355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Большая Советская Энциклопедия » Большая Советская Энциклопедия (КО) » Текст книги (страница 104)
Большая Советская Энциклопедия (КО)
  • Текст добавлен: 6 октября 2016, 05:51

Текст книги "Большая Советская Энциклопедия (КО)"


Автор книги: Большая Советская Энциклопедия


Жанр:

   

Энциклопедии


сообщить о нарушении

Текущая страница: 104 (всего у книги 218 страниц)

Кондаков Никодим Павлович

Кондако'в Никодим Павлович [1(13).11.1844, деревня Халань Новооскольского уезда Курской губернии, – 17.2.1925, Прага], русский историк византийского и древнерусского искусства, академии Петербургской АН (1898), действительный член петербургской АХ (1893). Учился в Московском университете (1861—65). Преподавал в университетах в Одессе (1870—88), Петербурге (1888—1917). С 1920 жил за рубежом, с 1922 преподавал в университете в Праге. Разработал иконографический (см. Иконография ) метод изучения памятников искусства, анализировал преимущественно их типологические особенности, а также бытовые, культурные и политические причины, вызывавшие эти особенности.

  Соч.: История византийского искусства и иконографии по миниатюрам греческих рукописей, Од., 1876; Византийские эмали. Собрание А. В. Звенигородского. История и памятники византийской эмали, СПБ, 1892: Археологическое путешествие по Сирии и Палестине, СПБ, 1904; Иконография Богоматери, т. 1—2, СПБ. 1914—15.

  Лит.: Лазарев В. Н., Н. П. Кондаков. 1844—1925, М., 1925 (есть полный перечень трудов Н. П. Кондакова).

Кондаковское плоскогорье

Кондако'вское плоского'рье , на С-В. Якутской АССР, на правобережье низовьев р. Индигирки. С Ю. ограничено хребтом Улахан-Сис. Длина около 200 км , ширина 150 км . Высота до 480—490 м . Сложено песчаниками, алевролитами и сланцами верхней юры. Поверхность сильно расчленена речными долинами и покрыта горно-тундровой растительностью; на Ю. в долинах – лиственничные тундролесья.

Кондамин Шарль Мари де ла

Кондами'н (La Condamine) Шарль Мари де ла (28.1.1701, Париж, – 4.2.1774, там же), французский астроном, геодезист и путешественник, член Парижской АН (1760). В 1736—43 участвовал в Перуанской экспедиции, в ходе которой была измерена в Андах (район Кито-Куэнка) дуга меридиана длиной более 3°; это измерение вместе с результатами работ Лапландской экспедиции (1735—44) послужило основанием для первого достоверного определения сплюснутости Земли. К. составил первую сравнительно точную карту Амазонки. Впервые дал подробное описание методов изготовления каучуковых изделий, что способствовало ознакомлению европейцев с каучуком. Был почётным член Петербургской, Берлинской и др. академий.

Конде Луи I Бурбон

Конде' (Condé) Луи I Бурбон (Bourbon) (7.5.1530, Вандом, – 13.3.1569, Жарнак), принц, вождь французских кальвинистов (гугенотов ). Родоначальник дома Конде (боковой ветви Бурбонов). Младший брат Антуана Бурбона . В 1559 возглавил гугенотскую знать, был одним из организаторов Амбуазского заговора против Гизов . В Религиозных войнах командовал армией гугенотов (битвы при Дрё в 1562, Сен-Дени в 1567). В битве при Жарнаке (1569) взят в плен и убит.

