Текст книги "Избранные научные труды"
Автор книги: Нильс Бор
Жанр:
Физика
сообщить о нарушении
Текущая страница: 35 (всего у книги 58 страниц)
Так как неопределённость Δ𝑞 в положении частицы на плоскости диафрагмы измеряется радиусом отверстия 𝑎 и так как θ≈1/σ𝑎, то, применяя (1), мы получаем как раз Δ𝑝≈θ𝑃≈ℎΔ𝑞 в согласии с соотношением неопределённостей (3). Этот результат можно было бы получить и непосредственно, если учесть пространственную ограниченность волнового ноля в том месте, где находится отверстие. Вследствие этого обстоятельства составляющая волнового числа, параллельная плоскости диафрагмы, определена лишь внутри промежутка шириной Δσ≈1/𝑎≈1/(Δ𝑞). Подобно этому ширина разброса частот гармонических составляющих в ограниченной последовательности волн на рис. 2,б равна, очевидно, Δν≈1/Δ𝑡 причём Δ𝑡 означает промежуток времени, в течение которого затвор оставляет отверстие открытым; тем самым Δ𝑡 представляет неопределённость в моменте прохождения частицы сквозь диафрагму. Отсюда по формуле (1) мы получим
Δ
𝐸
⋅
Δ
𝑡
≈
ℎ,
(4)
опять-таки в согласии с уравнением (3) для обеих сопряженных переменных 𝐹 и 𝑡.
С точки зрения законов сохранения происхождение таких неопределённостей (входящих в описание состояния частицы после прохождения её сквозь Диафрагму) можно отнести на счёт возможности обмена количеством движения и энергией с диафрагмой или же с затвором. В системе отсчёта, которая рассматривается на рис. 2, а и б, скоростью диафрагмы можно пренебречь; тогда нужно будет принимать во внимание один только обмен количеством движения между частицей и диафрагмой. Но затвор, который держит отверстие открытым в течение времени Δ𝑡, движется со значительной скоростью 𝑣=𝑎/Δ𝑡. Поэтому с переносом количества движения Δ𝑝 будет связан и обмен энергией с частицей, равный
𝑣
Δ
𝑝
=
Δ𝑞Δ𝑝
Δ𝑡
≈
ℎ
Δ𝑡
,
т.е. точно такого же порядка величины, как и неопределённость в энергии Δ𝐸 получаемая из (4), так что закон сохранения количества движения и энергии будет соблюдаться.
Задача, поставленная Эйнштейном, состояла в том, чтобы выяснить, до какой степени контроль над переносом количества движения и энергии (переносом, связанным с определением положения частицы) может быть использован для более детального описания состояния частицы после её прохождения через дырку. При этом мы должны иметь в виду следующее. До сих пор диафрагма и затвор считались точно связанными с пространственно-временно́й системой отсчёта, так что положение и движение их в этой системе считались точно известными. Такое предположение означает существенную неопределённость в энергии и количестве движения этих тел, которая, впрочем, может и не влиять заметным образом на скорости, если только диафрагма и затвор достаточно тяжелы. Однако как только мы захотим узнать количество движения и энергию этих частей измерительного прибора с такой точностью, которая была бы достаточной для контролирования обмена количеством движения и энергией с исследуемой частицей, дело изменится. Мы потеряем тогда – в согласии с общими соотношениями неопределённостей – возможность точного определения положения диафрагмы и затвора в пространстве и времени. Поэтому мы должны проследить, до какой степени это обстоятельство повлияет на предполагаемое использование всей установки, и как раз этот кардинальный пункт и выявляет, как мы увидим, дополнительный характер явлений.
Возвращаясь на минуту к случаю простой установки, изображенной на рис. 1, заметим, что мы ещё не уточняли, для чего она должна служить. В самом деле, невозможность более точно предсказать место попадания частицы на фотографическую пластинку логически вытекает из аппарата квантовой механики только в том случае, если предположить, что диафрагма и пластинка имеют точно определённые положения в пространстве. Если же допустить достаточно большую неточность в знании положения диафрагмы, то в принципе возможно проконтролировать передачу количества движения на диафрагму и тем самым сделать более точные предсказания относительно направления пути электрона от дырки до точки встречи с пластинкой. С точки зрения квантовомеханического описания мы имеем здесь дело с системой двух тел, состоящей из диафрагмы и частицы. Непосредственное применение законов сохранения к системе именно такого рода встречается при изучении эффекта Комптона; например, наблюдение отдачи электрона при помощи камеры Вильсона даёт нам возможность предсказать, в каком направлении будет наблюдаться рассеянный фотон.
