355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Большая Советская Энциклопедия » Большая Советская Энциклопедия (КО) » Текст книги (страница 200)
Большая Советская Энциклопедия (КО)
  • Текст добавлен: 6 октября 2016, 05:51

Текст книги "Большая Советская Энциклопедия (КО)"


Автор книги: Большая Советская Энциклопедия


Жанр:

   

Энциклопедии


сообщить о нарушении

Текущая страница: 200 (всего у книги 218 страниц)

  Лит. см. при ст. Космический летательный аппарат .

  В. П. Глушко, Б. В. Раушенбах.

Ракета-носитель с космическим кораблем «Аполлон-11» в момент старта.

Перед стыковкой космического корабля и орбитальной станции «Салют» (рисунок).

Спускаемый аппарат автоматической межпланетной станции «Венера-8».

Первый советский искусственный спутник Земли (макет).

Спускаемый аппарат автоматической межпланетной станции «Марс-3».

Посадка автоматической станции «Луна 16» на Луну (рисунок).

«Луноход 1».

Ю. А. Гагарин в космическом корабле.

Общий вид автоматической межпланетной станции «Марс 3».

Стационарная орбитальная станция (проект).

Космонавт Джеймс Ирвин на Луне.

Ракета-носитель с космическим кораблем серии «Союз» на стартовом устройстве.

Космонавтов море

Космона'втов мо'ре, окраинное море Индийского сектора Южного океана у берегов Антарктиды, между Землёй Эндерби и морем Рисер-Ларсена, от которого отделено подводным хребтом Гуннерус. Площадь 698,6 тыс. км2 . Глубины превышают 2000 м, наибольшая – свыше 5000 м. Почти круглый год покрыто дрейфующими льдами. Много айсбергов. На берегу К. м. находятся советский метеорологический центр Молодёжная и японская научная станция Сева. Названо в 1962 участниками советской антарктической экспедиции в честь первых космонавтов.

Космополитизм

Космополити'зм (от греч. kosmopolítes – космополит, гражданин мира), идеология т. н. «мирового гражданства»; реакционная буржуазная идеология, проповедующая отказ от национальных традиций и культуры, патриотизма, отрицающая государственный и национальный суверенитет.

  Со времени своего возникновения понятие К. имело различное содержание, определяемое конкретно-историческими условиями. Кризис античного полиса и создание государства Александра Македонского явились причиной появления разных по содержанию космополитических воззрений. Одни из них обосновывали расширение сферы эксплуатации (Александр Македонский, Марк Аврелий). К. киников Антисфена и Диогена Синопского выражал отрицательное отношение к полису. Стоики, главным образом Зенон из Китиона, в космополитическом идеале искали общественную форму, которая бы сделала возможной жизнь каждого человека по единому всемирному закону. К. киренаиков выражен в словах: «ubi bene, ibi patria» («где хорошо, там и отечество»).

  В эпоху феодализма основным носителем реакционных космополитических тенденций выступала католическая церковь. В период Возрождения идеи мирового гражданства были направлены против феодальной раздробленности (Данте, Т. Кампанелла). Абстрактно-гуманистический идеал мирового гражданства в эпоху Просвещения выражал идеи освобождения индивида от феодальных оков. В Германии, в противоположность феодально-партикуляристскому «патриотизму» и княжескому деспотизму, идеи мирового гражданства развивались у Г. Э. Лессинга, И. В. Гёте, Ф. Шиллера, И. Канта, И. Г. Фихте в своеобразном единстве с патриотическими идеями. Буржуазный К. отражает природу капитала, стремящегося туда, где его ожидает наибольшая прибыль. «Буржуазия путем эксплуатации всемирного рынка сделала производство и потребление всех стран космополитическим» (Маркс К. и Энгельс Ф., Соч., 2 изд., т. 4, с. 427). Буржуазный К. не исключает национализма угнетающих наций, а возникает на его почве.

  Космополитические идеи получили распространение в эпоху империализма, отражая объективную тенденцию капитализма к интернационализации, действующую наряду с тенденцией к образованию национальных государств. К. представляет собой неотъемлемую часть идеологии империализма: буржуазной политической науки (проповедь мировой политической интеграции, наднациональных и межгосударственных монополистических организаций); экономической теории (реакционно-утопические проекты создания планируемой мировой капиталистической экономики); права (теории международной правосубъектности личности и т. н. мирового права, основанные на отрицании национального и государственного суверенитета). Космополитические идеи создания мирового государства или мировой федерации выдвигаются в современных условиях также представителями гуманистического пацифизма (например, предложение о превращении ООН в мировое государство). Однако подобные теории носят явно утопический характер, т. к. не учитывают существования государств с различным социальным строем, а также борьбы народов за национальное освобождение.

