Текст книги "Большая Советская Энциклопедия (МА)"
Автор книги: Большая Советская Энциклопедия
Жанр:
Энциклопедии
сообщить о нарушении
Текущая страница: 13 (всего у книги 155 страниц)
Магнитная головка
Магни'тная голо'вка, узел устройства для магнитной записи (стирания) информации или её воспроизведения. Основные элементы М. г. – сердечник (магнитопровод) для концентрации магнитного потока и одна или несколько обмоток для подвода или снятия электрических сигналов. Сердечники М. г. изготовляют из железоникелевых сплавов 79НМ, 79НМ-У и 80НХС, сплавов алюминия Ю-16 и Ю-16М (алфенол), из ферритов и пермаллоя. Со стороны, обращенной к носителю записи, сердечник имеет рабочий зазор – промежуток, заполняемый немагнитным материалом (например, фольгой из бериллиевой бронзы), обеспечивающий магнитную связь М. г. с носителем записи. В зависимости от положения рабочего зазора относительно носителя можно получить магнитную запись с продольным, поперечным и перпендикулярным намагничиванием. Сердечник М. г. может соприкасаться с носителем (контактная запись) или быть отделен от него воздушным промежутком (бесконтактная запись). На рисунке схематично изображена М. г. для наиболее употребительной контактной записи с продольным намагничиванием. В режиме записи электрические сигналы, подаваемые в обмотку 5, наводят в сердечнике 1 магнитный поток, который, пронизывая участок магнитной поверхности движущегося носителя записи 3 вблизи рабочего зазора 4, изменяет остаточную намагниченность этого участка в соответствии с записываемым сигналом. В режиме воспроизведения полезная эдс (сигнал) возникает в результате электромагнитной индукции, обусловленной относительным взаимным перемещением М. г. и носителя записи.
Существуют М. г., чувствительные к изменению полезного магнитного потока, эдс которых не зависит от скорости относительного перемещения головки вдоль дорожки записи; полупроводниковые М. г., использующие эффект Холла; М. г., действие которых основано на периодическом изменении магнитного сопротивления сердечника или рабочего зазора; М. г., основанные на взаимодействии магнитного поля сигналограммы с электронным лучом, и другие. М. г. широко применяют в устройствах магнитной записи и воспроизведения информации (диктофонах , магнитофонах , видеомагнитофонах , запоминающих устройствах , регистраторах измерительной информации и т.п.).
Лит.: Ефимов Е. Г., Магнитные головки, М., 1967; Каган Б. М., Адасько В. И., Пурэ Р. Р., Запоминающие устройства большой емкости, М., 1968.
Д. П. Брунштейн.
Схема магнитной индукционной головки: 1 – магнитопровод; 2 – дополнительный зазор; 3 – носитель записи; 4 – рабочий зазор; 5 – обмотка.
Магнитная гора
Магни'тная гора', гора на восточном склоне Южного Урала, в Челябинской области РСФСР. Высота 616 м. Расположена в полосе осадочных (известняки, песчаники) и эффузивных толщ нижнекаменноугольного возраста, прорванных гранитами, диабазами и другими изверженными породами. На контакте осадочных и изверженных пород образовалось крупное месторождение магнитного железняка (Магнитогорское месторождение; значительная часть его уже выработана, и гора частично деформирована). Рядом с М. г. на реке Урал в годы Советской власти построены крупный металлургический комбинат и город Магнитогорск.
Магнитная дефектоскопия
Магни'тная дефектоскопи'я, метод дефектоскопии , основанный на исследовании искажений магнитного поля, возникающих в местах дефектов в изделиях из ферромагнитных материалов.
Магнитная запись
Магни'тная за'пись, система записи и воспроизведения информации , в которой запись осуществляется изменением остаточного магнитного состояния носителя или его отдельных частей в соответствии с сигналами записываемой информации; при воспроизведении происходит обратное преобразование и вырабатываются сигналы информации, соответствующие указанным изменениям. М. з. очень распространена. Она применяется для записи звука (магнитофоны , диктофоны ), изображения и его звукового сопровождения (видеомагнитофоны ), сигналов измерения, управления и вычисления (точная запись ) и так далее.
