектором магнитной индукции В, который определяет: силу, действующую в данной точке поля на движущийся электрический заряд (см. Лоренца сила ); действие М. п. на тела, имеющие магнитный момент, а также другие свойства М. п.
Впервые термин «М. п.» ввёл в 1845 М. Фарадей , считавший, что как электрические так и магнитные взаимодействия осуществляются посредством единого материального поля. Классическая теория электромагнитного поля была создана Дж. Максвеллом (1873), квантовая теория – в 20-х годах 20 века (см. Квантовая теория поля ).
Источниками макроскопического М. п. являются намагниченные тела, проводники с током и движущиеся электрически заряженные тела. Природа этих источников едина: М. п. возникает в результате движения заряженных микрочастиц (электронов, протонов, ионов), а также благодаря наличию у микрочастиц собственного (спинового) магнитного момента (см. Магнетизм ).
М.. п. электрического тока определяется Био – Савара законом : М. п. тел, имеющих магнитный момент, – формулами, описывающими поле магнитного диполя (в общем случае – мультиполя ).
Переменное М. п. возникает также при изменении во времени электрического поля . В свою очередь, при изменении во времени М. п. возникает электрическое поле. Полное описание электрического и магнитного полей в их взаимосвязи дают Максвелла уравнения . Для характеристики М. п. часто вводят силовые линии поля (линии магнитной индукции). Касательная в каждой точке такой линии имеет направление вектора В в этой точке. Числом силовых линий, проходящих через единичную перпендикулярную к ним площадку, количественно определяют индукцию поля. В местах повышенных значений В линии индукции сгущаются, в тех же местах, где поле слабее, линии расходятся (см., например, рис. 1 ).
Для М. п. наиболее характерны следующие проявления.
1. В постоянном однородном М. п. на магнитный диполь с магнитным моментом pm действует вращающий момент N = [рmВ ] (так, магнитная стрелка в М. п. поворачивается по полю; виток с током I , также обладающий магнитным моментом, стремится занять положение, при котором его плоскость была бы перпендикулярна линиям индукции; атомный диполь прецессирует вокруг силовой линии с характеристической частотой; рис. 1 , а).
2. В постоянном однородном М. п. действие силы Лоренца приводит к тому, что траектория движения электрического заряда имеет вид спирали с кривизной, обратно пропорциональной скорости (рис. 1 , б). Искривление траектории электрических зарядов под действием силы Лоренца сказывается, например, в перераспределении тока по сечению проводника при внесении его в М. п. Этот эффект лежит в основе гальваномагнитных, термомагнитных и других родственных им явлений.
3. В пространственно неоднородном М. п. на магнитный диполь действует сила F , перемещающая диполь в направлении градиента поля: F = grad (pmB ); так, пучок атомов, содержащий атомы с противоположно ориентированными магнитными моментами, в неоднородном М. п. разделяется на два расходящихся пучка (рис. 1 , в).
4. М. п., непостоянное во времени, оказывает силовое действие на покоящиеся электрические заряды и приводит их в движение; возникающий при этом в контуре ток Iинд (рис. 1 , г) своим М. п. Винд противодействует изменению первоначального М. п. (см. Индукция электромагнитная ).
Магнитная индукция В определяет среднее макроскопическое М. п., создаваемое в данной точке поля как токами проводимости (движением свободных носителей зарядов), так и имеющимися намагниченными телами (ионами и атомами вещества). М. п., созданное токами проводимости и не зависящее от магнитных свойств вещества, характеризуется вектором напряжённости магнитного поляН = В – 4 pJ или Н = (В / m ) – J (соответственно в СГС системе единиц и Международной системе единиц ). В этих соотношениях вектор J —намагниченность вещества (магнитный момент единицы его объёма), m – магнитная постоянная .
Отношение m = В / mН , определяющее магнитные свойства вещества, называется его магнитной проницаемостью . В зависимости от величины m вещества делят на диамагнетики (m < 1) и парамагнетики (m > 1), вещества с m >> 1 называются ферромагнетиками .
