355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Большая Советская Энциклопедия » Большая Советская Энциклопедия (МА) » Текст книги (страница 103)
Большая Советская Энциклопедия (МА)
  • Текст добавлен: 8 октября 2016, 22:16

Текст книги "Большая Советская Энциклопедия (МА)"


Автор книги: Большая Советская Энциклопедия


Жанр:

   

Энциклопедии


сообщить о нарушении

Текущая страница: 103 (всего у книги 155 страниц)

Марракеш

Марраке'ш , город на юго-западе Марокко, в предгорьях Высокого Атласа, административный центр провинции Марракеш. 332,7 тысячи жителей (1971). Главный экономический центр южной части Марокко. Железнодорожная станция, узел шоссейных дорог. Пищевкусовая (консервирование фруктов и овощей, мясохладобойная, мукомольная, маслобойная), химическая (завод пластмасс), текстильная, швейная, деревообрабатывающая промышленность. Кустарное производство (изделия из сафьяна, ковры, выделка кож и др.).

  М. основан около 1070 (по другим данным – в 1060 или 1062) Альморавидами . В европейской литературе название «М.» (Марракуш, Марокко) позднее было перенесено на всю страну. В середине 12 века М. был крупным торговым центром. При Альморавидах, Альмохадах , а также при саадийских шерифах (1554—1659) М. – столица Марокко; в период феодальных междоусобиц – резиденция правителей юга страны. С установлением французского протектората над Марокко (1912) политическое значение М. несколько упало. После провозглашения независимости Марокко в 1956 М. – административный центр одноимённой провинции.

  Старый город – медина неправильной конфигурации, с лабиринтом извилистых улиц и многочисленными памятниками архитектуры: украшенный резным стуком, кирпичный 6-арочный купольный павильон Кубба-аль-Баадийн (11—12 века), 17-нефная мечеть Кутубия (бетон, камень, кирпич, 1153) со сталактитовыми куполами, артесонадо и минаретом (камень, 1184—99), культовые комплексы 16 века, медресе Бен Юсефа с 8 дворами (1565), дворец Бахия (1894—1900). С юга к медине примыкает касба с воротами Баб-Агвенау (12 век, резной каменный орнамент), мечетью (1197, достройки 14—16 веков), некрополем (усыпальницы 2-й половины 16 века) и 2 дворцами (16 и 19 века). Современный город с регулярной планировкой основан в 1913 к западу от медины. К востоку от старого города – район отелей, вилл и казино с пальмовыми рощами и водоёмами. Музей марокканского искусства во дворце Дар-эс-Саид (конец 19 века). Музей гемм и керамики. Факультет университета Карауин.

  Лит.: Meunié J., Terrasse H., Nouvelles recherches archéologiques a Marrakech. P., [1957].

Маррамбиджи

Маррамби'джи (Murrumbidgee), река на юго-востоке Австралии, правый приток реки Муррей. Длина 2172 км , площадь бассейна 165 тысяч км2 . Берёт начало в северных отрогах Австралийских Альп, протекает по равнине юго-восточной части Австралии. Главный приток – река Лаклан (справа). Сток зарегулирован (водохранилище Барринджак и ГЭС на участке верхнего течения М.). Средний годовой расход воды у города Балраналд 77 м3 /сек . Используется для орошения. В период дождей разливается и становится судоходной до города Уогга-Уогга, в сухой сезон иногда пересыхает.

Марраст Арман

Марра'ст (Marrast) Арман (5.6.1801, Сен-Годенс, Верхняя Гаронна, – 10.3.1852, Париж), французский политический деятель. Участвовал в Июльской революции 1830 и французском республиканском движении 30—40-х годов, с 1841 редактор умеренно республиканской газеты «Насьональ» («National»). После Февральской революции 1848 член Временного правительства, в июле 1848 – мае 1849 председатель Учредительного собрания. Был одним из руководителей буржуазной контрреволюции, подавившей Июньское восстание 1848 парижского пролетариата. Не был избран в мае 1849 в Законодательное собрание, после чего отошёл от политической деятельности.