  Пролетарский интернационализм противоположен буржуазному К. Космополитизм призывает к слиянию наций путём насильственной ассимиляции. Марксисты же рассматривают перспективу постепенного и добровольного сближения, а затем и слияния наций с точки зрения объективного хода общественного развития, свидетельствующего о том, что это длительный процесс, наступающий в результате освобождения и расцвета наций .

  Лит.: Маркс К. и Энгельс Ф., Святое семейство, Соч., 2 изд., т. 2; их же, Немецкая идеология, там же, т. 3; их же, Манифест Коммунистической партии, там же, т.4; Ленин В. И., О праве наций на самоопределение, Полн. собр. соч., 5 изд., т. 25; его же, Империализм, как высшая стадия капитализма, там же, т. 27; его же, О карикатуре на марксизм и об «империалистическом экономизме», там же, т. 30; Модржинская Е. Д., Космополитизм – империалистическая идеология порабощения наций, М., 1958; Кузьмин Э. Л., Мировое государство: иллюзии или реальность?, М., 1969; Социологические проблемы международных отношений, М., 1970.

  Е. Д. Модржинская.

Космополиты

Космополи'ты (биол.), виды, роды, семейства или более крупные группы животных или растений, обитающие по всему (или почти по всему) земному шару. Строго космополитических видов животных или растений, по-видимому, не существует. Примеры К. высшего ранга – семейства злаков, отряд воробьиных птиц. К. противопоставляются эндемики — растения или животные, встречающиеся только на ограниченной территории.

Космос (ботан.)

Ко'смос , космея (Cosmos), род однолетних или многолетних травянистых растении семейства сложноцветных. Стебли ветвистые, листья тонко дважды перисторассеченные; соцветия корзинки на длинных цветоносах с бесплодными язычковыми и обоеполыми трубчатыми цветками; семянки с несколькими легко опадающими остями. Около 25 видов в тропической и субтропической Америке. Многие виды декоративны; широко известен однолетний К. дваждыперистый (С. bipinnatus,) до 1 м высотой с розово-пурпуровыми, красными или белыми язычковыми цветками, а также серножелтый (С. suipnureus,) с желтыми язычковыми цветками.

Космос (Вселенная)

Космос (греч. kosmos – строй, порядок, мир, Вселенная) первоначально у древних греков (начиная с Пифагора 6 в до н. э.) – Вселенная как стройная организованная система в противоположность хаосу беспорядочному нагромождению материи. От греков термин «К.» перешёл в современную науку как синоним Вселенной К. включает межпланетное, межзвёздное, межгалактическое пространство со всеми находящимися в нём объектами. Из понятия «К.» (космическое пространство) иногда исключают Землю с её атмосферой. В этом смысле термин «К.» (употребляется также термин «ближний К.») получил широкое распространение после запуска (1957) в СССР первого искусственного космического объекта – искусственного спутника Земли и начала исследовании околоземной и межпланетной среды с помощью различного рода космических летательных аппаратов.

«Космос» (ракета-носитель)

«Ко'смос» ракета-носитель, советская 2-ступенчатая ракета-носитель, используемая с 16 марта 1962 для выведения на орбиты ИСЗ серии «Космос». Ступени расположены последовательно, общая длина 30 м, диаметр 1,65 м. Первая ступень снабжена двигателем РД-214 с тягой 726 кн (74 mc ), работающим на азотнокислотном окислителе и углеводородном горючем. Вторая ступень имеет двигатель РД-119 с тягой 108 кн (11 тс ), работающий на топливе – жидкий кислород и несимметричный диметилгидразин . ИСЗ размещается на второй ступени под головным обтекателем, сбрасываемым на участке выведения после прохождения плотных слоев атмосферы. В конце участка выведения производится отделение ИСЗ от последней ступени. С помощью «К.» запущено большое число советских ИСЗ, предназначенных для научных исследований околоземного космического пространства, верхней атмосферы и для решения др. задач. См. Искусственные спутники Земли.