Объёмная плотность энергии М. п. в отсутствии ферромагнетиков: wM = mH2 / 8p или wM = BH / 8p (в единицах СГС); wM = mmH2 / 2 или BH / 2 (в единицах СИ). В общем случае wM = 1 /2 òHdB, где пределы интегрирования определяются начальными и конечными значениями магнитной индукции В , сложным образом зависящей от поля Н .
Для измерения характеристик М. п. и магнитных свойств веществ применяют различного типа магнитометры . Единицей индукции М. п. в системе единиц СГС является гаусс (гс ), в Международной системе единиц – тесла (тл ), 1 тл = 104гс. Напряжённость измеряется, соответственно, в эрстедах (э ) и амперах на метр (а /м , 1 а/м = 4p/103э » 0,01256 э ; энергия М. п. – в эрг/см2 или дж/м2 , 1 дж/м2 = 10 эрг/см2 .
Магнитные поля в природе чрезвычайно разнообразны как по своим масштабам, так и по вызываемым ими эффектам. М. п. Земли, образующее земную магнитосферу, простирается до расстояния в 70—80 тысяч км в направлении на Солнце и на многие миллионы км в противоположном направлении (см. Земля ). У поверхности Земли М. п. равно в среднем 0,5 гс, на границе магнитосферы ~ 10-3гс. Геомагнитное поле экранирует поверхность Земли и биосферу от потока заряженных частиц солнечного ветра и частично космических лучей. Влияние самого геомагнитного поля на жизнедеятельность организмов изучает магнитобиология . В околоземном пространстве М. п. образует магнитную ловушку для заряженных частиц высоких энергий – радиационный пояс Земли . Содержащиеся в радиационном поясе частицы представляют значительную опасность при полётах в космос. Происхождение М. п. Земли связывают с конвективными движениями проводящего жидкого вещества в земном ядре (см. Земной магнетизм ).
Непосредственные измерения при помощи космических аппаратов показали, что ближайшие к Земле космические тела – Луна, планеты Венера и Марс не имеют собственного М. п., подобного земному. Из других планет Солнечной системы лишь Юпитер и, по-видимому, Сатурн обладают собственными М. п., достаточными для создания планетарных магнитных ловушек. На Юпитере обнаружены М. п. до 10 гс и ряд характерных явлений (магнитные бури , синхротронное радиоизлучение и другие), указывающих на значительную роль М. п. в планетарных процессах.
Межпланетное М. п. – это главным образом поле солнечного ветра (непрерывно расширяющейся плазмы солнечной короны). Вблизи орбиты Земли межпланетное поле ~ 10-4 —10-5гс. Силовые линии регулярного межпланетного М. п. имеют вид идущих от Солнца раскручивающихся спиралей (их форма обусловлена сложением радиального движения плазмы и вращения Солнца). М. п. межпланетной плазмы имеет секторную структуру: в одних секторах оно направлено от Солнца, в других – к Солнцу. Регулярность межпланетного М. п. может нарушаться из-за развития различных видов плазменной неустойчивости, прохождения ударных волн и распространения потоков быстрых частиц, рожденных солнечными вспышками (см. Космическая магнитогидродинамика ).
Во всех процессах на Солнце – вспышках, появлении пятен и протуберанцев, рождении солнечных космических лучей М. п. играет важнейшую роль (см. Солнечный магнетизм ). Измерения, основанные на эффекте Зеемана, показали, что М. п. солнечных пятен достигает нескольких тысяч гс, протуберанцы удерживаются полями ~ 10—100 гс (при среднем значении общего М. п. Солнца ~ 1 гс ). Удалённость звёзд не позволяет пока наблюдать у них М. п. типа солнечных. В то же время более чем у двухсот так называемых магнитных звёзд обнаружены аномально большие поля (до 3,4·104гс ). Поля ~ 107 гс измерены у нескольких звёзд – белых карликов. Особенно большие (~ 1010 —1012гс ) М. п. должны быть, по современным представлениям, у нейтронных звёзд . С М. п. космических объектов тесно связано ускорение заряженных частиц (электронов протонов, ядер) до релятивистских скоростей (близких к скорости света). При движении таких частиц в космических М. п. возникает электромагнитное синхротронное излучение . Индукция межзвёздного М. п., определённая по Зеемана эффекту (в радиолинии 21 см спектра водорода) и по Фарадея эффекту (вращению плоскости поляризации электромагнитного излучения в М. п.), составляет всего ~ 5·10-6 гс. Однако общая энергия межзвёздного (галактического) М. п. превышает энергию хаотического движения частиц межзвёздного газа и сравнима с энергией космических лучей.