Марриет Фредерик

Ма'рриет (Marryat) Фредерик (10.7.1792, Лондон, – 9.8.1848, Ленгем, графство Норфолк), английский писатель. Сын коммерсанта. В 1806—30 служил в военно-морском флоте. Романы М. изобилуют описаниями морских сражений, корабельного быта: «Питер Симпл» (1834), «Мичман Изи» (1836) и другие. В романах «Яков Верный» (1834) и «Снарлейгоу, или Собака-дьявол» (1837) проявился его талант юмориста-бытописателя. После поездки в США опубликовал «Американский дневник» (1839), содержащий критику политической системы страны. С конца 30-х годов в творчестве М. нарастают религиозно-мистические настроения.

  Соч.: The novels of captain Marryat, ed. by R. Brimley Johnson, v. 1—24, [L.], 1896—98; v. 1—26, 1929—30; в русском переводе – Полное собрание сочинений капитана Марриета, книги 1—24, [СПБ], 1912; Мичман Изи, М. – Л., 1928.

  Лит.: Олюнин Р., Фредерик Марриет – моряк и писатель, «В мире книг», 1967, № 5, с. 36; Warner О., Captain Marryat: a rediscovery, [N. Y. – Toronto], 1953.

Марроки

Марроки' (Marroqui), самый южный мыс материковой Европы (36°00' с. ш. и 5°37' з. д.). Расположен на острове Тарифа (в Гибралтарском проливе), соединённом дамбой с Пиренейским полуостровом.

«Марс»

«Марс» , наименование советских автоматических межпланетных станций (АМС), запускаемых к планете Марс начиная с 1962.

  «Марс-1» запущен 1 ноября 1962, масса 893,5 кг , длина 3,3 м , диаметр корпуса 1,1 м . «М.-1» имел 2 герметичных отсека: орбитальный с основной бортовой аппаратурой, обеспечивающей полёт к Марсу; планетный с научными приборами, предназначенными для исследования Марса при близком пролёте. Задачи полёта: исследование космического пространства, проверка радиолинии на межпланетных расстояниях, фотографирование Марса. Последняя ступень ракеты-носителя с АМС была выведена на промежуточную орбиту ИСЗ и обеспечила старт и необходимое приращение скорости для полёта к Марсу.

  Активная система астроориентации имела датчики земной, звёздной и солнечной ориентации, систему исполнительных органов с управляющими соплами, работающими на сжатом газе, а также гироскопические приборы и логические блоки. Большую часть времени в полёте поддерживалась ориентация на Солнце для освещения солнечных батарей. Для предусмотренной коррекции траектории полёта станция была снабжена жидкостно-реактивным двигателем и системой управления. Для связи имелась бортовая радиоаппаратура (частоты 186, 936, 3750 и 6000 Мгц ), которая обеспечивала измерение параметров полёта, приём команд с Земли, передачу телеметрической информации в сеансах связи. Система терморегулирования поддерживала стабильную температуру 15—30 °С. За время полёта с «М.-1» проведён 61 сеанс радиосвязи, на борт передано более 3000 радиокоманд. Для траекторных измерений, кроме радиотехнических средств, был использован телескоп диаметром 2,6 м Крымской астрофизической обсерватории. Полёт «М.-1» дал новые данные о физических свойствах космического пространства между орбитами Земли и Марса (на расстоянии от Солнца 1—1,24 а. е. ), об интенсивности космического излучения, напряженности магнитных полей Земли и межпланетной среды, о потоках ионизированного газа, идущего от Солнца, и о распределении метеорного вещества (станция пересекла 2 метеорных потока). Последний сеанс состоялся 21 марта 1963 при удалении станции от Земли на 106 млн. км . Неисправность системы ориентации нарушила направленность антенн на Землю и не позволила далее осуществлять радиосвязь. Сближение с Марсом наступило 19 июня 1963 (от Марса около 197 тысяч км ), после чего «М.-1» вышел на гелиоцентрическую орбиту с перигелием около 148 млн. км и афелием около 250 млн. км .

