Текст книги "Избранные научные труды"
Автор книги: Нильс Бор
Жанр:
Физика
сообщить о нарушении
Текущая страница: 3 (всего у книги 58 страниц)
20 СЭР ЭРНЕСТ РЕЗЕРФОРД *
*Sir Ernest Rutherford. Nature, Suppl., 1926, 118, 51.
Принимая любезное предложение главного редактора журнала написать несколько слов о значении работ человека, являющегося в настоящее время директором Кавендишской лаборатории, я считаю, что читателей «Nature» не следует утруждать подробным перечислением его достижений. Однако, поскольку я являюсь одним из тех, кому выпало счастье находиться в тесном личном и научном контакте с Эрнестом Резерфордом, я с большим удовольствием попытаюсь описать вкратце то, каким представляем его себе мы, те, кто с гордостью считает себя его учениками.
С Резерфордом я познакомился в то время, когда он после многих лет весьма тесного и плодотворного сотрудничества с Дж. Дж. Томсоном в стенах Кавендишской лаборатории покинул Кембридж и – после пребывания в Мак-Гилле 1, где работа по радиоактивным веществам определила его дальнейшую судьбу – основал в Манчестере школу по исследованию радиоактивности. Этот центр притягивал к себе молодых учёных из всех стран мира. Весной 1912 г., во время моего первого визита в Манчестер, вся лаборатория была взволнована одним из самых крупных открытий, которое в полной мере являлось плодом стараний Резерфорда. Сам Резерфорд и его ученики были всецело поглощены выяснением следствий, вытекавших из его нового взгляда на ядерное строение атома. Представление о том, насколько сильно мы верили в его суждения, будет неполным, если только сказать, что никто в его лаборатории не допускал и тени сомнения в правильности и фундаментальной важности этой точки зрения, хотя в то время она и очень оспаривалась. Я помню, как вскоре после моего прибытия в Манчестер Хевеши рассказал мне историю, которая была известна всем в лаборатории, о том, как Резерфорд незадолго до этого открытия в разговоре с Мозли высказал мнение, что в результате всех напряжённых исследований предшествовавших лет, в которых ему неустанно помогал Гейгер, можно было бы прийти к достаточно ясному пониманию поведения α-лучей, если бы не отражение небольшой доли этих лучей от поверхности вещества, подвергаемого бомбардировке α-лучами. Этот эффект, хотя и казавшийся, судя по всему, несущественным, волновал Резерфорда, так как он чувствовал, что его трудно согласовать с основными идеями о строении атома, которые были тогда приняты физиками. Действительно, уже не первый и, заметим, не последний раз критический подход и мощь интуиции Резерфорда приводили к революции в науке, заставляя его отдавать всю свою неисчерпаемую энергию изучению явления, важность которого, возможно, ускользнула бы от других исследователей (настолько малым и недостоверным казался эффект). Эта уверенность в своих суждениях, а также наше восхищение его яркой личностью, составляли основу того вдохновения, которое чувствовал каждый в его лаборатории, и заставляли нас прилагать все усилия для того, чтобы заслужить тот сердечный и неослабевающий интерес, который он проявлял к работе каждого из нас. И как бы ни был скромен полученный результат, одно одобрительное слово, сказанное им, было величайшей поддержкой, о которой каждый мог только мечтать.
1 Имеется в виду Мак-Гиллский университет в Монреале (Канада). – Прим. ред.
Когда разразилась война, небольшая группа людей, работавших в лаборатории, распалась. Однако поскольку я читал тогда лекции в Манчестере, я имел возможность в последовавшие за этим годы наблюдать непоколебимый дух и неиссякаемую жизнерадостность Резерфорда даже в наиболее тяжёлые времена. Хотя изучение прикладных физических проблем, возникавших в связи с потребностями обороны его родины, отнимало практически всё его время и энергию в те годы, он сумел ещё до окончания войны выделить время для подготовки и полного завершения работы над, возможно, одним из самых больших его научных достижений – превращением элементов при распаде атомных ядер, бомбардируемых α-лучами. Можно сказать, что это достижение действительно открывает новую эпоху в физических и химических науках.
Именно в это время Резерфорду как не знающему себе равных преемнику был предложен, в связи с уходом Томсона, пост директора Кавендишской лаборатории. Я помню, как во время моего посещения Манчестера в день перемирия 1 я слушал речь Резерфорда. Он с большим удовлетворением и воодушевлением говорил о возможности перехода в Кембридж. Но в то же время он выражал опасение, что множество обязанностей, связанных с этим центральным положением в английской физике, не оставят ему тех возможностей для научных исследований, которые он столь хорошо умел использовать в Манчестере. Как известно, последующие годы показали, что эти опасения были безосновательны. Способности Резерфорда никогда не проявлялись более полно, как в годы пребывания его на посту директора Кавендишской лаборатории, славные традиции которой он поддерживал во всех отношениях. В окружении множества полных энтузиазма молодых учёных, работающих под его руководством и вдохновляемых им, под неустанным вниманием учёных всего мира, он находится сейчас в центре активной деятельности по раскрытию тайн в мире атомов с помощью всех тех средств, которые имеются в распоряжении современной науки.