При М. з. (рис. ) электрические сигналы, поступающие на вход канала записи (например, усилителя магнитофона), подвергаются усилению и различным преобразованиям для получения необходимого качества записи. Последним звеном канала является записывающая магнитная головка . Магнитное поле головки, рассеиваемое над рабочим зазором, пропорционально силе тока в её обмотке. Оно действует на движущийся носитель и, намагничивая его отдельные участки в соответствии с записываемыми сигналами, образует дорожку магнитной записи. Носителем может быть хорошо намагничиваемое и длительно сохраняющее магнитное состояние ферромагнитное тело различной формы: нить (магнитная проволока), лента (магнитная лента ), диск, барабан, лист. Сигналограмма, то есть носитель с нанесённой дорожкой записи, соприкасаясь во время движения с рабочим зазором сердечника воспроизводящей магнитной головки, аналогичной по конструкции записывающей, возбуждает в нём магнитный поток, пропорциональный намагниченности отдельных участков дорожки. Изменения потока вызывают появление (в обмотке головки) эдс, содержащей записанную информацию. В канал воспроизведения, кроме головки, входят устройства для усиления сигналов и их преобразований, обратных преобразованиям в канале записи. Стирание (уничтожение) записи осуществляется размагничиванием или однородным намагничиванием носителя до насыщения. Его производят или в специальных устройствах, где вся запись на носителе может быть стёрта одновременно, или во время записи – стирающей головкой, установленной до записывающей (по движению носителя). При этом через обмотку стирающей головки пропускают определённой силы постоянный или переменный ток. Качество М. з. тем выше, чем больше скорость записи. Для записи электрических колебаний со звуковыми частотами от 30 гц до 16 кгц достаточна скорость движения ленты 9,5 см/сек. В видеомагнитофоне для записи сигналов в диапазоне частот до 10 – 15 Мгц скорость перемещения вращающейся головки относительно ленты повышается почти до 50 м/сек. Для увеличения плотности М. з. на носителе располагается несколько параллельных дорожек записи.
Существует несколько способов М. з., различающихся: направлением намагничивания носителя, видами преобразования сигналов в каналах записи и воспроизведения и иногда подачей в обмотку записывающей головки, кроме тока сигнала, дополнит. постоянного или переменного тока подмагничивания (для достижения почти полной пропорциональности между намагниченностью носителя и силой тока сигнала). Так, например, в магнитофонах подмагничивание носителя при записи осуществляется током с частотой 40 – 200 кгц (высокочастотное подмагничивание). В этом случае процесс записи становится процессом без гистерезисного намагничивания носителя полем записываемых сигналов и устраняются искажения, связанные с кривизной обычной (гистерезисной) характеристики ферромагнетика. Преимущество М. з. заключается в простоте аппаратуры, моментальной готовности записи, практической неизнашиваемости сигналограммы и возможности многоразового использования носителя. К недостаткам М. з. относятся её невидимость, что в некоторых случаях (например, в звуковом кино ) затрудняет монтаж сигналограммы, искажения информации из-за относительно больших шумов, возникающих от магнитной и механической неоднородности носителя, и копирэффекта . Копии магнитных сигналограмм изготавливаются либо перезаписью (иногда на повышенной скорости), либо контактным копированием в тепловом пли магнитном поле. Основным направлением развития М. з. является совершенствование носителя с целью повышения плотности записи и увеличения её достоверности.
Лит.: Физические основы магнитной звукозаписи, М., 1970; Техника магнитной видеозаписи, М., 1970.
В. Г. Корольков.
Схема устройства для магнитной записи и воспроизведения: Л – движущийся носитель; ГЗ – магнитная головка записи; ГВ – магнитная головка воспроизведения; ГС – магнитная головка стирания; ИС – источник электропитания головки стирания; УЗ – усилитель записываемых электрических сигналов; УВ – усилитель воспроизводимых электрических сигналов; К1 , К2 – соответственно подающая и принимающая (магнитную ленту) катушки; Р1 , Р2 – ролики, направляющие магнитную ленту Л.