  «Марс-2» и «Марс-3» (рис. ) запущены 19 и 28 мая 1971, совершили совместный полёт и одновременные исследования Марса. Вывод на траекторию полёта к Марсу осуществлен с промежуточной орбиты ИСЗ последними ступенями ракет-носителей. Их конструкция и состав аппаратуры существенно отличаются от «М.-1». Масса «М.-2» («М.-3») 4650 кг . Конструктивно «М.-2» и «М.-3» аналогичны, имеют орбитальный отсек и спускаемый аппарат. Основные устройства орбитального отсека: приборный отсек, блок баков двигательной установки, корректирующий реактивный двигатель с узлами автоматики, солнечная батарея, антенно-фидерные устройства и радиаторы системы терморегулирования. Спускаемый аппарат – автоматическая марсианская станция, оборудованная системами и устройствами, обеспечивающими отделение аппарата от орбитальной станции, переход его на траекторию сближения с планетой, торможение, спуск в атмосфере и мягкую посадку на поверхность Марса. Автоматическая марсианская станция была снабжена приборно-парашютным контейнером, аэродинамическим тормозным конусом и соединительной рамой, на которой размещен ракетный двигатель. Перед полётом спускаемый аппарат был подвергнут стерилизации. Станции для обеспечения полёта имели ряд систем. В состав системы управления, в отличие от «М.-1», дополнительно входили: гиростабилизированная платформа (ГСП); бортовая цифровая вычислительная машина (БЦВМ) и система космической автономной навигации (СКАН). Кроме ориентации на Солнце, при достаточно большом удалении от Земли (около 30 млн. км ) проводилась одновременная ориентация на Солнце, звезду Канопус и Землю.

  Работа бортового радиотехнического комплекса для связи с Землёй осуществлялась в дециметровом и сантиметровом диапазонах, а связь спускаемого аппарата с орбитальной частью станции – в метровом.

  Источником энергопитания служили 2 солнечные батареи и буферная аккумуляторная батарея. На спускаемом аппарате устанавливалась автономная химическая батарея. Система терморегулирования активная, с циркуляцией газа, заполняющего приборный отсек. Спускаемый аппарат имел экранно-вакуумную теплоизоляцию, радиационный нагреватель с регулируемой поверхностью и электронагреватель. Двигательная установка многоразового действия.

  В орбитальном отсеке находилась научная аппаратура, предназначенная для измерений в межпланетном пространстве, а также для изучения окрестностей Марса и самой планеты с орбиты искусственного спутника: феррозондовый магнитометр; инфракрасный радиометр для получения карты распределения температуры по поверхности Марса; инфракрасный фотометр для изучения рельефа поверхности по измерению количества углекислого газа; оптический прибор для определения содержания паров воды спектральным методом; фотометр видимого диапазона для исследования отражательной способности поверхности и атмосферы; прибор для определения радиояркостной температуры поверхности в диапазоне 3,4 см , определения её диэлектрической проницаемости и температуры поверхностного слоя на глубине до 30—50 см ; ультрафиолетовый фотометр для определения плотности верхней атмосферы Марса, определения содержания атомарного кислорода, водорода и аргона в атмосфере; счётчик частиц космических лучей; энергоспектрометр заряженных частиц; измеритель энергии потока электронов и протонов от 30 эв до 30 кэв .

  На «М.-2» и «М.-3» находились 2 фототелевизионные камеры с различными фокусными расстояниями для фотографирования поверхности Марса, а на «М.-3» также аппаратура «Стерео» для проведения совместного советско-французского эксперимента по изучению радиоизлучения Солнца на частоте 169 Мгц .

  В спускаемом аппарате была установлена аппаратура для измерения температуры и давления атмосферы, масс-спектрометрического определения химического состава атмосферы, измерения скорости ветра, определения химического состава и физико-механических свойств поверхностного слоя, а также получения панорамы с помощью телевизионных камер.