Конде Луи II Бурбон

Конде' (Condé) Луи II Бурбон (Bourbon) (8.9.1621, Париж, – 11.12. 1686, Фонтенбло), французский полководец. До 1646 (когда умер его отец) герцог Ангиенский, затем принц Конде. В период Тридцатилетней войны 1618– 1648 под его командованием французские войска одержали блестящую победу при Рокруа (1643) над испанцами. Его дальнейшие победы при Фрейбурге, Нёрдлингене (1644—45, совместно с А. Тюренном ), Дюнкерке (1646) и Лансе (1648) ускорили заключение выгодного для Франции Вестфальского мира 1648 . В начале Фронды К. командовал правительственными войсками, осаждавшими Париж (1649), затем возглавил феодальную оппозицию и стремился захватить власть. В 1650 был арестован. После освобождения (1651) встал во главе «Фронды принцев». Потерпел поражение под Парижем (1652) в сражении с войсками Тюренна. По окончании Фронды бежал в Нидерланды и был назначен главнокомандующим испанской армией, во главе которой опустошал Северную Францию (1653—58). В 1660 К. возвратился во Францию. В 1668 (во время Деволюционной войны ) К. за 2 недели завоевал Франш-Конте. В 1672—75 успешно руководил военными операциями в войне Франции с Голландией (1672—78). Современники прозвали его «Великим К.».

  Лит.: Malo Н., Le Grand Condé. P., 1937: Mongredien G., Le Grand Condé, P., 1959.

Конденсат газовый

Конденса'т га'зовый , продукт, выделенный из природного газа и представляющий собой смесь жидких углеводородов (содержащих больше 4 атомов C в молекуле). В природных условиях К. г.– раствор в газе более тяжёлых углеводородов (см. Обратная конденсация ). Содержание К. г. в газах различных месторождений колеблется от 12 до 700 см3 на 1 м3 газа. Выделенный из природного газа при снижении давления и (или) температуры в результате обратной конденсации К. г. по внешнему виду – бесцветная или слабоокрашенная жидкость плотностью 700 – 800 кг/м3 с температурой начала кипения 30—70 °С . Состав К. г. примерно соответствует бензиновой или керосиновой фракции нефти или их смеси. К. г. – ценное сырьё для производства моторных топлив, а также для химической переработки. Добычу К. г. при благоприятных геологических условиях осуществляют с обратной закачкой в пласт газа, очищенного от бензиновой фракции. Такой способ позволяет избежать потерь К. г. в недрах из-за конденсации при снижении пластового давления. Для извлечения конденсата из газа применяют масляную абсорбцию или низкотемпературную сепарацию . Полученный Конденсат газовый содержит много растворённого газа (этан-бутановых фракций) – так называемый нестабильный конденсат. Для доставки такого К. г. потребителю наливным транспортом его стабилизируют ректификацией или выдерживают при атмосферном давлении и повышенной температуре для удаления легколетучих фракций. Во избежание потерь пропан-бутановых фракций ректификацию ведут в несколько ступеней. Практикуется также доставка нестабильного К. г. по трубопроводу под собственным давлением на газобензиновые заводы для извлечения легколетучих фракций и окончательной переработки.

  В связи с ростом добычи природного газа в СССР полное извлечение К. г. из недр становится важной задачей.

  Лит.: Великовский А. С., Юшкин В. В., Газоконденсатные месторождения, М., 1959; Руководство по добыче, транспорту и переработке природного газа, М., 1965.

  Б. В. Дегтярев.

Конденсатоотводчик

Конденсатоотво'дчик, устройство для автоматического отвода конденсата (см. Конденсация ) из паропотребляющих аппаратов и паропроводов. Отвод конденсата без пропуска пара необходим для сокращения расхода пара и предотвращения гидравлических ударов в паропроводах. По принципу работы различают К.: поплавковые, сопловые и термостатические. Действие поплавковых К. основано на использовании различия плотностей пара и конденсата. В К. с поплавком, открытым сверху или снизу, при поступлении пара конденсат вытесняется из поплавка, последний всплывает и при помощи штока закрывает пропускное отверстие. Отвод конденсата из К. – периодический. Поплавковые К. с герметически закрытым шарообразным поплавком снабжены золотниковым или шиберным затвором. Отвод конденсата производится непрерывно по мере его накопления. Диаметр проходного отверстия в сопловых К. рассчитывается на пропуск конденсата. При работе таких К. используется различие удельных объёмов конденсата и пара. Отвод конденсата непрерывный. Термостатические К. имеют герметически закрытую, пружинящую ёмкость, в которой находится жидкость с относительно высокой упругостью паров (например, толуол). При заполнении К. паром, температура которого выше температуры конденсата, ёмкость в результате испарения жидкости деформируется и клапан, перемещаясь, закрывает проходное отверстие. Конденсат из К. отводится периодически.