«Космос» (серия искусств. спутников Земли)

«Ко'смос», наименование серии искусственных спутников Земли (ИСЗ), регулярно запускаемых (начиная с 16 марта 1962) в Советском Союзе на различных 2—4 ступенчатых ракетах-носителях с нескольких космодромов для исследования космического пространства и верхних слоев атмосферы. В 1962—63 запущено 24 «К.», в 1964 – 27, в 1965 – 52, в 1966 – 34, в 1967 – 61, в 1968 – 64, в 1969 – 55, в 1970 – 72, в 1971 – 81, в 1972 – 72. Всего на 1 июля 1973 запущено 576 спутников этой серии. Научная программа предусматривает изучение концентрации заряженных частиц, корпускулярных потоков, распространения радиоволн, радиационного пояса Земли, космических лучей, магнитного поля Земли, излучения Солнца, метеорного вещества, облачных систем в атмосфере Земли. Спутники серии «К.» помогают решать технические проблемы, связанные с космическими полётами (стыковка на орбите, вхождение космического летательного аппарата в атмосферу, воздействие факторов космического пространства, вопросы ориентации, жизнеобеспечения, защиты от излучений), а также отрабатывать элементы конструкции и бортовых систем космических аппаратов. Орбиты ИСЗ «К.» охватывают область высот от ~ 145 км до 60,6 тыс. км («К-260»); некоторые «К.» (до 8 ИСЗ одновременно) выведены одной ракетой-носителем (например, «К-38» – «К-40»; «К-71»—«К-75»; «К-336»—«К-343» и др.). ИСЗ «К.» разнообразны по конструкции, составу основной и научной аппаратуры; многие из них имеют систему ориентации (на Солнце, Землю или по вектору скорости); энергопитание бортовой аппаратуры от солнечных батарей и химических источников тока (на «К-84», «К-90» проверялась работа систем с изотонными генераторами); передача научной и измерительной информации на Землю с помощью многоканальных телеметрических систем, имеющих бортовые запоминающие устройства. Некоторые ИСЗ из серии «К.» снабжаются спускаемыми аппаратами для возвращения научной аппаратуры и объектов экспериментов на Землю (например, «К-110», «К-136», «К-188»). Ряд ИСЗ «К.» унифицирован по конструкции и составу основных бортовых систем, что позволяет относительно легко изменять состав научной аппаратуры для различных модификаций ИСЗ. На биологическом ИСЗ «К-110» в 1966 проведён длительный медико-биологический эксперимент на собаках, приземлившихся в спускаемом аппарате после 22-суточного полёта. Метеорологические ИСЗ «К-144», «К-156» и др. использовались для получения метеорологических данных в системе «Метеор» . При совместном полёте ИСЗ «К-186» и «К-188» 30 октября 1967 впервые в мире было совершено их автоматическое сближение и стыковка на орбите. ИСЗ «К-261» использован для эксперимента по изучению верхней атмосферы и природы полярных сияний, в котором приняли участие научно-исследовательские институты и обсерватории социалистических стран (НРБ, ВНР, ГДР, ПНР, СРР, СССР, ЧССР). ИСЗ запускаемые в СССР с 1969 по программе международного сотрудничества социалистических стран в области исследования и использования космического пространства, назывались «Интеркосмос».

  Е. Ф. Рязанов.