В явлениях микромира роль М. п. столь же существенна, как и в космических масштабах. Это объясняется существованием у всех частиц – структурных элементов вещества (электронов, протонов, нейтронов) магнитного момента, а также действием М. п. на движущиеся электрические заряды. Если суммарный магнитный момент М частиц, образующих атом или молекулу, равен нулю, то такие атомы и молекулы называются диамагнитными. Атомы (ионы, молекулы) с М ¹ 0 называются парамагнитными. У всех атомов (как с М = 0, так и с М ¹ 0) при наложении внешнего М. п. возникает индуцированный магнитный момент, направленный навстречу намагничивающему полю (см. Диамагнетизм ). Однако у парамагнитных атомов в М. п. этот эффект маскируется преимущественным поворотом их магнитных моментов по полю (см. Парамагнетизм ). У парамагнетиков и ферромагнетиков намагниченность увеличивается с ростом внешнего М. п. (до состояния насыщения). Вид кривых намагничивания ферромагнетиков (и антиферромагнетиков) в значительной степени определяется магнитным взаимодействием атомных носителей магнетизма. Это взаимодействие обусловливает также большое разнообразие типов атомной магнитной структуры у ферримагнетиков (ферритов ).
Внутрикристаллическое М. п., измеренное в ферримагнетиках (ферритах-гранатах) на ядрах ионов железа, оказалось ~ 5·105гс, на ядрах редкоземельного металла диспрозия ~ 8·106гс. На расстоянии порядка размера атома (~ 10-8см ) М. п. ядра составляет ~ 50 гс. Внешнее М. п. и внутриатомные М. п., создаваемые электронами атома и его ядром, расщепляют энергетические уровни атома (Зеемана эффект); в результате спектры атомов приобретают сложное строение (см. Тонкая структура и Сверхтонкая структура ). Расстояния между зеемановскими подуровнями энергии (и соответствующими спектральными линиями) пропорциональны величине М. п., что позволяет спектральными методами определять значение М. п. С возникновением зеемановских подуровней энергии в М. п. и с квантовыми переходами между ними связано ещё одно важное физическое явление – резонансное поглощение веществом радиоволн (явление магнитного резонанса ). Зависимость положения и формы линий спектра магнитного резонанса от особенностей взаимодействия молекул, атомов, ионов, а также ядер в жидкостях и твёрдых телах даёт возможность исследовать при помощи электронного парамагнитного резонанса (ЭПР) и ядерного магнитного резонанса (ЯМР) структуру жидкостей, кристаллов и сложных молекул, кинетику химических и биохимических реакций.
М. п. способно заметно влиять на оптические свойства среды и процессы взаимодействия электромагнитного излучения с веществом (см. Фарадея эффект , Магнитооптика ), вызывать гальваномагнитные явления и термомагнитные явления в проводниках и полупроводниках. М. п. оказывает влияние на сверхпроводимость веществ: при достижении определённой величины М. п. разрушает сверхпроводимость (см. Критическое магнитное поле ). М. п. при намагничивании ферромагнитных тел изменяет их форму и упругие свойства (см. Магнитострикция ). Особые свойства в М. п. приобретает плазма . М. п. препятствует движению заряженных частиц плазмы поперёк силовых линий поля (см. Магнитная гидродинамика ). Этот эффект используется, например, для термоизоляции плазмы и обеспечения её устойчивости в установках для изучения свойств высокотемпературной плазмы.