  Полёт станций к Марсу продолжался более 6 мес , с «М.-2» проведено 153, с «М.-3» – 159 сеансов радиосвязи, получен большой объём научной информации. На расстоянии около 20 млн. км от Земли обнаружен «хвост» её магнитного поля. С увеличением расстояния от Солнца наблюдалось уменьшение электронной концентрации в межпланетной среде, а электронная температура оказалась в несколько раз меньше, чем вблизи Земли. Траектория полёта «М.-2» прошла на расстоянии 1380 км от поверхности Марса. При подлёте к Марсу от «М.-2» была отделена капсула, доставившая на поверхность планеты вымпел с изображением Государственного герба СССР. 27 ноября 1971 двигательная установка «М.-2» была включена и станция перешла на орбиту спутника Марса с периодом обращения 18 ч . 8 июня, 14 ноября и 2 декабря 1971 проведены коррекции «М.-3». Отделение спускаемого аппарата осуществлено 2 декабря в 12 ч 14 мин по московскому времени на расстоянии около 50 тысяч км от Марса. Через 15 мин , когда расстояние между станцией и спускаемым аппаратом было не более 1 км , спускаемый аппарат перешёл на траекторию встречи с планетой. Спускаемый аппарат двигался 4,5 ч к Марсу и в 16 ч 44 мин вошёл в атмосферу планеты. Спуск в атмосфере до поверхности продолжался немногим более 3 мин . Спускаемый аппарат совершил посадку в южном полушарии Марса в районе с координатами 45° ю. ш. и 158° з. д. На борту аппарата установлен вымпел с изображением Государственного герба СССР. Орбитальная станция «М.-3» после отделения спускаемого аппарата двигалась по траектории, проходящей на расстоянии 1500 км от поверхности Марса. Тормозная двигательная установка обеспечила переход её на орбиту спутника Марса с периодом обращения около 11 сут . 2 декабря в 16 ч 50 мин 35 сек началась передача видеосигнала с поверхности планеты. Сигнал был принят приёмными устройствами орбитальной станции и в сеансах связи 2—5 декабря передан на Землю.

  Станции свыше 8 мес осуществляли комплексную программу исследований Марса с орбит его спутников. За это время станция «М.-2» совершила 362 оборота, «М.-3» – 20 оборотов вокруг планеты. Исследования свойств поверхности и атмосферы Марса по характеру излучения в видимом, инфракрасном, ультрафиолетовом диапазонах спектра и в диапазоне радиоволн позволили определить температуру поверхностного слоя, установить её зависимость от широты и времени суток; на поверхности выявлены тепловые аномалии; оценены теплопроводность, тепловая инерция, диэлектрическая постоянная и отражательная способность грунта; измерена температура северной полярной шапки (ниже —110 °С). По данным о поглощении инфракрасной радиации углекислым газом получены высотные профили поверхности по трассам полёта. Определено содержание водяного пара в различных областях планеты (примерно в 5 тысяч раз меньше, чем в земной атмосфере). Измерения рассеянной ультрафиолетовой радиации дали сведения о структуре атмосферы Марса (протяжённость, состав, температура). Методом радиозондирования определены давление и температура у поверхности планеты. По изменению прозрачности атмосферы получены данные о высоте пылевых облаков (до 10 км ) и размерах пылевых частиц (отмечено большое содержание мелких частиц – около 1 мкм ). Фотографии позволили уточнить оптическое сжатие планеты, построить профили рельефа по изображению края диска и получить цветные изображения Марса, обнаружить свечение атмосферы на 200 км за линией терминатора, изменение цвета вблизи терминатора, проследить слоистую структуру марсианской атмосферы. В 1973 запущены АМС «Марс-4» (21 июля), «Марс-5» (25 июля), «Марс-6» (5 августа), «Марс-7» (9 августа) для комплексного исследования Марса с пролётной траектории, с орбиты его искусственного спутника и непосредственно на планете. Для этого предусматривается создание искусственного спутника Марса и доставка на поверхность планеты спускаемого аппарата. Цель полёта: определение физических характеристик грунта, свойств поверхностной породы, экспериментальная проверка возможности получения телевизионных изображений и др.

  Е. И. Попов.

«Марс-3»: 1 – приборный отсек; 2 – антенна научной аппаратуры «Стерео»; 3 – параболическая остронаправленная антенна; 4 – спускаемый аппарат; 5 – радиаторы системы терморегулирования; 6 – панель солнечной батареи; 7 – блок баков двигательной установки; 8 – приборы системы астроориентации.