В ходе дискуссий важность такого рода рассуждений была освещена на очень интересном примере установки, в которой между экраном со щелью и фотографической пластинкой поставлен второй экран с двумя параллельными щелями, как показано на рис. 3. Если параллельный пучок электронов (или фотонов) падает слева на первую диафрагму, то при обычных условиях опыта мы будем наблюдать на фотопластинке интерференционную картину, изображенную штриховкой на правой стороне рисунка (вид фотопластинки спереди). При интенсивном облучении эта картина складывается путём накопления многочисленных единичных процессов, причём каждый из них даёт по одному маленькому пятну на фотографической пластинке. Распределение этих пятен следует простому закону, который выводится из волнового анализа. Такое же распределение должно получаться и из статистики по большому числу опытов, произведённых с облучением столь слабым, что при каждой отдельной экспозиции до пластинки дойдет только один электрон (или фотон), который и проявится в одной-единственной точке, как это показано звездочкой на рисунке. В этом случае следует ожидать, что импульс, сообщенный первой диафрагме, будет различным в зависимости от того, пройдет ли электрон сквозь верхнюю или сквозь нижнюю щель второй диафрагмы (см. пунктирные стрелки на рис. 3). Опираясь на это, Эйнштейн указал, что контроль над переданным импульсом позволил бы произвести более подробный анализ процесса и, в частности, дал бы возможность решить, через которую из двух щелей прошёл электрон перед тем, как попасть на пластинку.
Рис. 3
Более тщательное рассмотрение показало, однако, что предложенный контроль над передачей количества движения невозможен без неточности в знании положения диафрагмы, неточности, исключающей возникновение интерференционных явлений. Действительно, если ω означает малый угол между предполагаемыми путями частицы через верхнюю и через нижнюю щели, то разность между переданными импульсами в обоих случаях будет согласно (1) равна ℎσω и всякий контроль над количеством движения диафрагмы с точностью, достаточной для измерения этой разности, повлечёт за собой неточность в определении положения диафрагмы по крайней мере порядка 1/σω согласно соотношению неопределённостей. Если диафрагма с двумя щелями поставлена посередине между первой диафрагмой и фотопластинкой, как на рис. 3, то видно, что число полос на единицу длины как раз равно σω, а так как неопределённость 1/σω в положении первой диафрагмы вызывает такую же неопределённость в положении полос, то, следовательно, никакой интерференции произойти не может. Такой же результат получается, как легко можно показать, для любого другого положения второй диафрагмы между первой диафрагмой и пластинкой; то же самое получилось бы, если бы для контроля (с указанной выше целью) над передачей импульса употреблялась не первая диафрагма, а вторая или же фотопластинка.
Этот пункт логически очень важен, так как только то обстоятельство, что мы стоим перед выбором или следить за траекторией частицы, или же наблюдать интерференцию, позволяет нам избежать парадоксального вывода о том, что поведение электрона или фотона должно зависеть от наличия в экране щели, сквозь которую он заведомо не проходил. Мы имеем здесь типичный пример того, как дополнительные явления протекают при взаимно исключающих друг друга экспериментальных условиях (стр. 407); при анализе квантовых эффектов мы стоим перед невозможностью провести резкую границу между поведением атомных объектов самих по себе и их взаимодействием с измерительными приборами, которые определяют самые условия возникновения явлений.
Наши разговоры о той позиции, которую следует занять перед лицом новой ситуации в области анализа и синтеза опытов, естественно, коснулись многих вопросов философского порядка, но при всём различии в нашем подходе и в наших мнениях споры воодушевлялись духом юмора. Со своей стороны, Эйнштейн насмешливо спрашивал нас, неужели мы действительно верим, что божественные силы прибегают к игре в кости («...оЬ der liebe Gott würfelt»), а я на это отвечал, что уже мыслители древности указывали на необходимость величайшей осторожности в присвоении провидению атрибутов, выраженных в понятиях повседневной жизни. Я вспоминаю также, как в самый разгар спора Эренфест, со свойственной ему милой манерой поддразнивать своих друзей, шутливо указал на очевидную аналогию между позицией Эйнштейна и той позицией, которую занимают противники теории относительности. Но тотчас же Эренфест добавил, что он не обретет душевного покоя до тех пор, пока не будет достигнуто согласие с Эйнштейном.