Применение магнитных полей в науке и технике. М. п. обычно подразделяют на слабые (до 500 гс ), средние (500 гс – 40 кгс ), сильные (40 кгс – 1 Мгс ) и сверхсильные (свыше 1 Мгс ). На использовании слабых и средних М. п. основана практически вся электротехника, радиотехника и электроника. В научных исследованиях средние М. п. нашли применение в ускорителях заряженных частиц , в Вильсона камере , искровой камере , пузырьковой камере и других трековых детекторах ионизующих частиц, в масс-спектрометра х, при изучении действия М. п. на живые организмы и т.д. Слабые и средние М. п. получают при помощи магнитов постоянных , электромагнитов, неохлаждаемых соленоидов, магнитов сверхпроводящих .
М. п. до ~500 кгс широко применяются в научных и прикладных целях: в физике твёрдого тела для изучения энергетических спектров электронов в металлах, полупроводниках и сверхпроводниках; для исследования ферро– и антиферромагнетизма, для удержания плазмы в МГД-генераторах и двигателях, для получения сверхнизких температур (см. Магнитное охлаждение ), в электронных микроскопах для фокусировки пучков электронов и т.д. Для получения сильных М. п. применяют сверхпроводящие соленоиды (до 150—200 кгс , рис. 2 ), соленоиды, охлаждаемые водой (до 250 кгс , рис. 3 ), импульсные соленоиды (до 1,6 Мгс , рис. 4 ). Силы, действующие на проводники с током в сильных М. п., могут быть очень велики (так, в полях ~ 250 кгс механические напряжения достигают 4·108 н/м2 , то есть предела прочности меди). Эффект давления М. п. учитывают при конструировании электромагнитов и соленоидов, его используют для штамповки изделий из металла. Предельное значение поля, которое можно получить без разрушения соленоида, не превышает 0,9 Мгс.
Сверхсильные М. п. используют для получения данных о свойствах веществ в полях свыше 1 Мгс и при сопутствующих им давлениях в десятки млн. атмосфер. Эти исследования позволят, в частности, глубже понять процессы, происходящие в недрах планет и звёзд. Сверхсильные М. п. получают методом направленного взрыва (рис. 5 ). Медную трубу, внутри которой предварительно создано сильное импульсное М. п., радиально сжимают давлением продуктов взрыва. С уменьшением радиуса R трубы величина М. п. в ней возрастает ~ 1/R2 (если магнитный поток через трубу сохраняется). М. п., получаемое в установках подобного типа (так называемых взрывомагнитных генераторах), может достигать нескольких десятков Мгс. К недостаткам этого метода следует отнести кратковременность существования М. п. (несколько мксек ), небольшой объём сверхсильного М, п. и разрушение установки при взрыве.
Лит.: Ландау Л. Д. и Лифшиц Е. М., Теория поля, 6 изд., М., 1973 (Теоретическая физика, т. 2); Тамм И. Е., Основы теории электричества, 8 изд., М., 1966; Парселл Э., Электричество и магнетизм, перевод с английского, М., 1971 (Берклеевский курс физики, т. 2); Карасик В. Р., Физика и техника сильных магнитных полей, М., 1964; Монтгомери Б., Получение сильных магнитных полей с помощью соленоидов, перевод с английского, М., 1971; Кнопфель Г., Сверхсильные импульсные магнитные поля, перевод с английского, М., 1972; Кольм Г., Фриман А., Сильные магнитные поля, «Успехи физических наук», 1966, т. 88, в. 4, с. 703; Сахаров А. Д., Взрывомагнитные генераторы, там же, с. 725; Биттер Ф., Сверхсильные магнитные поля, там же, с. 735; Вайнштейн С. И., Зельдович Я. Б., О происхождении магнитных полей в астрофизике, там же, 1972, т. 106, в. 3.
Л. Г. Асламазов, В. Р. Карасик, С. Б. Пикельнер.
Рис. 4. Модель импульсного одновиткового соленоида (длина 10 мм , диаметр отверстия 2 мм ). Источник питания – батарея конденсаторов на 2,4 кдж . Получаемые поля – до 1,6 Мгс .
Рис. 3. Схематический разрез водоохлаждаемого соленоида на 250 кгс (движение воды показано стрелками), 1-я секция имеет массу 2 кг , потребляет мощность 0,4 Мвт и создаёт поле Bmax ~ 45 кгс , 2-я секция – 16 кг, 2 Мвт и 65 кгс , 3-я секция – 1250 кг , 12 Мвт и 140 кгс .