Марс (мифологич.)

Марс , в мифологии древних римлян и других италийских народностей бог войны. М. приписывалось покровительство племенному ополчению в войне, что нашло отражение в многочисленных празднествах в его честь, справлявшихся в Риме в марте и октябре. Одновременно М. сохранял черты древнейшего аграрного божества, и в его культе несомненны пережитки магического аграрного ритуала. М. считался отцом Ромула и Рема, основателей Рима. Имя М. носил март – первый месяц древнеримского календаря. С М. отождествляли древнегреческого бога Ареса.

Марс (навигац.)

Марс (голл. mars), площадка в верхней части судовой мачты для наблюдения, установки прожекторов или навигационных приборов.

Марс (планета)

Марс , четвёртая по расстоянию от Солнца планета Солнечной системы, астрономический знак ♂.

  Общие сведения. М. принадлежит к планетам земной группы, обладает сравнительно малой массой, размерами и довольно высокой средней плотностью. Движется вокруг Солнца по эллиптической орбите на среднем расстоянии 1,524 астрономической единицы (228 млн. км ). Из-за значительного эксцентриситета (е = 0,093) это расстояние меняется в пределах от 206 млн. км в перигелии до 249 млн. км в афелии. Наклон орбиты М. к плоскости эклиптики 1,8°. Средняя скорость движения М. по орбите 24,2 км/сек . Период обращения М. по орбите (сидерический период обращения) 1,881 года (687 сут ). Одинаковое взаимное расположение М., Солнца и Земли повторяется в среднем каждые 780 сут (синодический период обращения). Такова периодичность повторений противостояний М., при которых планета, наблюдаемая с Земли, находится в точке неба, приблизительно противоположной Солнцу. В это время М. особенно удобен для исследований. Его видимый на небе диск имеет в это время диаметр, в среднем равный 18". Ближе всего к Земле – на расстояние до 56 млн. км – М. приближается тогда, когда противостояние происходит вблизи перигелия орбиты М. В это время М. виден под углом 24—25" и на нём могут быть замечены с помощью телескопа детали размером 60—100 км . Такие противостояния, называемые великими противостояниями, повторяются через 15—17 лет и происходят в августе (великими часто называются также противостояния, происходящие в июле и сентябре). Последнее великое противостояние М. наблюдалось в 1971, ближайшие будущие (менее удобные для наблюдений) будут в 1986 и 1988 (см. рис. ). Во время афелийных противостояний М. находится от Земли на расстоянии около 100 млн. км . М. выглядит круглым диском во время противостояний и верхних соединений с Солнцем (см. Конфигурации в астрономии), когда он находится за Солнцем, почти в 400 млн. км от Земли. В другое время Солнцем освещен не весь видимый с Земли диск М., и он виден с некоторым ущербом; максимально возможный ущерб – как у Луны за 3—4 дня до полнолуния – наблюдается при наибольшем возможном угле фазы (угле между направлениями от планеты на Солнце и Землю), равным 47°.

  Линейный диаметр М. (средний) составляет 6800 км , то есть лишь немногим больше половины (0,53) диаметра Земли. Полярный диаметр на 1 : 190 меньше экваториального. Такова величина сжатия фигуры планеты, получаемая из динамических расчётов, основанных на движении спутников М. Непосредственные измерения угловых диаметров М. вдоль экватора и перпендикулярно к нему дают намного большее значение сжатия (1 : 125), однако надёжность таких измерений невелика. Объём М. равен 0,15 объёма Земли. Масса М. равна 6,423×1023кг (0,107 массы Земли). Средняя плотность 3,97 г/см3 . Ускорение силы тяжести на поверхности равно 3,72 м/сек ; или 0,38 земного значения. Вторая космическая скорость (брошенное с этой скоростью тело, преодолевая силу тяготения, навсегда покидает планету) у поверхности М. равна 5,0 км/сек .