  Лит.: Бакластов А. М., Проектирование, монтаж и эксплуатация теплоиспользующих установок, М., 1970.

  Р. П. Сазонов.

Схемы конденсатоотводчиков: а – с поплавком, открытым сверху; б – с герметически закрытым поплавком; в – сопловой; г – термостатический; 1 – корпус; 2 – поплавок; 3 – клапан; 4 – сопло; 5 – пружинящая ёмкость.

Конденсатор

Конденса'тор (от лат. condense – уплотняю, сгущаю), аппарат для осуществления перехода вещества из газообразного (парообразного) состояния в жидкое или твёрдое. Широко используется в химической технологии, в теплоэнергетических и холодильных установках для конденсации рабочего вещества, в испарительных установках для получения дистиллята, разделения смесей паров и т. д. Конденсация пара в К. происходит в результате соприкосновения его с поверхностью твёрдого тела (поверхностные К.) или жидкости (контактные К.), имеющих температуру более низкую, чем температура насыщения пара при данном давлении. Конденсация пара сопровождается выделением тепла, затраченного ранее на испарение жидкости, которое должно отводиться какой-либо охлаждающей средой.

  Поверхностные К. обычно выполняются в виде пучка горизонтальных или вертикальных труб. При этом охлаждающая среда (вода, рассол, воздух) может протекать внутри труб, а пар– поступать в пространство между трубами и конденсироваться на их наружной поверхности или наоборот. Пространство, в котором происходит конденсация, может быть под атмосферным, повышенным или пониженным давлением. По устройству поверхностные К. аналогичны др. поверхностным теплообменникам (обычно кожухотрубным) и используются в тех случаях, когда конденсат необходимо сохранить в чистом виде.

  Если при конденсации пара образуется жидкость, она стекает с поверхности теплообмена под действием силы тяжести или увлекается движущимся паром; если же образуется твёрдая фаза (например, лёд), она непрерывно или периодически удаляется скребками или др. устройствами. При использовании в качестве охлаждающей среды воздуха или др. газа поверхность К. с целью интенсификации теплообмена обычно снабжается со стороны этой среды ребрами. В контактных К. образующийся конденсат смешивается с охлаждающей жидкостью и отводится вместе с ней. В зависимости от взаимного направления движения пара и жидкости К. бывают прямоточные, противоточные или с перекрёстным током. Конденсат обычно удаляется из К. насосом, а неконденсирующиеся газы отсасываются вакуум-насосом. Для увеличения поверхности соприкосновения пара с жидкостью последняя разделяется в контактном К. (при помощи переливных устройств, дырчатых тарелок, распыливающих сопл или др. устройств) на струи и капли, на поверхности которых происходит конденсация пара. Иногда пар подаётся в объём жидкости и пронизывает её (барботирует) в виде пузырей, на поверхности которых происходит конденсация. Для обеспечения нормальной работы К. снабжается рядом вспомогательных устройств, вместе с которыми он образует конденсационную установку .

  Лит.: Шумский К. П., Вакуумные конденсаторы химического машиностроения, М., 1961; Кирсанов И. Н., Конденсационные установки, М.—Л., 1965; Касаткин А. Г., Основные процессы и аппараты химической технологии, 8 изд., М., 1971.

  Л. Д. Берман.