Магнитная индукция
Магни'тная инду'кция, вектор магнитной индукции В, основная характеристика магнитного поля (см. Индукция электрическая и магнитная). Единицей М. и. в Международной системе единиц служит тесла (тл ), в СГС системе единиц – гаусс (гс ), 1 тл = 104 гс. Магнитометры , применяемые для измерения М. и., называют тесламетрами.
Магнитная лента
Магни'тная ле'нта, носитель магнитной записи , представляющий собой тонкую гибкую ленту, состоящую из основы и магнитного рабочего слоя. Рабочие свойства М. л. характеризуются её чувствительностью при записи и искажениями сигнала в процессе записи и воспроизведения. Наиболее широко применяется многослойная М. л. с рабочим слоем из игольчатых частиц магнитно-твёрдых порошков гамма-окиси железа (g-Fe2 O3 ), двуокиси хрома (CrO2 ) и гамма-окиси железа, модифицированной кобальтом, ориентированных обычно в направлении намагничивания при записи. В 1973 фирмой «Филипс» (Нидерланды) разработан высококачественный порошок с очень мелкими игольчатыми частицами железа. В качестве основы М. л. используются полиэтилентелефталатная (лучшая), поливинилхлоридная, ди– и триацетатная плёнки. Рабочий слой наносится на основу в виде магнитного лака, состоящего из магнитного порошка, связующего вещества, растворителя, пластификатора и различных добавок, улучшающих качество М. л. После нанесения магнитного лака и его затвердевания М. л. сматывается в рулоны, а затем разрезается на полосы нужной ширины. Для улучшения качества поверхности рабочего слоя М. л. каландрируют или полируют. М. л. желательно хранить в помещении с кондиционированным и обеспыленным воздухом при температуре 20 ± 5 °С и относительной влажности 60 ± 5%. Для работы в особо тяжёлых климатических условиях применяют металлические или биметаллические М. л.
Ширина и толщина М. л. зависят от её назначения. В звукозаписи используют М. л. шириной 3,81 и 6,25 мм и толщиной 9, 12, 18, 27,37 и 55 мкм (кассетные и катушечные бытовые магнитофоны , студийные магнитофоны). Видеозапись осуществляется на М. л. шириной 50,8 и 25,4 мм и толщиной 37 мкм (студийные видеомагнитофоны ), 6,25 и 12,7 мм при толщине 37 мкм (бытовые видеомагнитофоны). В запоминающих устройствах применяют М. л. шириной 12,7 мм и толщиной 37 мкм (в ЭВМ первого «поколения» использовались также М. л. шириной 19,05 и 35 мм при толщине свыше 50 мкм ). В измерительной аппаратуре применяются М. л. шириной 6,25 мм и толщиной 18 мкм, а также 12,7 и 25,4 мм и толщиной 37 мкм. В кино используют перфорированные М. л. шириной 35 мм и толщиной 150 мкм. В СССР тип М. л. обозначается комбинацией из пяти элементов: первый элемент – буква, обозначает назначение (например, А – звукозапись; Т – видеозапись и так далее); второй элемент – цифра (от 0 до 9), указывает на материал основы; третий элемент – цифра (от 0 до 9), обозначает толщину М. л. (например, 2 – 18 мкм; 3 – 27 мкм и т.д.); четвёртый элемент – цифра (от 01 до 99), обозначает технологическую разработку; пятый элемент – ширина М. л. в мм. Иногда ставят шестой дополнительный буквенный индекс: П – для перфорированных М. л.; Р – для М. л. к студийным магнитофонам; Б – для М. л. к бытовым магнитофонам. Например, А-4402-6 обозначает М. л. для звукозаписи на лавсановой основе, толщиной 37 мкм, шириной 6,25 мм (технологическая разработка – 02).
Разрабатываются металлизированные М. л. с тонким рабочим слоем из сплавов Со—Ni, Со—Р, Со—N—Р и Со—W, нанесённым электроосаждением, химическим восстановлением или напылением в вакууме.
Лит.: Мазо Я. А., Магнитная лента, М., 1968; Каган Б. М., Адасько В. И., Пурэ Р. Р., Запоминающие устройства большой емкости, М., 1968.
Я. А. Мазо, Д. П. Брунштейн.