Рис. 1. a – действие однородного постоянного магнитного поля на магнитную стрелку, виток с током I и атомный диполь (е – электрон атома); б – действие однородного постоянного магнитного поля на свободно движущиеся электрические заряды q (их траектория в общем случае имеет вид спирали); в – разделение пучка магнитных диполей в неоднородном магнитном поле; г – возникновение тока индукции в витке при усилении внешнего магнитного поля В (стрелками показано направление тока индукции и создаваемого магнитного поля Винд ). Здесь pт – магнитный момент, q – электрический заряд, v – скорость заряда.
Рис. 5. Взрывомагнитный генератор. Первичное импульсное поле создаётся разрядом батареи конденсаторов. Когда поле достигает максимальной величины, осуществляется взрыв (ВВ – взрывчатое вещество), приводящий к резкому возрастанию поля в медной трубе («ловушке» магнитного поля). Тригер применялся для синхронизации первичного импульсного магнитного поля и детонации взрывчатого вещества.
Рис. 2. Сверхпроводяший соленоид с обмоткой из сплава Nb – Zr на 30 кгс (рабочий объём диаметром 32 мм находится при комнатной температуре): 1 – соленоид; 2 – жидкий гелий; 3 – жидкий азот; 4 – азотный экран; 5 – кожух; 6 – заливная горловина.
Магнитное поле Земли
Магни'тное по'ле Земли' , см. в статье Земной магнетизм .
Магнитное последействие
Магни'тное последе'йствие, то же, что магнитная вязкость .
Магнитное сопротивление
Магни'тное сопротивле'ние, характеристика магнитной цепи , М. с. Rm равно отношению магнитодвижущей силыF , действующей в магнитной цепи, к созданному в цепи магнитному потоку Ф. М. с. однородного участка магнитной цепи может быть вычислено по формуле Rm = l / mmS , где l и S – длина и поперечное сечение участка магнитной цепи, m – относительная магнитная проницаемость материала цепи, m – магнитная постоянная. В случае неоднородной магнитной цепи (состоящей из однородных последовательных участков с различными l , S , m) её М. с. равно сумме Rm однородных участков. Расчёт М. с. по приведённой формуле является приближённым, так как формула не учитывает: «магнитные утечки» (рассеяние магнитного потока в окружающем цепь пространстве), неоднородности магнитного поля в цепи, нелинейную зависимость М. с. от поля. В переменном магнитном поле М. с. – комплексная величина, так как в этом случае и зависит от частоты электромагнитных колебаний. Единицей М. с. в Международной системе единиц служит ампер (или ампер-виток) на вебер (а/вб ), в СГС системе единиц – гильберт на максвелл (гб/мкс ). 1 а/вб = 4p·10-9 гб/мксм » 1,2566·10-8гб/мкс.
Магнитное старение
Магни'тное старе'ние, см. Старение магнитное .
Магнитно-жёсткие материалы
Магни'тно-жёсткие материа'лы, то же, что магнитно-твёрдые материалы.