Конденсатор электрический

Конденса'тор электри'ческий, система из двух или более электродов (обкладок), разделённых диэлектриком , толщина которого мала по сравнению с размерами обкладок; такая система электродов обладает взаимной электрической ёмкостью . К. э. в виде готового изделия применяется в электрических цепях там, где необходима сосредоточенная ёмкость. Диэлектриком в К. э. служат газы, жидкости и твёрдые электроизоляционные вещества, а также полупроводники. Обкладками К. э. с газообразным и жидким диэлектриком служит система металлических пластин с постоянным зазором между ними. В К. э. с твёрдым диэлектриком обкладки делают из тонкой металлической фольги или наносят слои металла непосредственно на диэлектрик. Для некоторых типов К. э. на поверхность металлической фольги (1-я обкладка) наносится тонкий слой диэлектрика; 2-й обкладкой является металлическая или полупроводниковая плёнка, нанесённая на слой диэлектрика с другой стороны, или электролит, в который погружается оксидированная фольга. В интегральных схемах применяются два принципиально новых вида К. э.: диффузионные и металл-окисел-полупроводниковые (МОП). В диффузионных К. э. используется ёмкость созданного методом диффузии р —n -перехода, которая зависит от приложенного напряжения. В К. э. типа МОП в качестве диэлектрика используется слой двуокиси кремния, выращенный на поверхности кремниевой пластины. Обкладками служат подложка с малым удельным сопротивлением (кремний) и тонкая плёнка алюминия.

  При подключении К. э. к источнику постоянного тока на его обкладках накапливается электрический заряд Q = C × U; выражая Q в кулонах и U (напряжение на обкладках К. э.) в вольтах, получим С – ёмкость К. э. в фарадах. Ёмкость К. э. с обкладками в виде двух параллельных плоских пластин равна:

 (пф),

где e – диэлектрическая проницаемость вакуума, e =  8,85×10-3пф/мм;e – относительная диэлектрическая проницаемость диэлектрика (e ³1), S – площадь плоской обкладки в мм2 , b – расстояние между обкладками в мм.

  Ёмкость цилиндрического К. э. (два коаксиальных полых цилиндра разделенных диэлектриком) равна:

 (пф),

где l – длина цилиндра в мм ; D2 внутренний диаметр внешнего цилиндра в мм; D1 внешний диаметр внутреннего цилиндра в мм. При этом не учитываются искажения однородности электрического поля у краев обкладок (краевой эффект), и потому эти расчёты дают несколько заниженные значения ёмкости C ; точность расчёта возрастает при уменьшении отношения  (для плоского К. э.) и  (для цилиндрического К. э.).

  К. э. часто включаются группами (батареей); для параллельного соединения К. э. общая ёмкость батареи Сб = C1 + C2 +...+ Cn , а для последовательного соединения

Сб =

,

где C1 , C2 ,..., Cn – ёмкости отдельных К. э., составляющих батарею. При включении в цепь переменного тока частотой f гц через К. э. протекает реактивный (ёмкостный) ток

,

где U — напряжение, приложенное к обкладкам К. э., xc реактивное сопротивление К. э.

 (ом)

при условии, что f в гц, а С – в ф.

  Зависимость реактивного сопротивления К. э. от частоты используется в электрических фильтрах . Вектор тока, протекающего через К. э., опережает вектор напряжения, приложенного к его обкладкам, на угол j » 90°, это позволяет применить К. э. для повышения мощности коэффициента промышленных установок с индуктивной нагрузкой, для продольной компенсации в линиях электропередачи , в конденсаторных асинхронных двигателях и т. п. Реактивная мощность К. э. Pp =2pfU2 C (вар), где U — в в, f — в гц, С – в ф. К основным параметрам К. э. (см. табл. ) относятся: номинальная ёмкость – Сн ; допуск по номинальной ёмкости

,

где Си – измеренное значение ёмкости К. э.; рабочее (номинальное) напряжение Uн , при котором К. э. надёжно работает длительный промежуток времени (обычно более 1000 ч ); испытательное напряжение Uис , которое К. э. должен выдерживать в течение определенного промежутка времени (2—5 сек, иногда до 1 мин ) без пробоя диэлектрика; пробивное напряжение Uпр (постоянный ток), вызывающее пробой диэлектрика за промежуток времени в несколько сек ; угол потерь d – чем d   больше, тем большая часть энергии выделяется на нагрев К. э.; потери активной мощности Ра = 2pfU2 ×Сн ×tg d(вт), где d – угол потерь, U – в в , Сн – в ф, f – в гц; температурный коэффициент ёмкости (ТКЕ), характеризующий зависимость изменения ёмкости К. э. от температуры; сопротивление изоляции Rиз между выводами К. э. при подаче на них постоянного напряжения.