*
Рис. 4
Сомнения Эйнштейна и его критика дали нам всем чрезвычайно ценный толчок к тому, чтобы вновь рассмотреть различные аспекты той ситуации, с которой мы сталкиваемся при описании атомных явлений. Я был рад воспользоваться этим поводом, чтобы ещё отчётливее выяснить роль измерительных приборов; и для того, чтобы возможно яснее и нагляднее показать взаимно исключающий характер условий опытов, при которых возникают дополнительные явления, я попробовал тогда набросать различные приборы в псевдореалистическом стиле, примеры которого показаны на приведённых здесь рисунках. Для изучения такого явления интерференции, как на рис. 3, естественно использовать экспериментальную установку, изображенную на рис. 4. Здесь неподвижные части прибора (диафрагмы и подставка для пластинки) закреплены шурупами на общей доске. В такой установке наше знание относительных положений диафрагм и пластинки обеспечивается жестким креплением их, но благодаря ему здесь, очевидно, невозможно контролировать перенос количества движения от частицы к различным частям прибора. Единственная при такой установке возможность убедиться, что частица прошла через одну определённую щель во втором экране, состоит в том, чтобы закрыть другую щель затвором, как показано на рис. 4. Но если щель закрыта, то, конечно, не может возникнуть и интерференция, и мы будем наблюдать на пластинке сплошное распределение, как и в случае одной неподвижной диафрагмы на рис. 1.
Рис. 5
При изучении явлений, для описания которых необходимо знание детального баланса количества движения, очевидно, нужно допустить, чтобы некоторые части всего прибора могли свободно двигаться (независимо друг от друга). На рис. 5 изображен такой прибор, в котором экран со щелью подвешен на твердом ярме при помощи слабых пружинок. Ярмо привинчено к той же доске, на которой укреплены и остальные неподвижные части установки. С помощью шкалы на экране и стрелки на стойках ярма можно изучать движение экрана в той мере, в какой это нужно для оценки количества движения, перенесенного на экран. Это позволяет судить о том отклонении, которое испытывает частица при прохождении через щель. Но так как всякий отсчёт по шкале, каким бы образом он ни был произведен, влечёт за собой неконтролируемое изменение количества движения экрана, то в согласии с принципом неопределённости всегда будет существовать обратное взаимоотношение между точностью нашего знания положения щели и точностью контроля количества движения.
Рис. 6
В таком же полусерьёзном стиле рис. 6 показывает экспериментальную установку, пригодную для изучения явлений, которые – в противоположность только что рассмотренным – требуют также и координации во времени. Установка состоит из прибора, в котором затвор жестко соединен с солидными часами, обладающими сильной пружиной; часы закреплены на той же доске, где стоит и экран. Кроме часов и экрана на той же доске должны быть закреплены и другие части аналогичного назначения, приводимые в действие либо тем же часовым механизмом, либо другими синхронными с ним часами. Рисунок должен подчеркнуть тот факт, что часы представляют собой машину, работа которой может быть полностью описана средствами обычной механики, причём ни отсчёт положения стрелок, ни взаимодействие между атомной частицей и отдельными частями этой машины не оказывают на её работу никакого влияния. Поскольку прибор такого типа может осуществлять открывание дырки в определённый момент, он мог бы, например, служить для точного измерения времени, которое требуется электрону или фотону, чтобы дойти от диафрагмы до какого-нибудь другого места, но очевидно, что он не даёт возможности измерять передачу энергии на затвор и тем самым выводить заключения об энергии частицы, пролетевшей через диафрагму. Совершенно ясно, что если нас интересуют такого рода заключения, то мы должны будем пользоваться установкой, в которой механизм затвора уже не может служить точными часами; в этой установке определение момента, в который дырка была открыта, содержит неточность, связанную с неточностью в измерении энергии общей формулой (4).