  Имеющиеся на поверхности М. постоянные детали (светлые и тёмные пятна) позволяют легко наблюдать вращение М. около своей оси. Период осевого вращения М. (его звёздные сутки) составляет 24 ч 37 мин 22,7 сек в земных единицах времени (солнечного). Направление северного конца оси вращения М. имеет координаты (1950,0): прямое восхождение (a = 317,32°, склонение d = +52,68° (созвездие Лебедя, вблизи границы с созвездием Цефея). Соответствующая этому плоскость экватора М. оказывается наклоненной к плоскости орбиты М. на 25,2°, то есть почти так же, как плоскость земного экватора наклонена к плоскости орбиты Земли (эклиптики). По этой причине на М. происходит смена времён года и разделение на климатические пояса (полярный, умеренный, тропический), как и на Земле. Однако продолжительность каждого времени года на М. в 1,9 раза больше, чем на Земле.

  Полученные из наблюдений значения периода обращения, массы, линейного диаметра и динамического сжатия М. позволяют моделировать внутреннее строение планеты. Возможно, что М. имеет небольшое железное ядро с плотностью около 9,5 г/см3 , в котором сосредоточено от 1 до 8 % массы планеты, а радиус ядра составляет от 15 до 33 % радиуса М.

  Исторический очерк изучения Марса. Как планета М. известен человечеству с древнейших времён. Во время великих противостояний М. выглядит самой яркой на полуночном небе звездой (—2,7 звёздной величины), оранжево-красного цвета, вследствие чего его стали считать атрибутом бога войны (в древнегреческой мифологии Ареса, в древнеримской – Марса). По наблюдениям М., выполненным Т. Браге и И. Кеплером , уже в начале 17 века были установлены законы движения планет в Солнечной системе. Физические свойства М. начали изучаться лишь в середине 17 века, когда появились телескопы, достаточно сильные, чтобы увидеть на М. отдельные детали, в том числе полярные шапки (Х. Гюйгенс видел их в 1656, но распознаны они были позже) и тёмные «моря» на светлом фоне «суши»; наблюдения этих деталей позволили сделать первую оценку периода вращения М. (24 час 40 мин – Дж. Кассини , 1666).

  Интенсивные исследования М. начались в середине 19 века, особенно после великого противостояния М. в 1877, когда Дж. Скиапарелли , наблюдая М., обнаружил большое число новых деталей на поверхности планеты, в частности множество тёмных прямолинейных образований, условно названных им «каналами». Мнения о природе «каналов» разделились. Многие учёные сомневались в реальности каналов, считая их психофизиологической иллюзией, возникающей при рассматривании предельно мелких деталей на диске планеты. Однако в конце 19 и начале 20 веков П. Ловелл приписал «каналам» Скиапарелли буквальный смысл и на этом основании, а также в результате оценки физических условий на планете высказал и настойчиво пропагандировал идею населённости М. разумными существами. Последующее изучение М. астрофизическими методами, в котором выдающаяся роль принадлежала советским учёным Г. А. Тихову, Н. П. Барабашову, В. Г. Фесенкову, В. В. Шаронову, привело к более правильному пониманию физических условий на М. Фотографирование М. не подтвердило существования на нём каналов. Новый и очень плодотворный этап в изучении М. наступил с началом космической эры и запуском к М. космических зондов – автоматических межпланетных станций (АМС): американских серии «Маринер» – «Маринер-4» (1964), «Маринер-6», «Маринер-7» (1969) и «Маринер-9» (1971), и советских серии «Марс» – «Марс-2» и «Марс-3» (1971). С помощью этих космических зондов (последние три из них стали искусственными спутниками Марса ) было произведено изучение планеты с близкого расстояния, так что элементами исследования стали детали не в 60—100 км , как раньше, а значительно меньше 1 км ; спускаемая часть советской АМС «Марс-3» впервые совершила мягкую посадку на планету.