  К. э. обладают индуктивностью L, вследствие чего полное сопротивление К. э. часто не является преимущественно емкостным в любом диапазоне частот; применять К. э. целесообразно только при частотах f (f – собственная резонансная частота К. э.), т. к. при f >f сопротивление имеет преимущественно индуктивный характер. Надёжность К. э. определяется вероятностью его безотказной работы в течение гарантированного срока службы; иногда надёжность выражают в виде интенсивности отказов К. э. Для сравнительной оценки качества К. э. применяются удельная ёмкость

 пф/см3 ,

где Vк см3 активный объём К. э., и удельная стоимость, т. е. стоимость К. э., отнесённая к накопленной в К. э. энергии или заряду. Удельная стоимость К. э. всегда снижается по мере увеличения размеров К. э.

  По применению различают К. э. низкого напряжения низкой частоты (большая удельная ёмкость Су ), низкого напряжения высокой частоты (малые ТКЕ и tg d , высокая Су ), высокого напряжения постоянного тока (высокое Rиз ), высокого напряжения низкой и высокой частоты (высокая удельная реактивная мощность). К. э. выпускаются постоянной ёмкости, переменной ёмкости и полупеременные (триммеры). Параметры, конструкция и область применения К. э. определяются диэлектриком, разделяющим его обкладки, поэтому основная классификация К. э. проводится по типу диэлектрика.

  К. э. с газообразным диэлектриком (воздушные, газонаполненные и вакуумные) имеют весьма малые значения tg d и высокую стабильность ёмкости (см. табл. ). Воздушные К. э. постоянной ёмкости применяют в измерительной технике в основном как образцовые К. э. Воздушные К. э. рекомендуется применять при напряжениях не выше 1000 в. В электрических цепях высокого напряжения (свыше 1000 в ) применяют газонаполненные (азот, фреон и др.) и вакуумные К. э. Вакуумные К. э. имеют меньшие потери, малый ТКЕ и более устойчивы к вибрациям по сравнению с газонаполненными. Рабочее напряжение для вакуумных К. э. постоянной ёмкости от 5 до 45 кв. Наиболее целесообразно вакуумные К. э. использовать при работе в диапазоне частот от 1 до 10 Мгц. Значение пробивного напряжения вакуумных К. э. не зависит от атмосферного давления, поэтому они широко применяются в авиационной аппаратуре. Основной недостаток К. э. с газообразным диэлектриком – весьма низкая удельная ёмкость.

  К. э. с жидким диэлектриком имеют при тех же размерах, что и К. э. с газообразным диэлектриком, большую ёмкость, т. к. диэлектрическая проницаемость у жидкостей выше, чем у газов; однако такие К. э. имеют большой ТКЕ и большие диэлектрические потери , по этим причинам они не перспективны.

  К К. э. с твёрдым неорганическим диэлектриком относятся стеклянные, стеклоэмалевые и стеклокерамические, керамические (низкочастотные и высокочастотные) и слюдяные К. э. Стеклянные, стеклоэмалевые и стеклокерамические К. э. представляют собой многослойный пакет, состоящий из чередующихся слоев диэлектрика и обкладок (из серебра и др. металлов). В качестве диэлектрика используются конденсаторное стекло, низкочастотная или высокочастотная стеклоэмаль и стеклокерамика. Эти К. э. имеют относительно малые потери, малые ТКЕ, устойчивы к воздействию влажности и температуры, имеют большое сопротивление изоляции. Долговечность этих К. э. при номинальном напряжении и максимальной рабочей температуре не менее 5000 ч. Керамические К. э. представляет собой поликристаллический керамический диэлектрик, на который вжиганием нанесены обкладки (из серебра, платины, палладия). К обкладкам припаяны выводы, и вся конструкция покрыта влагозащитным слоем. Керамические К. э. подразделяют на низковольтные высокочастотные (малые потери, высокая резонансная частота, малые габариты и масса), низковольтные низкочастотные (повышенная удельная ёмкость, относительно большие потери) и высоковольтные К. э. (от 4 до 30 кв ), в которых используется специальная керамика, имеющая высокое пробивное напряжение.