Рассмотрение таких более или менее осуществимых установок и их более или менее фиктивного употребления оказалось чрезвычайно поучительным благодаря тому, что оно направило внимание на самые существенные черты рассматриваемых проблем. При этом главным пунктом является проведение различия между изучаемыми объектами и измерительными приборами, которые служат для того, чтобы можно было на языке классической физики фиксировать условия, в каких наблюдаются явления.
Упомянем здесь, что опыты, в которых предполагается измеримым перенос количества движения и энергии от атомных частиц к тяжёлым телам вроде диафрагм и затворов, едва ли выполнимы практически. Однако это обстоятельство не умаляет их значения как иллюстрации тех общих положений, о которых шла речь выше. Решающим является здесь то, что в такого рода опытах тела, участвующие в обмене количеством движения и энергией с частицами, входят наряду с ними в состав системы, к которой следует применять формальный аппарат квантовой механики. Что касается спецификации условий, необходимых для однозначного применения этого формального аппарата, то здесь важно то, что эти условия должны характеризовать всю установку в целом. В самом деле, присоединение какой-либо новой части прибора, например зеркала, поставленного на пути частицы, вызвало бы новые интерференционные явления, каковые могут существенно повлиять на предсказания возможных результатов, которые в конце концов регистрируются.
Отказ от наглядного представления атомных явлений обусловлен невозможностью подразделить их и тем самым проследить их более детально. Масштабы этого отказа прекрасно иллюстрируются следующим примером, на который Эйнштейн обратил наше внимание с самого начала и к которому он часто возвращался. Пусть на пути фотона помещено полупрозрачное зеркало, предоставляющее ему для направления его дальнейшего распространения две возможности. Тогда фотон может быть зарегистрирован на одной и только на одной из двух фотографических пластинок, находящихся на большом расстоянии друг от друга на упомянутых направлениях; если же мы заменим пластинки зеркалами, то мы сможем наблюдать явления, показывающие, что обе отраженные волны интерферируют. При всякой попытке наглядно представить себе поведение фотона мы, стало быть, встретились бы со следующим затруднением: с одной стороны, мы должны были бы сказать, что фотон всегда выбирает один из двух путей, с другой стороны, он ведёт себя так, как если бы он пошёл по обоим путям сразу.
Такого рода аргументы как раз и напоминают о невозможности подразделять квантовые явления; они вскрывают также неоднозначность, присущую наделению атомных объектов обыкновенными физическими качествами. В особенности нужно себе уяснить следующее. Если не считать описания пространственного размещения частей прибора и их действия во времени, то всякое однозначное применение пространственно-временны́х представлений к описанию атомных явлений сводится к регистрации наблюдений, относящихся к следам на фотопластинке или к аналогичным практически необратимым усилительным эффектам, как, например, образование капельки воды вокруг иона в камере Вильсона. Правда, свойства материалов, из которых построены измерительные приборы и которые обеспечивают работу регистрирующих устройств, сами обусловлены в конечном счёте существованием кванта действия. Но это обстоятельство не является существенным для проблемы адекватности и полноты квантовомеханического описания в том её аспекте, которым мы здесь занимались.
Эти проблемы подверглись всестороннему и поучительному обсуждению на Сольвеевском конгрессе *, на том же заседании, на котором Эйнштейн выдвинул свои общие возражения. По этому поводу возник также интересный спор о том, как следует говорить о появлении таких явлений, о которых можно дать предсказания лишь статистического характера. Спор шёл вокруг вопроса, следует ли применять к осуществлению отдельного эффекта (из числа возможных) терминологию, предложенную Дираком, согласно которой мы имеем дело с выбором со стороны «природы», или же мы должны говорить, как это предложил Гейзенберг, о выборе со стороны «наблюдателя», построившего измерительные приборы и сделавшего отсчёт результатов. Любая такая терминология представляется, однако, сомнительной; в самом деле, с одной стороны, едва ли допустимо приписывать природе волю в обычном смысле, а с другой стороны, наблюдатель никак не может повлиять на события, которые протекают при созданных им условиях. По моему мнению, у нас нет никакого другого выхода, как признать, что в этой области физики мы имеем дело с элементарными (неделимыми) явлениями и что всё, что мы можем сделать при помощи различных измерительных приборов, сводится к выбору между различными дополнительными типами явлений, которые мы хотим исследовать.