Магнитная обработка
Магни'тная обрабо'тка водных систем, изменение свойств технической воды, водных растворов и суспензий после их протекания сквозь магнитные поля. Впервые М. о. была применена в Бельгии (1945) для уменьшения образования накипи в паровых котлах. Впоследствии советскими учёными было установлено, что М. о. изменяет многие коллоидно-химические процессы. Так, она ускоряет коагуляцию взвесей, смачивание водой твёрдых поверхностей, адсорбцию поверхностно-активных веществ, процессы кристаллизации и растворения. С помощью М. о. можно уменьшать образование различных отложений на твёрдых поверхностях (например, накипи различных солей). В промышленности для этой цели применяются тысячи магнитных аппаратов. Путём М. о. улучшаются очистка воды от взвесей, процессы обогащения полезных ископаемых, повышаются пластичность бетонной смеси и прочность бетона, кирпича и других изделий из вяжущих веществ. Обработанная вода изменяет свои биологические свойства.
М. о. осуществляется с помощью аппаратов, состоящих из нескольких пар постоянных магнитов или электромагнитов, между полюсами которых протекают водные системы. Эффективность М. о. зависит главным образом от напряжённости и градиента напряжённости магнитного поля, скорости течения, состава жидкой фазы водной системы. Изменение свойств в результате М. о. вызвано воздействием магнитных полей на примеси, содержащиеся в водной системе.
Лит.: Вопросы теории и практики магнитной обработки воды и водных систем, М.,1971.
В. И. Классен.
Магнитная постоянная
Магни'тная постоя'нная, коэффициент пропорциональности m , появляющийся в ряде формул магнетизма при записи их в рационализованной форме (в Международной системе единиц ). Так, индукция В магнитного поля и его напряжённость Н связаны в вакууме соотношением В = mН, где m= 4p×10-7гн/м »1,26×10-6гн/м.
Магнитная проницаемость
Магни'тная проница'емость, физическая величина, характеризующая связь между магнитной индукцией В и магнитным полем Н в веществе. Обозначается m, у изотропных веществ m= В /Н (в СГС системе единиц ) или m=В /mН (в Международной системе единиц СИ, mо – магнитная постоянная ).
У анизотропных тел (кристаллов) М. п. – тензор . М. п. связана с магнитной восприимчивостью c соотношением m = 1 + 4pc (в СГС системе единиц) или m = 1 +c (в ед. СИ), m измеряется в безразмерных единицах. Для физич. вакуума c = 0 и m= 1.
У диамагнетиков c<0 и m < 1, у парамагнетиков и ферромагнетиков c>0 и m > 1. В зависимости от того, измеряется ли m ферромагнетиков в статическом или переменном магнитном поле, её называют соответственно статической или динамической М. п. Значения этих М. п. не совпадают, так как на намагничивание ферромагнетиков в переменных полях влияют вихревые токи , магнитная вязкость и резонансные явления. М. п. ферромагнетиков сложно зависит от Н , для описания этой зависимости вводят понятия дифференциальной, начальной и максимальной М. п. (см. Магнитная восприимчивость ).
Лит.: Вонсовский С. В., Магнетизм, М., 1971.
С. В. Вонсовский.
Магнитная разведка
Магни'тная разве'дка, магниторазведка, геофизический метод разведки, основанный на различии магнитных свойств горных пород. Применяется на всех этапах геологических исследований и включает: измерения напряжённости геомагнитного поля или его элементов (см. Земной магнетизм ); построение магнитных карт ; геологическое истолкование результатов измерений, опирающееся на определения магнитных характеристик горных пород.
М. р. изучает магнитные аномалии , создаваемые геологическими телами, намагниченными современным (индуцированная намагниченность) и древним (остаточная намагниченность) магнитными полями Земли. Намагниченность горных пород определяется наличием в них ферромагнитных минералов (магнетит, пирротин). Особенно интенсивные магнитные аномалии создают изверженные породы основного и ультраосновного составов, магнетитовые железные руды и др. Измерения при М. р. производятся на поверхности Земли, с самолётов или вертолётов (аэромагнитная съёмка), с движущихся судов (гидромагнитная съёмка или морская М. р.), в горных выработках (подземная М. р.), в буровых скважинах (скважинная М. р.). Для измерений применяются различные магнитометры . Чаще всего измеряются относительные значения (приращения в пространстве) вертикальной составляющей напряжённости магнитного поля Земли DZ (наземные съёмки), реже – горизонтальной составляющей DН , а при аэромагнитных и гидромагнитных съёмках – модуль вектора полной напряжённости геомагнитного поля Т : или его приращение DT . При М. р. приходится учитывать вариации магнитные . Наземные съёмки, как правило, производятся по прямолинейным профилям, при соотношении расстояний между профилями и точками наблюдений на них от 10:1 до 1:1. При аэромагнитной и гидромагнитной съёмке измерения производятся непрерывно или дискретно в движении вдоль сети прямолинейных, а иногда криволинейных (в горной местности) профилей.