  Поверхность Марса. На поверхности М. различают тёмные (серые с голубоватым или бурым оттенком) пятна на фоне обширных красно-оранжевых областей. Чисто условно первые названы морями, а вторые – сушей (или материками). Фотометрические наблюдения М. при разных фазовых углах приводят к значению сферического альбедо в видимых лучах 0,16, а в инфракрасных – 0,26, что выражает факт значительного падения отражательной способности поверхности планеты с уменьшением длины волны. Такими же свойствами обладает красноватый грунт земных пустынь. Законы отражения, а также поляризация отражённого света суши М. и порошкообразного лимонита (минерала с химическим составом Fe2 O3 + n H2 O) имеют много общего. Моря обладают пониженным по сравнению с сушей альбедо, особенно в длинноволновой области спектра, так что их цвет представляется зеленовато-синим. Но контраст между морями и сушей убывает почти до нуля с уменьшением длины волны в ближайшей ультрафиолетовой области спектра, что в значительной степени вызвано рассеянием света в атмосфере М.

  Наиболее заметными деталями на диске М. являются полярные шапки – северная и южная. Это белые пятна, размеры которых меняются в течение марсианского года, увеличиваясь в холодный сезон и уменьшаясь (почти исчезая) в тёплый. В то же время тёмные моря М. в основном сохраняют очертания, испытывая лишь небольшие и непродолжительные изменения – как сезонные, так и от противостояния к противостоянию. Это делает возможным составление карт поверхности М. с точностью нанесения деталей до 1—2°. Такие карты составляются на основе зарисовок и фотографий М., собираемых в международных центрах.

  Наименования светлых и тёмных областей на М. в основном были предложены Скиапарелли и французским астрономом Э. Антониади, которые широко использовали для этого географические понятия древности и образы мифологии, а частично и некоторые современные термины. Так, нулевой меридиан в системе координат на М. – ареографической системе координат (см. карту ), проходит через залив Меридиана; к нему примыкает идущий вдоль параллели залив Шеба (Шеба – старинное название Аравии); ниже находится светлая страна Девкалиона (Девкалион в мифологии – сын Прометея, супруг Пирры, которая также имеет на М. свою область – страну Пирры). Вблизи Северного полюса М. находится Утопия; самая заметная тёмная деталь на М. – Большой Сирт (назван по аналогии с заливом у берегов Ливии). Под ним, далеко к югу, находится круглая светлая область Эллада и Авзония (поэтическое название Италии). Ещё дальше к востоку находится тёмное Киммерийское море (древнее название Чёрного моря) и т. п.

  Пролёт около М. американских АМС серии «Маринер», фотографировавших его с далёких и очень близких расстояний, необычайно обогатил представления о морфологии М. На нём были открыты многочисленные кольцевые горы, или кратеры, подобные лунным. Кратеры оказались господствующей формой ландшафта на М., причём их количество не зависит ни от расстояния от экватора М., ни от высоты над средним уровнем; встречаются они и на суше и на морях. Обнаружены два типа кратеров: чашеобразные малые (10—15 км в диаметре) и большие (>15 до нескольких сотен км ) с плоским дном. Последние выглядят более разрушенными, чем малые (или лунные при тех же размерах).

  На небольшой части ландшафта М., обследованной к 1972 с близкого расстояния, выявлены три типа ландшафта: области, покрытые кратерами; области, лишённые кратеров (такова Эллада); хаотические области (например, страна Пирры), где кратеры немногочисленны, а поверхность покрыта формами, говорящими о сдвигах, провалах, то есть о тектонических движениях. Встречаются обширные плато, сильно возвышающиеся над средним уровнем планеты, но лишённые каких-либо крупных и резких неровностей (в частности, горных хребтов). Грандиозное ущелье Копрат глубиной свыше 5 км имеет длину около 500 км и ширину около 120 км (см. рис. 2 ). Ответвляющиеся от него «овраги», по-видимому, являются результатом ветровой и водяной эрозии. Область Олимпийские снега представляет собой обширный круговой вулканический район, внешнее кольцо которого (диаметром около 500 км ) возвышается на 6 км над окружающей местностью. М. геологически активен, на нём наблюдаются признаки недавней вулканической деятельности и движений коры, а также ледниковой и ветровой эрозии. Исследования М. с близкого расстояния ещё слишком непродолжительны, чтобы обнаружить вулканическую деятельность. Но около тех кратеров (кальдеров), вулканическое происхождение которых достоверно, видно очень мало кратеров метеоритного происхождения, что служит подтверждением недавнего рождения вулканов.