Космохимия

Космохи'мия (от космос и химия ), наука о химическом составе космических тел, законах распространённости и распределения химических элементов во Вселенной, процессах сочетания и миграции атомов при образовании космического вещества. Наиболее изученная часть К. – геохимия , К. исследует преимущественно «холодные» процессы на уровне атомно-молекулярных взаимодействий веществ, в то время как «горячими» ядерными процессами в космосе – плазменным состоянием вещества, нуклеогенезом (процессом образования химических элементов) внутри звёзд и др. – в основном занимается физика. К. – новая область знания, получившая значительное развитие во 2-й половине 20 в. главным образом благодаря успехам космонавтики. Ранее исследования химических процессов в космическом пространстве и состава космических тел осуществлялись в основном путём спектрального анализа излучения Солнца, звёзд и, отчасти, внешних слоев атмосфер планет. Этот метод позволил открыть элемент гелий на Солнце ещё до того, как он был обнаружен на Земле. Единственным прямым методом изучения космических тел был анализ химического и фазового состава различных метеоритов, выпадавших на Землю. Так был накоплен значительный материал, имеющий фундаментальное значение и для дальнейшего развития К. Развитие космонавтики, полёты автоматических станций к планетам Солнечной системы – Луне, Венере, Марсу – и, наконец, посещение человеком Луны открыли перед К. совершенно новые возможности. Прежде всего – это непосредственное исследование пород Луны при участии космонавтов или путём забора образцов грунта автоматическими (подвижными и стационарными) аппаратами и доставка их на Землю для дальнейшего изучения в химических лабораториях. Кроме того, автоматические спускаемые аппараты сделали возможным изучение вещества и условий его существования в атмосфере и на поверхности др. планет Солнечной системы, прежде всего Марса и Венеры. Одна из важнейших задач К. изучение на основе состава и распространённости химических элементов эволюции космических тел, стремление объяснить на химической основе их происхождение и историю. Наибольшее внимание в К. уделяется проблемам распространённости и распределения химических элементов. Распространённость химических элементов в космосе определяется нуклеогенезом внутри звёзд. Химический состав Солнца, планет земного типа Солнечной системы и метеоритов, по-видимому, практически тождествен. Образование ядер химических элементов связано с различными ядерными процессами в звёздах. Поэтому на разных этапах своей эволюции различные звёзды и звёздные системы имеют неодинаковый химический состав. Известны звёзды с особенно сильными спектральными линиями Ва или Mg или Li и др. Распределение химических элементов по фазам в космических процессах исключительно разнообразно. На агрегатное и фазовое состояние вещества в космосе на разных стадиях его превращений оказывают разностороннее влияние:1) огромный диапазон температур, от звёздных до абсолютного нуля; 2) огромный диапазон давлений, от миллионов атмосфер в условиях планет и звёзд до космического вакуума; 3) глубоко проникающие галактическое и солнечное излучения различного состава и интенсивности; 4) излучения, сопровождающие превращения нестабильных атомов в стабильные; 5) магнитное, гравитационное и др. физические поля. Установлено, что все эти факторы влияют на состав вещества внешней коры планет, их газовых оболочек, метеоритного вещества, космической пыли и др. При этом процессы фракционирования вещества в космосе касаются не только атомного, но и изотопного состава. Определение изотопных равновесий, возникших под влиянием излучений, позволяет глубоко проникать в историю процессов образования вещества планет, астероидов, метеоритов и устанавливать возраст этих процессов. Благодаря экстремальным условиям в космическом пространстве протекают процессы и встречаются состояния вещества, не свойственные Земле: плазменное состояние вещества звёзд (например, Солнца); конденсирование Не, На, CH4 , NH3 и др. легколетучих газов в атмосфере больших планет при очень низких температурах; образование нержавеющего железа в космическом вакууме при взрывах на Луне; хондритовая структура вещества каменных метеоритов; образование сложных органических веществ в метеоритах и, вероятно, на поверхности планет (например, Марса). В межзвёздном пространстве обнаруживаются в крайне малых концентрациях атомы и молекулы многих элементов, а также минералы (кварц, силикаты, графит и т. д.) и, наконец, идёт синтез различных сложных органических соединений (возникающих из первичных солнечных газов Н, CO, NH3 , O2 , N2 , S и других простых соединений в равновесных условиях при участии излучений). Все эти органические вещества в метеоритах, в межзвёздном пространстве – оптически не активны.

  С развитием астрофизики и некоторых др. наук расширились возможности получения информации, относящейся к К. Так, поиски молекул в межзвёздной среде ведутся посредством методов радиоастрономии . К концу 1972 в межзвёздном пространстве обнаружено более 20 видов молекул, в том числе несколько довольно сложных органических молекул, содержащих до 7 атомов. Установлено, что наблюдаемые концентрации их в 10—100 млн. раз меньше, чем концентрация водорода. Эти методы позволяют также посредством сравнения радиолиний изотопных разновидностей одной молекулы (например, H212 CO и H213 CO) исследовать изотопный состав межзвёздного газа и проверять правильность существующих теорий происхождения химических элементов.