В результате интерпретации данных М. р. определяют глубину и другие элементы залегания намагниченных тел в земной коре, которые служат источниками аномального магнитного поля. М. р. самостоятельно, а также в комплексе с другими геофизическими и геологическими методами, применяется для изучения регионального глубинного строения земной коры, в том числе для определения глубины залегания фундамента платформ (при поисках нефти и газа); геологического картирования поисков магнитных разновидностей железных руд, а также рудных и нерудных месторождений, связанных с основными и ультраосновными породами (никель, хром, титан, алмазы и др.); цветных, редких и благородных металлов, руды которых содержат акцессорные магнитные минералы (свинец, олово, россыпные золото и платину и др.); рудных скарновых месторождений, обогащенных, как правило, магнетитом (железо, вольфрам, молибден, медь и др.); месторождений пьезооптических минералов (пьезокварц, исландский шпат, оптический флюорит), связанных с магнетитовой минерализацией, зонами дробления и интрузиями ультраосновных пород; алюминиевых руд, если они представлены магнитными разновидностями бокситов.
При разведке железных руд М. р. в сочетании с измерениями магнитной восприимчивости пород в горных выработках и буровых скважинах позволяет уточнять положение железорудных тел, а также оценивать процентное содержание магнитного железа в рудах.
М. р. зародилась в 17 веке, когда в Швеции Д. Тиласом был изобретён прибор для поисков магнитных руд – шведский горный компас. В России первые магнитные наблюдения с компасом для поисков железных руд осуществлены в середине 18 века на Урале, где была открыта гора Магнитная. В 20-х годах 19 века в США и Канаде производились поиски сильномагнитных руд с помощью стрелочного инклинатора. По инициативе Д. И. Менделеева в 1899 на Урале проведены магниторазведочные работы, в результате которых оконтурен ряд железорудных залежей. С помощью М. р. открыты железорудные месторождения Курской магнитной аномалии . В 1922 на основе идей советского геолога А. Д. Архангельского магнитные съёмки начали применять для изучения глубинного геологического строения – фундамента платформ, перекрытого толщами осадочных пород. В 1936 советский геофизик А. А. Логачев создал (совместно с А. Т. Майбородой) первый в мире аэромагнитометр и разработал методику аэромагнитной съёмки. В 50-х и 60-х годах 20 века в Финляндии, Швеции и СССР разработаны аппаратура и методика М. р. в буровых скважинах.
Лит.: Логачев А. А., Магниторазведка, 3 изд., Л., 1968; Федынский В. В., Разведочная геофизика, 2 изд., М., 1967; Магниторазведка, М., 1969 (Справочник геофизика, т. 6).
В. Е. Никитский.
Магнитная структура
Магни'тная структу'ра атомная, периодическое пространственное расположение и ориентация атомных магнитных моментов в магнитоупорядоченном кристалле (ферро-, ферри– или антиферромагнетике). Атомную М. с. следует отличать от доменной магнитной структуры, определяемой характером и взаимным расположением доменов . Периодичность расположения атомных магнитных моментов в пространстве определяется кристаллической структурой вещества. За взаимную ориентацию моментов ответственно обменное взаимодействие электрич. природы, за их общую ориентацию относительно кристаллографических осей – силы магнитной анизотропии. Более сложные (и слабые) типы магнитного взаимодействия могут усложнять атомную М. с. (см. Метамагнетик ).