  Возросшая точность и разрешающая способность радиолокационных определений дальности позволили определить рельеф поверхности М. вдоль нескольких параллелей около экватора М. Оказалось, что диапазон высот на М. велик и составляет не меньше 13 км – такова разница высот двух светлых областей Тарсис и Амазония. Тёмная область Большой Сирт на 6 км выше Амазонии, то есть находится на среднем уровне. Аналогичные измерения выполнены с помощью инфракрасных спектрометров, которые были установлены на АМС «Маринер» (6, 7 и 9). Во время их полёта над различными областями М. спектрометр регистрировал интенсивность полосы поглощения углекислого газа (CO2 ) в атмосфере М. Поскольку интенсивность этой полосы тем больше, чем глубже лежит подстилающая атмосферу поверхность планеты, такие измерения позволили делать заключения также и о рельефе М. Оказалось, что наиболее низкой областью является Эллада – огромная круглая чашеобразная впадина диаметром около 1700 км , лежащая на 5,5 км ниже соседнего с ней Геллеспонта; пологий переход между ними осуществляется отдельными уступами. В таком же эксперименте, выполненном с Земли вдоль долгот от 240° до 160° (через 0°) в полосе от —20° до +40° ареографической широты, установлено наличие двух широких гребней, идущих под углом к меридиану с севера на юг и разделённых по долготе на 180°. Названное выше ущелье Копрат расположено в центральной части исполинского разлома, простирающегося по параллели более чем на 80° долготы, то есть свыше 4000 км длиной. На наиболее крупномасштабных фотографиях М. видны разнообразные формы марсианского ландшафта, обнаруживающие некоторое сходство с земными формами – моренными грядами, песчаными дюнами и даже термокарстом, образующимся при таянии вечной мерзлоты. Однако ничего похожего на прямолинейные каналы нет. Зато обнаружены сильно извилистые каналы с притоками, напоминающие русла бывших рек. Это – тоже недавние образования, поскольку на них незаметны признаки метеоритной или ветровой эрозии.

  Микрорельеф М. напоминает лунный: мелкозернистое строение поверхности М. проявляет себя специфическими поляризационными свойствами, а также эффектом оппозиции, заключающимся в том, что общий блеск М. быстро возрастает на 20—30 % при углах фазы меньше 6°. Возможное объяснение этого эффекта заключается в исчезновении теней при рассматривании поверхности приблизительно в том же направлении, откуда приходит освещение.

  Очень неровная поверхность находится вблизи южной полярной шапки М. Здесь наблюдаются многочисленные кратеры, которые по мере таяния шапки становятся более отчётливыми наряду с другими формами. Той же причиной объясняются и крайне неправильные очертания самой южной полярной шапки. В середине зимы она достигает максимальных размеров – простирается до широты —57°, с наступлением лета уменьшается. Однако дольше всего она сохраняется не на полюсе, а вокруг точки с координатами (330°, —84°), что связано, вероятно, с большей высотой этого места. Почти никогда не освобождаются от снега горы Митчела (275°, —73°). Судя по малочисленности малых кратеров в области южной полярной шапки и по сглаженности некоторых деталей, можно предположить, что эти области в сравнительно недавнем прошлом подвергались сглаживающему действию ледников. Здесь же обнаружены типичные для ледниковых форм U-oбразные долины. С середины 19 века лишь два раза наблюдалось полное исчезновение южной полярной шапки – в 1894 и 1911. Исчезновение северной полярной шапки не наблюдалось. Возможно, это объясняется тем, что лето в северном полушарии приходится на афелийные противостояния – когда приток тепла от Солнца наименьший и, кроме того, планету в эти периоды труднее всего наблюдать. Вследствие прецессии оси вращения М. такое положение периодически изменяется с периодом в несколько десятков тысячелетий и спустя 20—30 тысяч лет южное полушарие станет более холодным. То же самое, вероятно, случалось и в прошлом. Именно тогда могли образоваться наблюдаемые на М. ныне ледниковые формы.


    Ваша оценка произведения:

Популярные книги за неделю