  В 1960-х гг. в связи с развитием полупроводниковой техники, применявшей рабочие напряжения главным образом до 30 в , широкое распространение получили керамические К. э. на основе тонких (около 0,2 мм ) керамических плёнок. Применение сегнетокерамики в качестве диэлектрика позволило получить удельную ёмкость порядка 0,1 мкф/см3 . Эти К. э. рекомендуется ставить в низковольтных низкочастотных цепях. В слюдяных К. э. диэлектриком служит слюда, расщепленная на тонкие пластинки до 0,01 мм. Слюдяные К. э. имеют малые потери, высокое пробивное напряжение и высокое сопротивление изоляции. Электроды в слюдяных К. э. делают из фольги или наносят на слюду испарением металла в вакууме либо вжиганием. Слюдяные низковольтные К. э. широко применяют в радиотехнике (электрические фильтры, цепи блокировки и т. п.). Недостаток слюдяных К. э. – малая временная и температурная стабильность ёмкости, особенно у К. э. с обкладками из фольги.

  К. э. с твёрдым органическим диэлектриком изготавливают намоткой длинных тонких лент диэлектрика и фольги (обкладки); иногда применяют обкладки в виде нанесённого на диэлектрик слоя металла (цинк, алюминий) толщиной 0,03—0,05 мкм. В бумажных К. э. диэлектриком служит специальная конденсаторная бумага; эти К. э. имеют относительно большие потери, повышенную удельную стоимость. Эффективное использование бумажных К. э. возможно при частотах до 1 Мгц. Бумажные К. э. широко применяются в низкочастотных цепях высокого напряжения при большой силе тока, например для повышения коэффициента мощности (cos j ).

  В металлобумажных К. э. применением металлизированных обкладок достигается большая удельная ёмкость (по сравнению с бумажными К. э.), однако уменьшается сопротивление изоляции. Металлобумажные К. э. обладают свойством «самовосстанавливаться» после единичных пробоев. Бумажные и металлобумажные К. э. не рекомендуется применять в цепях с очень низким (по сравнению с номинальным) напряжением.

  В пленочных К. э. диэлектриком служит синтетическая плёнка (полистирол , фторопласт и др.). Плёночные К. э. имеют большие сопротивления изоляции, большие ТКЕ, малые потери, относительно малую удельную стоимость. В комбинированных (бумажно-плёночных) К. э. совместное применение бумаги и плёнки увеличивает сопротивление изоляции и напряжение пробоя, отчего повышается надёжность К. э. Наибольшей удельной ёмкостью обладают лакоплёночные К. э. с тонкими металлизированными плёнками. Эти К. э. по удельной ёмкости приближаются к электролитическим К. э., но имеют лучшие электрические характеристики и допускают эксплуатацию при знакопеременном напряжении.

  В электролитических (оксидных) К. э. диэлектриком является оксидная плёнка, нанесённая электролитическим способом на поверхность пластинки из алюминия, тантала, ниобия или титана, которая служит одной из обкладок К. э. Второй обкладкой служит жидкий, полужидкий или пастообразный электролит или полупроводник. Электролитические К. э. обладают большой удельной ёмкостью, имеют большие потери и ток утечки, малую стабильность ёмкости. Наилучшие по своим электрическим характеристикам – оксидно-полупроводниковые электролитические К. э., однако их удельная стоимость пока ещё высока. Эксплуатация электролитических К. э. возможна только при определённой полярности напряжения на обкладках, что ограничивает допустимую величину переменной составляющей рабочего напряжения. В связи с этим электрические К. э., как правило, применяют только в цепях постоянного и пульсирующего тока низкой частоты (до 20 кгц ) в качестве блокировочных конденсаторов, в цепях развязки, в электрических фильтрах и т. п.

  К. э. переменной ёмкости и полупеременные изготовляются с механически и электрически управляемой ёмкостью. Изменение ёмкости в К. э, с механическим управлением достигается чаще всего изменением площади его обкладок или (реже) изменением зазора между обкладками. Наибольшее распространение получили воздушные К. э. переменной ёмкости – две группы параллельных пластин, из которых одна группа (ротор) может перемещаться так, что её пластины заходят в зазоры между пластинами др. группы (статора). Ёмкость К. э. изменяют, меняя взаимное угловое положение пластин статора и ротора. К. э. переменной ёмкости с твёрдым диэлектриком (керамические, слюдяные, стеклянные, плёночные) в основном используются как полупеременные (подстрочные) с относительно небольшим изменением ёмкости.