Различают два основных класса магнитных веществ, связанных с определённой атомной М. с.: вещества с ненулевым суммарным макроскопическим магнитным моментом М (М ¹ 0) и вещества с М = 0. Первому случаю соответствует ферромагнитная М. с. (рис. 1 , а): магнитные моменты всех атомов выстраиваются вдоль одного направления (оси лёгкого намагничивания ), которое может быть различным у разных кристаллов. Второму случаю соответствует антиферромагнитная М. с. (рис. 1 , б): у каждого магнитного момента в ближайшем окружении имеется компенсирующий момент, ориентированный строго антипараллельно. В зависимости от характера ближайшего окружения могут осуществляться различные антиферромагнитные М. с. (например, структуры, показанные на рис. 1 , б, в и г). Антиферромагнитные М. с. могут иметь периоды большие, чем периоды атомной структуры, в целое число раз. Иногда осуществляются антиферромагнитные М. с. с ориентацией магнитных моментов вдоль двух или трёх осей и ещё более сложные – зонтичные, треугольные и другие (рис. 1 , д, е).
Близки к антиферромагнитной М. с. ферримагнитные структуры с М ¹ 0. Они имеют место, когда антиферромагнитная М. с. образуется атомами или ионами с разными по величине магнитными моментами (рис. 1 , ж). При этом значение М определяется величиной разности моментов двух магнитных подрешёток (систем одинаково ориентированных магнитных моментов). Другой случай осуществляется в слабых ферромагнетиках: наличие дополнительных сил межатомного воздействия приводит к неколлинеарности магнитных моментов и появлению суммарной ферромагнитной составляющей (рис. 1, з ). См. Слабый ферромагнетизм .
Более сложный (дальнодействующий) характер межатомного взаимодействия в некоторых случаях приводит к установлению геликоидальных М. с. В последних магнитные моменты соседних атомов повёрнуты друг относительно друга так, что концы изображающих их векторов лежат на одной спиральной линии. В зависимости от величины проекции магнитных моментов на направление оси спирали различают несколько видов геликоидальных М. с. (рис. 2 ). Существенное отличие геликоидальных М. с. от остальных М. с. заключается в том, что в общем случае шаг спирали несоизмерим с соответствующим периодом кристаллической решётки и, кроме того, зависит от температуры.
Полная классификация М. с. основывается на теории магнитной симметрии , учитывающей не только расположение, но и ориентацию атомных магнитных моментов в кристалле. В число преобразований магнитной симметрии, кроме обычных поворотов вокруг осей симметрии, отражения в плоскостях симметрии и трансляций, дополнительно входит преобразование R , изменяющее направления магнитных моментов на противоположные. Введение преобразования R увеличивает число классов симметрии с 32 до 122, а число пространственных групп симметрии – с 230 до 1651. Вещества, обладающие М. с., описываются теми группами магнитной симметрии, в которые R входит в виде произведений с обычными элементами симметрии кристаллов .
М. с. кристалла и его физические (в первую очередь магнитные) свойства тесно взаимосвязаны. Поэтому косвенные суждения о М. с. могут быть высказаны на основе данных об этих физических свойствах вещества. Прямые данные о М. с. кристаллов позволяет получить магнитная нейтронография . Со времени первой работы в этой области (1949) нейтронографически установлена М. с. более тысячи различных металлов, сплавов и химических соединений. Для установления М. с. может быть использован также ядерный гамма-резонанс (Мёссбауэра эффект).
Лит.: Изюмов Ю. А., Озеров Р. П., Магнитная нейтронография. М., 1966: Вонсовский С. В., Магнетизм, М., 1971: Копцик В. А., Шубниковские группы, М., 1966.
Р. П. Озеров.
Рис. 2. Примеры спиральных магнитных структур (l – период спирали): слева – простая спираль с нулевым значением проекции магнитного момента на ось спирали; справа – ферромагнитная (коническая) спираль с постоянным значением проекции магнитного момента на ось спирали.
Рис. 1. Типы магнитных структур: а – ферромагнитная, периоды атомной а и магнитной ам элементарных ячеек совпадают; б, в и г – антиферромагнитные структуры, ам в некоторых направлениях в два раза больше а; д – треугольная; е – зонтичная; ж – ферромагнитная; з – слабоферромагнитная, угол склонения на рисунке сильно увеличен.