  Исключительное значение для познания химии космоса имеет изучение сложного многостадийного процесса конденсации вещества низкотемпературной плазмы, например перехода солнечного вещества в твёрдое вещество планет Солнечной системы, астероидов, метеоритов, сопровождающегося конденсационным ростом, аккрецией (увеличением массы, «нарастанием» любого вещества путём добавления частиц извне, например из газопылевого облака) и агломерацией первичных агрегатов (фаз) при одновременной потере летучих веществ в вакууме космического пространства. В космическом вакууме, при относительно низких температурах (5000—10000 °С), из остывающей плазмы последовательно выпадают твёрдые фазы разного химического состава (в зависимости от температуры), характеризующиеся различными энергиями связи, окислительными потенциалами и т. п. Например, в хондритах различают силикатную, металлическую, сульфидную, хромитную, фосфидную, карбидную и др. фазы, которые агломерируются в какой-то момент их истории в каменный метеорит и, вероятно, подобным же образом и в вещество планет земного типа.

  Далее в планетах происходит процесс дифференциации твёрдого, остывающего вещества на оболочки – металлическое ядро, силикатные фазы (мантию и кору) и атмосферу – уже в результате вторичного разогревания вещества планет теплотой радиогенного происхождения, выделяющейся при распаде радиоактивных изотопов калия, урана и тория и, возможно, других элементов. Такой процесс выплавления и дегазации вещества при вулканизме характерен для Луны, Земли, Марса, Венеры. В его основе лежит универсальный принцип зонного плавления, разделяющего легкоплавкое вещество (например, коры и атмосферы) от тугоплавкого вещества мантии планет. Например, первичное солнечное вещество имеет отношение Si/Mg»1, выплавленное из мантии планет вещество коры планет – Si/Mg»6,5. Сохранность и характер внешних оболочек планет прежде всего зависят от массы планет и расстояния их до Солнца (пример – маломощная атмосфера Марса и мощная атмосфера Венеры). Благодаря близости Венеры к Солнцу в её атмосфере из CO2 возник «парниковый» эффект: при температуре свыше 300 °С в атмосфере Венеры процесс CaCO3 + SiO2 ® CaSiO3 + CO2 достигает равновесного состояния, при котором в ней содержится 97% CO2 при давлении 90 атм. Пример Луны говорит о том, что вторичные (вулканические) газы не удерживаются небесным телом, если его масса невелика.

  Соударения в космическом пространстве (либо между частицами метеоритного вещества, либо при налёте метеоритов и др. частиц на поверхность планет) благодаря огромным космическими скоростям движения могут вызвать тепловой взрыв, оставляющий следы в структуре твёрдых космических тел, и образование метеоритных кратеров. Между космическими телами происходит обмен веществом. Например, по минимальной оценке, на Землю ежегодно выпадает не меньше 1×104т космической пыли, состав которой известен. Среди каменных метеоритов, падающих на Землю, встречаются т. н. базальтические ахондриты , по составу близкие к поверхностным породам Луны и земным базальтам (Si/Mg » 6,5). В связи с этим возникла гипотеза, что их источником является Луна (поверхностные породы её коры).

  Эти и др. процессы в космосе сопровождаются облучением вещества (галактическим и солнечным излучением высоких энергий) на многочисленных стадиях его превращения, что ведёт, в частности, к превращению одних изотопов в другие, а в общем случае – к изменению изотопного или атомного состава вещества. Чем длительнее и разнообразнее процессы, в которые было вовлечено вещество, тем дальше оно по химическому составу от первичного звёздного (солнечного) состава. В то же время изотопный состав космического вещества (например, метеоритов) даёт возможность определить состав, интенсивность и модуляцию галактического излучения в прошлом.

  Результаты исследований в области К. публикуются в журналах «Geochimica et Cosmochimica Acta» (N. Y., с 1950) и «Геохимия» (с 1956).

  Лит.: Виноградов А. П., Высокотемпературные протопланетные процессы, «Геохимия»,1971, в. 11; Аллер Л. Х., Распространенность химических элементов, пер. с англ., М., 1963; Сиборг Г. Т., Вэленс Э. Г., Элементы Вселенной, пер. с англ., 2 изд., М., 1966; Merrill P. W., Space chemistry, Ann Arbor, 1963; Spitzer L., Diffuse matter in space, N. Y.,1968; Snyder L. E., Buhl D., Molecules in the interstellar medium, «Sky and Telescope», 1970, v. 40, p. 267, 345.

  А. П. Виноградов.


    Ваша оценка произведения:

Популярные книги за неделю