1 11 ноября отмечается как день перемирия, положившего конец первой мировой войне в 1918 г. – Прим. ред.
31 К СЕМИДЕСЯТИЛЕТИЮ ДЖ. ДЖ. ТОМСОНА *
*Sir J. J. Thomson's Seventieth Birthday. Nature, 1926, 118, 879.
Я с большим удовольствием принял приглашение редакции «Nature» участвовать в праздновании семидесятилетия со дня рождения Дж. Дж. Томсона, которому все интересующиеся проблемой строения атома так много обязаны. Не говоря уже о его руководящей роли в открытии электрона, этой общей составной части всех атомов, мы обязаны ему обилием идей, которые были плодотворно испытаны при попытках развить подробную теорию строения атома, основанную на этом фундаментальном открытии. Во времена, когда многие известные физики скептически относились к самому существованию атомов, Томсон имел мужество рискнуть начать исследование внутриатомного мира. Руководимый замечательным воображением, опираясь на новые открытия катодных лучей, лучей Рентгена и радиоактивности, он открыл для науки новый неизведанный мир. Изучая прохождение заряженных частиц и эфирных волн через атомы, он впервые сумел оценить число электронов, содержащихся в атоме, и связывающие их силы, заложив таким путём фундамент для более тщательной теории строения атома, построенной в последние годы объединёнными усилиями большого числа учёных. В его знаменитой попытке объяснить известную периодичность физических и химических свойств элементов при их расположении в порядке возрастания атомного веса мы находим зародыши идей, характерных для современного толкования периодической таблицы. Конечно, учёным молодого поколения, работающим в новом мире, ворота в который открыл Томсон, трудно полностью представить себе величие проблем, с которыми столкнулись первопроходцы.
1928
32 КВАНТОВЫЙ ПОСТУЛАТ И НОВЕЙШЕЕ РАЗВИТИЕ АТОМНОЙ ТЕОРИИ * 1
*The Quantum Postulate and the Recent Development of Atomic Theory. Nature, Suppl., 1928, 121, 580-590.
1 Содержание этой работы в существенном совпадает с лекцией о современном состоянии теории квантов, прочитанной 16 сентября 1927 г. в Комо во время празднования юбилея Алессандро Вольты. Состояние теории непосредственно перед развитием новых методов в этой области изложено в докладе автора «Атомная теория и механика» (статья 28). Быстрое развитие теории с того времени привело к появлению значительного числа публикаций. В настоящей работе мы ограничиваемся только небольшим числом ссылок на новые работы, которые имеют специальное отношение к обсуждаемому здесь вопросу.
В связи с дискуссией о физической интерпретации методов квантовой теории, развитых за последние годы, мне хотелось сделать следующие общие замечания о принципах, лежащих в основе описания атомных явлений. Я надеюсь, что эти замечания помогут согласовать различные, явно расходящиеся взгляды, относящиеся к этой области.
§ 1. Квантовый постулат и причинность
Квантовая теория характеризуется признанием принципиальной ограниченности классических физических представлений в применении к атомным явлениям. Создавшаяся таким образом ситуация очень своеобразна, поскольку наша интерпретация эмпирического материала в существенном покоится именно на применении классических понятий. Но несмотря на затруднения, возникающие при формулировке содержания квантовой теории, её суть, по-видимому, может быть выражена, как мы увидим, в так называемом квантовом постулате. Согласно этому постулату, каждому атомному процессу свойственна существенная прерывность или, скорее, индивидуальность, совершенно чуждая классической теории и выраженная планковским квантом действия.
Этот постулат заключает в себе отказ от причинного пространственно-временно́го описания атомных процессов. В самом деле, наше обычное описание явлений природы покоится всецело на предпосылке, что рассматриваемое явление можно наблюдать, не оказывая на него заметного влияния. Это ясно проявляется, например, в теории относительности, оказавшейся столь плодотворной для разъяснения классических теорий. Как подчеркнул Эйнштейн, каждое наблюдение или измерение основано в конечном счёте на совпадении двух независимых событий в одной и той же пространственно-временно́й точке. И эти совпадения не должны зависеть от различий, которые в остальном могут существовать в пространственно-временно́м описании разных наблюдений. Согласно квантовому постулату, всякое наблюдение атомных явлений включает такое взаимодействие последних со средствами наблюдения, которым нельзя пренебречь. Соответственно этому невозможно приписать самостоятельную реальность в обычном физическом смысле ни явлению, ни средствам наблюдения. Понятие наблюдения, вообще говоря, заключает в себе некоторый произвол, так как оно зависит от того, какие объекты включаются в систему, подлежащую наблюдению. В конце концов всякое наблюдение может быть, конечно, сведено к нашим ощущениям. Но поскольку при интерпретации наблюдений мы должны всегда использовать теоретические представления, в каждом конкретном случае является вопросом удобства тот пункт, где следует вводить понятие наблюдения вместе с квантовым постулатом с присущей последнему иррациональностью.