  В К. э. с электрическим управлением ёмкостью применяют два типа твёрдого диэлектрика: сегнетоэлектрик (вариконд ) и полупроводник с запорным слоем (варикап , семикап и т. д.). Вариконды увеличивают свою ёмкость с увеличением напряжения на обкладках. В варикапах для изменения ёмкости используется зависимость ширины p – n -перехода от приложенного напряжения: с увеличением напряжения ёмкость снижается вследствие увеличения ширины p – n- перехода. Варикапы имеют большую по сравнению с варикондами стабильность ёмкости и меньшие потери при высоких частотах.

  Принятая в СССР система сокращённых обозначений К. э. постоянной ёмкости состоит из четырёх индексов: 1-й индекс (буквенный) К – конденсатор; 2-й (цифровой) – группа К. э. по виду диэлектрика; 3-й (буквенный) – назначение К. э. (П– для работы в цепях постоянного и переменного тока, Ч – для работы в цепях переменного тока, У – для работы в цепях постоянного и переменного тока и в импульсных режимах, И – для работы в импульсных режимах, К. э., у которых нет индекса, – для работы в цепях постоянного и пульсирующего тока); 4-й индекс – порядковый номер исполнения К. э. Пример обозначения: К15И-1 – К. э. постоянной ёмкости, керамический, предназначен для работы в импульсных режимах.

  Для К. э. переменной ёмкости с механическим управлением приняты следующие обозначения: два первых индекса (буквенных) КТ – подстроечные (полупеременные), КП – переменной ёмкости; третий индекс (цифровой) обозначает вид используемого диэлектрика. Для К. э. с электрически управляемой ёмкостью применяется обозначение КН (конденсатор нелинейный); третий индекс обозначает основной параметр К. э. (коэффициент усиления) и четвёртый – назначение К. э.

Основные параметры конденсаторов постоянной ёмкости, изготавливаемых в СССР


Тип конденсатора Пределы номинальной емкости, пфПределы напряжения, вУдельная емкость (ср. знач.), пф/см3ТКЕ ´ 106 (град.)-1 * tg d ´ 104 при частоте f
tg d ´ 104f (гц)
Воздушный 5×101 ¸4×103102 ¸1030,1 +(20¸100) 0,1¸5 106
Вакуумный 10¸103103 ¸4,5×1040,1 +(20¸30) 0,1¸3 106
Стеклоэмалевый 10¸103102 ¸103103+65¸-130 (нормирован) 15 106
Стеклокерамический 10¸5×103102 ¸5×102104±(30¸300) 20¸30 106
Керамический высокочастотный 1¸105102 ¸103103+120¸-1300 (нормирован) 12¸15 106
Керамический низкочастотный 102 ¸106102 ¸3×102105350 103
Слюдяной 10¸4×105102 ¸104103±50¸±200) 10¸20 106
Бумажный 102 ¸107102 ¸1,5×103104100 103
Металлобумажный 2,5×104 ¸108102 ¸1,5×103105150 103
Плёночный полистирольный 102 ¸1046×10¸1,5×104103-200 10 103 ¸106
Плёночный ПЭТФ 102 ¸108102 ¸1,6×104104-200 20 103
Лакоплёночный 105 ¸10810¸102106150 103
Электролитический алюминиевый 105 ¸10104¸5×1021082×10350
Танталовый 105 ¸1093¸6×1022×10810350
Оксиднополупроводниковый 104 ¸1091,5¸30 1085×10250

* ТКЕ не указан для тех типов К. э., у которых изменения ёмкости от температуры относительно велики и нелинейны.

  Лит.: Ренне В. Т., Электрические конденсаторы, 3 изд., Л., 1969.

  А. В. Кочеров.


    Ваша оценка произведения:

Популярные книги за неделю