Магнитно-мягкие материалы
Магнитно-мягкие материалы , магнитные материалы , которые намагничиваются до насыщения и перемагничиваются в относительно слабых магнитных полях напряжённостью Н ~ 8—800 а/м (0,1—10 э ). При температурах ниже Кюри точки (у армко-железа , например, до 768 °С) М.-м. м. спонтанно намагничены, но внешне не проявляют магнитных свойств, так как состоят из хаотически ориентированных намагниченных до насыщения областей (доменов ). М.-м. м. характеризуются высокими значениями магнитной проницаемости – начальной ma ~ 102 —105 и максимальной mmax ~ 103 —106 . Коэрцитивная сила Hc М.-м. м. колеблется от 0,8 до 8 а/м (от 0,01 до 0,1 э ), а потери на магнитный гистерезис очень малы ~ 1—103дж/м2 (10—104 эрг/см2 ) на один цикл перемагничивания. Способность М.-м. м. намагничиваться в слабых магнитных полях обусловлена низкими значениями энергии магнитной кристаллической анизотропии, а у некоторых из них (например, у М.-м. м. на основе Fe – Ni, у некоторых ферритов ) также низкими значениями магнитострикции . Это связано с тем, что намагничивание происходит в результате смещения границ между доменами, а также вращения вектора намагниченности доменов. Подвижность границ, способствующая намагничиванию, снижается в случае присутствия в материале различных неоднородностей и напряжений, изменяющих энергию границ при их смещении. Поэтому свойствами М.-м. м. обладают также магнитные материалы, имеющие значительную энергию магнитной кристаллической анизотропии, но в которых отсутствуют (вернее, присутствуют в малых количествах) вредные примеси внедрения (углерод, азот, кислород и другие), дислокации и другие дефекты, искажающие кристаллическую решётку, а также включения в виде других фаз или пустот размером существенно больше параметров решётки. Однако процесс вращения вектора намагниченности в таких материалах требует приложения более сильных полей. Получение таких малодефектных материалов связано с большими технологическими трудностями. К М.-м. м. принадлежат ряд сплавов (например, перминвары) и некоторые ферриты с малой энергией магнитной кристаллической анизотропии, но с хорошо выраженной одноосной анизотропией, которая формируется при отжиге материала в магнитном поле. Некоторые М.-м. м. (например, пермендюр ) имеют слабую анизотропию, но большие значения магнитострикции.
По назначению М.-м. м. подразделяют на 2 группы: материалы для техники слабых токов и электротехнической стали. Важнейшими представителями М.-м. м., применяемых в технике слабых токов, являются бинарные и легированные сплавы на основе Fe – Ni (пермаллои ), имеющие низкую Hc » 0,01 э и очень высокие µa (до 105 ) и µmax (до 106 ). К этой же группе относятся сплавы на основе Fe – Со (например, пермендюр), которые среди М.-м. м. обладают наивысшими точкой Кюри (950—980 °С) и значением магнитной индукции насыщения Bs , достигающей 2,4· 104гс (2,4 тл ), а также сплавы Fe – Al и Fe – Si – Al. Для работы при частотах до 105гц используются сплавы на Fe – Со – Ni основе с постоянной магнитной проницаемостью, достигаемой термической обработкой образцов в поперечном магнитном поле, которое формирует индуцированную одноосевую анизотропию (кристаллическая магнитная анизотропия при этом должна быть как можно меньше). Постоянство магнитной проницаемости (в пределах 15%) сохраняется при индукциях до 8000 гс и обеспечивается тем, что при намагничивании таких М.-м. м. процесс вращения является доминирующим. В области частот 104 —108гц нашли применение магнитодиэлектрики , представляющие собой тонкие порошки карбонильного железа, пермаллоя или альсифера, смешанные с кем-либо диэлектрической связкой.
Широко применяются в технике слабых токов смешанные ферриты (например, соединение из цинкового и никелевого ферритов), а также ферриты-гранаты, кристаллическая структура которых одинакова с природными гранатами . Для них характерно исключительно высокое электрическое сопротивление и практическое отсутствие скин-эффекта . Ферриты-гранаты применяются при очень высоких частотах (если невелики диэлектрические потери).
Магнитно-мягкие сплавы выплавляют в металлургических печах, для придания необходимой формы слитки подвергают ковке или прокатке. Ферриты получают спеканием окислов металлов при высоких температурах, изделия прессуют из порошка (для чего феррит размалывают) и обжигают. Из магнитно-мягких сплавов изготавливают сердечники трансформаторов (микрофонных, выходных, переходных, импульсных и других), магнитные экраны, элементы памяти ЭВМ, сердечники головок магнитной записи; из ферритов, кроме того, – магнитные антенны, волноводы и др.
К электротехническим сталям относятся сплавы на основе железа, легированные Si (0,3—6% по массе); сплавы содержат также 0,1—0,3% Mn. Стали вырабатываются горячекатаные – изотропные, и холоднокатаные – текстурованные. Потери энергии при перемагничивании текстурованной стали ниже, а магнитная индукция выше, чем горячекатаной. Электротехнические стали применяют в производстве генераторов электрического тока, трансформаторов, электрических двигателей и др.