* Institut International de Physique Solvay. Rapport et discussions du 5e Conseil, Paris, 1928, p. 248.
Затронутые здесь проблемы теории познания разобраны подробнее в моей статье в юбилейном номере «Naturwissenchaften», выпущенном по поводу 70-летия со дня рождения Планка в 1929 г. Эта статья содержит также сравнение между тем уроком, который был извлечен из открытия универсального кванта действия, и теми выводами из существования конечной скорости света, которые были сделаны Эйнштейном, чья новаторская работа так сильно прояснила основные принципы естествознания. Благодаря особому упору на зависимость всех явлений от системы отсчёта теория относительности указала совершенно новые пути для установления общих физических законов в беспримерно широкой области. В теории квантов, говорилось в статье, логическое уяснение неизвестных ранее фундаментальных закономерностей, управляющих атомными процессами, приводит к признанию того, что нельзя провести резкое разграничение между независимым поведением объектов и их взаимодействием с измерительными приборами, определяющими систему отсчёта.
В этом отношении квантовая механика ставит нас перед новой ситуацией в области физики. Я указал, однако, что во многих других областях человеческого знания и человеческой деятельности мы встречаемся в отношении анализа и синтеза опыта с ситуацией, которая представляет близкую аналогию с описанной выше. Как известно, многие из затруднений, встречающихся в психологии, возникают из-за того, что при анализе различных аспектов психической жизни граница между объектом и субъектом проводится в различных местах. В самом деле, такие слова, как «мысли» и «чувства», одинаково необходимые для описания объема и богатства сознательной жизни, употребляются в дополнительном смысле, подобно тому как в атомной физике употребляются пространственно-временна́я координация, с одной стороны, и динамические законы сохранения, с другой. Точная формулировка таких аналогий связана, конечно, с терминологическими трудностями, и точка зрения автора, пожалуй, всего яснее выражается в имеющемся в статье указании па взаимно исключающее соотношение, которое всегда существует между практическим применением слова и попыткой его точного определения. Рассуждения эти возникли отчасти в надежде повлиять на позицию Эйнштейна, но главная их цель состояла в том, чтобы обратить внимание на возможность рассмотрения общих проблем теории познания в свете того урока и тех знаний, которые дало нам изучение новых, но по существу простых физических закономерностей.
*
При следующей встрече с Эйнштейном на Сольвеевской конференции 1930 г. наши дискуссии приняли совсем драматический характер. Мы видели, что если назначение измерительных приборов состоит в том, чтобы определять пространственно-временны́е рамки явлений, то контроль над обменом количеством движения и энергией между объектами и приборами исключается. В качестве возражения против этой точки зрения Эйнштейн выдвинул довод, что такой контроль якобы возможен, если принимать во внимание требования теории относительности. В частности, общая зависимость между энергией и массой, выраженная знаменитой формулой Эйнштейна
𝐸
=
𝑚𝑐²
,
(5)
якобы позволяет измерить полную энергию системы при помощи простого взвешивания и таким образом в принципе контролировать энергию, перенесенную на систему за время её взаимодействия с атомным объектом.
Рис. 7
В качестве подходящей для этого установки Эйнштейн предложил прибор, схема которого набросана на рис. 7. Он состоит из ящика с отверстием в одной из стенок, причём отверстие можно открывать или закрывать затвором, приводимым в движение при помощи часового механизма, помещенного внутри ящика. Пусть вначале ящик содержит излучение, а часы отрегулированы так, что в определённый момент их механизм открывает затвор на очень короткое время. Таким устройством можно было бы достигнуть того, что в момент времени, который будет известен с любой желаемой точностью, через отверстие пройдет один-единственный фотон. Но, кроме того, взвешивая ящик до и после этого события, казалось бы, можно измерить энергию фотона с любой желаемой точностью – в прямом противоречии с квантовомеханическим соотношением неопределённости для энергии и времени.