Для улучшения магнитных свойств все холоднокатаные магнитно-мягкие сплавы и стали подвергают термической обработке (при 1100—1200 °С) в вакууме или в среде водорода. Сплавы Fe – Со, Fe – Ni и Fe – Al склонны упорядочивать структуру при температурах 400—700 °С, поэтому в этой области температур для каждого сплава должна быть своя скорость охлаждения, при которой создаётся нужная структура твёрдого раствора.
К М.-м. м. специального назначения относятся термомагнитные сплавы , служащие для компенсации температурных изменений магнитных потоков в магнитных системах приборов, а также магнитострикционные материалы , с помощью которых электромагнитная энергия преобразуется в механическую энергию.
В таблице приведены характеристики наиболее распространённых М.-м. м.
Основные характеристики важнейших магнито-мягких материалов
Марка материала | Основной состав, % (по массе) | Bs ·10–3 , гс | Tk , °C | r·106 , ом·см | µa ·10–3 , гс/э | µmax ·10–3 , гс/э | Hc , э | Потери на гистерезис при B = 5000 гс , эрг/см3 |
80 НМ (суперпермаллой) | 80Ni, 5Mo, ост. Fe | 8 | 400 | 55 | 100 | 1000 | 0,005 | 10 |
79 НМ (молибденовый пермаллой) | 79Ni, 4Mo, ост. Fe | 8 | 450 | 50 | 40 | 200 | 0,02 | 70 |
50 Н | 50Ni, ост. Fe | 15 | 500 | 45 | 5 | 40 | 0,1 | 150 |
50 НП1 | 50Ni, ост. Fe | 15 | 500 | 45 | 100 | 0,1 | 600 (при B = 15000 гс) | |
40 НКМП (перминвар прямоугольный)2 | 40Ni, 25Co, 4Mo, ост. Fe | 14 | 600 | 63 | 600 | 0,02 | 200 (при B = 14000 гс ) | |
40 НКМЛ (перминвар линейный)3 | 40Ni, 25Co, 4Mo, ост. Fe | 14 | 600 | 63 | 2 | 2,0+ (<15%) | – | – |
47 НК (перминвар линейный)3 | 47Ni, 23Co, ост. Fe | 16 | 650 | 20 | 0,9 | 0,90+ (<15%) | – | – |
49 КФ–ВИ (пермендюр) | 49Co, 2V, ост. Fe | 23,5 | 980 | 40 | 1 | 50 | 0,5 | 5000 |
16 ЮХ | 16Al, 2Cr, ост. Fe | 7 | 340 | 160 | 10 | 80 | 0,03 | 100 |
10 СЮ | 9,5Si, 5,5Al, ост. Fe | 10 | 550 | 80 | 35 | 100 | 0,02 | 30 |
Армко-железо | 100Fe | 21,5 | 768 | 12 | 0,5 | 10 | 0,8 | 5000 |
Э 44 | 4Si, ост. Fe | 19,8 | 680 | 57 | 0,4 | 10 | 0,5 | 1200 |
Э 330 | 3,5Si, ост. Fe | 20 | 690 | 50 | 1,5 | 30 | 0,2 | 350 |
Ni–Zn феррит | (Ni, Zn) O·Fe2 O3 | 2–3 | 500–150 | 1011 | 0,05–0,5 | – | 1,5–0,5 | – |
Mn–Zn феррит | (Mn, Zn) O·Fe2 O3 | 3,5–4 | 170 | 107 | 1 | 2,5 | 0,6 | – |
Примечание: µa и µmax – начальная и максимальная магнитные проницаемости магнито-мягких материалов; T k – температура Кюри; r – электрическое сопротивление; Hc – коэрцитивная сила; Bs , Br , Bm – индукция насыщения, остаточная и максимальная в поле 8–10 э .
1 Кристаллически текстурирован. 2 После обработки в продольном магнитном поле. 3 После обработки в поперечном магнитном поле. 1 гс = 10–4тл ; 1 э = 79,6 а/м .
Лит. см. при ст. Магнитные материалы .
И. М. Пузей.