Это возражение означало серьёзный вызов и заставило заново продумать всю проблему. Результатом дискуссии, выяснению которого деятельно содействовал и сам Эйнштейн, был, однако, тот вывод, что возражение несостоятельно. При ближайшем рассмотрении выяснилась необходимость тщательнее исследовать следствия, вытекающие из отождествления инертной и тяготеющей массы, предполагаемого в применениях уравнения (5). В частности, необходимо было принять во внимание зависимость между ходом часов и их положением в поле тяготения, – зависимость, хорошо известную из красного смещения линий в спектре солнца и следующую из принципа Эйнштейна об эквивалентности действий силы тяжести и явлений, наблюдаемых в ускоренных системах отсчёта.
Рис. 8
Наша дискуссия сконцентрировалась на возможностях применения прибора, составной частью которого является установка, предложенная Эйнштейном. Такой прибор изображен на рис. 8 в том же псевдореалистическом стиле, как и некоторые из рисунков, приведённых раньше. Ящик, изображенный в разрезе, чтобы видно было его внутреннее устройство, подвешен на пружинных весах; положение ящика можно при помощи стрелки отсчитывать на шкале, укрепленной на подставке весов. Тогда взвешивание ящика можно произвести с любой заданной точностью Δ𝑚, устанавливая весы в нулевом положении при помощи соответствующих гирь. Но дело в том, что всякое определение этого положения с заданной точностью Δ𝑞 влечёт за собой неопределённость Δ𝑝 в значении количества движения ящика, причём Δ𝑝 связано с Δ𝑞 уравнением (3).
Эта неопределённость, очевидно, должна опять-таки быть меньше, чем полное количество движения, которое может быть передано полем тяготения телу с массой Δ𝑚, в течение всего времени 𝑇, занятого процессом взвешивания; отсюда следует
Δ
𝑝
≈
ℎ
Δ𝑞
<
𝑇𝑔
Δ
𝑚
,
(6)
где 𝑔 – ускорение силы тяжести. Чем точнее выполнен отсчёт 𝑞 по указателю, тем продолжительнее должно быть время взвешивания 𝑇, если нужно получить заданную точность Δ𝑚 при взвешивании ящика с содержимым.
С другой стороны, по общей теории относительности часы, передвинутые в направлении силы тяготения на величину Δ𝑞, изменят свой ход таким образом, что их показание на протяжении промежутка времени 𝑇 отклонится на величину Δ𝑇, заданную уравнением
Δ𝑇
𝑇
=
1
𝑐²
𝑔
Δ
𝑞
.
(7)
Поэтому, сравнивая (6) и (7), мы видим, что после взвешивания наши знания показаний часов содержат неопределённость
Δ
𝑇
=
ℎ
𝑐²Δ𝑞
Вместе с (5) эта формула приводит к соотношению
Δ
𝑇
Δ
𝐸
>
ℎ
в согласии с принципом неопределённости. Вследствие этого употребление прибора как средства для точного измерения энергии фотона помешает нам установить точный момент его вылета.
Эта дискуссия, так ярко показавшая силу и последовательность релятивистских аргументов, подчеркнула ещё раз необходимость различать, при изучении атомных объектов, между собственно измерительными приборами, служащими для определения системы отсчёта, и теми частями прибора, которые нужно рассматривать как объекты исследования и при описании коих нельзя пренебрегать квантовыми эффектами. Несмотря на столь убедительное подтверждение логичности и широты квантовомеханического способа описания, Эйнштейн тем не менее выразил мне в последующем разговоре свое чувство неудовлетворённости тем, что, как ему кажется, нам недостает таких твердо установленных принципов для описания природы, с которыми все могли бы согласиться. Исходя из своей точки зрения, я мог только ответить, что, задавшись целью навести порядок в совершенно новой области знаний, мы едва ли можем полагаться на какие-либо старые принципы, хотя бы и очень общие. Единственным обязательным требованием является отсутствие логических противоречий, но как раз в этом отношении математический аппарат квантовой механики удовлетворяет самым жестким условиям.
Сольвеевский конгресс 1930 г. был последним случаем, когда в наших дискуссиях с Эйнштейном мы могли воспользоваться присутствием Эренфеста, подзадоривавшего нас к спору и вместе с тем выступавшего в качестве посредника. Но незадолго до своей трагической смерти в 1933 г. он говорил мне, что Эйнштейн далеко не удовлетворён и что со свойственной ему проницательностью подметил новые аспекты ситуации, укрепляющие его критическую позицию. Действительно, Эйнштейн, исследуя возможности применения взвешивающей установки, придумал другую процедуру, которая обостряла парадоксы настолько, что их логическое разрешение на первый взгляд не представлялось возможным (процедуру эту Эйнштейн придумал, впрочем, имея в виду другие применения, оказавшиеся невыполнимыми). Так, Эйнштейн указал на то, что после предварительного взвешивания ящика с часами и последующего вылета фотона всегда ещё останется выбор: или повторить процесс взвешивания, или же открыть ящик и сравнить показания часов с лабораторной шкалой времени. Таким образом, на этой стадии опыта мы ещё можем выбрать, хотим ли мы сделать заключение об энергии фотона или же о моменте времени, когда фотон покинул ящик. Не оказывая какого-либо влияния на фотон между его вылетом из ящика и его последующим взаимодействием с надлежащими измерительными приборами, мы можем сделать точные предсказания или о моменте его прибытия, или же о количестве энергии, освобожденной благодаря его поглощению. Но так как согласно квантовой механике задание состояния изолированной частицы не может содержать одновременно вполне определённое соответствие со шкалой времени и точное фиксирование энергии, то может показаться, что аппарат квантовой механики не даёт средств для надлежащего описания действительности.
И на этот раз проницательный ум Эйнштейна выявил особый аспект того положения вещей, с каким мы встречаемся в квантовой теории, – аспект, ярко показывающий, насколько далеко мы отошли от привычных объяснений явлений природы. Тем не менее я не мог согласиться с тенденцией его замечаний, как они мне были переданы Эренфестом. По моему мнению, если мы имеем логически непротиворечивый математический аппарат физической теории, то единственный способ доказать его несостоятельность заключается в том, чтобы показать, что его следствия расходятся с опытом или что его предсказания не исчерпывают того, что может наблюдаться на опыте. Аргументация же Эйнштейна не приводит ни к тому, ни к другому. В самом деле, мы должны уяснить себе, что в рассматриваемой задаче мы имеем дело не с одной определённой экспериментальной установкой, но фактически с двумя взаимно исключающими друг друга установками. В одной из них весы вместе с другими приборами, например спектрометром, служат для изучения переноса энергии фотоном; во второй установке затвор, регулированный по лабораторным часам, а также другие аналогичные приспособления, синхронизированные с этими часами, служат для того, чтобы измерять время, нужное фотону, чтобы пройти данный отрезок пути. В обоих случаях следует ожидать (как это принимал и Эйнштейн), что наблюдаемые эффекты будут вполне соответствовать предсказаниям теории.
Эта задача вновь подчёркивает необходимость рассматривать всю экспериментальную установку, точная спецификация которой существенна для возможности однозначного применения аппарата квантовой механики. Попутно можно к этому добавить, что парадоксы такого же рода, как рассмотренные Эйнштейном, возникают и в таких простых установках, как показанная на рис. 5. Ведь после предварительного измерения количества движения экрана нам ещё предоставлен в принципе выбор, хотим ли мы после прохода электрона или фотона сквозь щель повторить измерение количества движения или же мы хотим определить положение экрана. В зависимости от того, что мы выберем, мы сможем делать предсказания относительно тех или иных последующих наблюдений. Заметим здесь ещё, что для эффектов, которые можно наблюдать при помощи некоторой определённой экспериментальной установки, очевидно, будет безразлично, установлены ли планы построения приборов или манипулирования с ними заранее или же мы предпочитаем отложить окончательное составление этих планов до более позднего момента, когда частица уже будет на пути от одного прибора к другому.
В квантовомеханическом описании наша свобода конструировать экспериментальную установку и манипулировать с него находит свое надлежащее выражение в возможности выбирать классические параметры, вводимые в рассмотрение при всяком последовательном применении формального аппарата. Действительно, в этом отношении квантовая механика обнаруживает соответствие с положением вещей в классической физике, причём это соответствие настолько полно, насколько этого можно ожидать, если иметь в виду неделимость квантовых явлений. Выдвинутые Эйнштейном возражения и сомнения сыграли особенно полезную роль в выяснении именно этого обстоятельства, и тем самым они и на этот раз послужили желанным толчком к исследованию самого существа дела.