Такая ситуация влечёт за собой далеко идущие следствия. С одной стороны, определение состояния физической системы в обычном понимании требует исключения всяких внешних воздействий. Но в таком случае, согласно квантовому постулату, всякое наблюдение будет невозможным, и прежде всего понятия пространства и времени теряют свой непосредственный смысл. С другой стороны, если допустить некоторые взаимодействия с соответствующими, не принадлежащими системе средствами наблюдения, чтобы сделать возможным наблюдение, то однозначное определение состояния системы, естественно, становится уже невозможным и не может быть речи о причинности в обычном смысле. Следовательно, в соответствии с самой природой квантовой теории мы должны считать пространственно-временно́е представление и требование причинности, соединение которых характеризует классические теории как дополнительные, но исключающие одна другую черты описания содержания опыта; эти черты символизируют идеализацию возможностей наблюдения и, соответственно, определения. Так же, как теория относительности учит нас, что удобство резкого разделения пространства и времени основано на том, что обычно встречающиеся скорости малы по сравнению со скоростью света, из квантовой теории мы узнаем, что допустимость нашего обычного причинного пространственно-временно́го описания полностью обусловлена малым значением кванта действия по сравнению с обычными действиями, проявляющимися в ощущениях. В самом деле, при описании атомных явлений квантовый постулат ставит перед нами задачу развития некой «теории дополнительности», об отсутствии противоречий в которой можно судить, только взвешивая возможности определений и наблюдений.
Этот взгляд уже ясно высказан в интенсивно ведущейся дискуссия по вопросу о природе света и элементарных составных частей материи. Что касается света, его распространение в пространстве и времени, как известно, адекватно описывается электромагнитной теорией. В частности, интерференционные явления в вакууме и оптические свойства материальных сред всецело управляются принципом суперпозиции волновой теории. Тем не менее сохранение энергии и импульса при взаимодействии излучения с веществом, проявляющееся в фотоэлектрическом эффекте и эффекте Комптона, находит адекватное выражение в выдвинутой Эйнштейном идее световых квантов. Как известно, сомнения в справедливости Принципа суперпозиции, с одной стороны, и законов сохранения – с другой, к которым привело это кажущееся противоречие, отвергнуты прямыми экспериментами. Такая ситуация ясно показывает невозможность причинного пространственно-временно́го описания световых явлений. С одной стороны, в попытке проследить законы пространственно-временно́го распространения света на основе квантового постулата мы ограничены статистическим рассмотрением. С другой стороны, выполнение требования причинности для отдельных световых процессов, характеризуемых квантом действия, вынуждает отказаться от пространственно-временно́го описания. Разумеется, не может быть речи о совершенно независимом применении идей пространственно-временно́го описания и причинности. Две точки зрения на природу света являются скорее двумя различными попытками интерпретации экспериментального материала, в которых ограниченность классических понятий находит взаимно дополняющее выражение.
Проблема природы составных частей материи приводит нас к аналогичному заключению. Индивидуальность элементарных электрических частиц следует из общих эмпирических данных. Тем не менее недавно полученные экспериментальные данные и прежде всего открытие селективного отражения электронов от металлических кристаллов требуют привлечения принципа суперпозиции волновой теории в соответствии с оригинальной идеей Л. де Бройля. Так же как в случае света, в вопросе о природе материи, придерживаясь классических понятий, мы стоим перед неизбежной дилеммой, которая должна рассматриваться как точное выражение эмпирических данных. Действительно, здесь мы имеем дело не с противоречащими, а с дополнительными толкованиями явлений, которые лишь вместе дают естественное обобщение классического способа описания. При рассмотрении этих вопросов надо иметь в виду, что в соответствии с изложенным выше излучение в пустом пространстве, как и изолированные материальные частицы, представляют собой абстракции, поскольку их свойства, согласно квантовой теории, доступны наблюдению и определению только при их взаимодействии с другими системами. Тем не менее эти абстракции, как мы увидим, необходимы для описания данных опыта на основе наших обычных пространственно-временны́х представлений.
Трудности, с которыми сталкивается причинное пространственно-временно́е описание в квантовой теории и которые давно составляют предмет повторяющихся дискуссий, новейшим развитием символических методов выдвинуты в последнее время на первый план. Важным вкладом в проблему последовательного применения этих методов является новая работа Гейзенберга 2. Он указал, в частности, на своеобразную взаимную неопределённость, присущую всем измерениям атомных величин. Прежде чем перейти к рассмотрению его результатов, целесообразно показать, как дополнительная природа описания, проявляющаяся в этой неопределённости, является неизбежной уже при анализе наиболее элементарных понятий, лежащих в основе истолкования опыта.
2 W. Неisеnbеrg. Zs. f. Phys., 1927, 43, 172,
§ 2. Квант действия и кинематика
Фундаментальное противоречие между квантом действия и классическими понятиями сразу становится очевидным из простых формул, составляющих общую основу теории световых квантов и волновой теории материальных частиц. Если обозначить через ℎ постоянную Планка, то, как известно,
𝐸τ
=
𝐽λ
=
ℎ
,
(1)
где 𝐸 и 𝐽 – соответственно энергия и импульс, τ и λ – соответственно период колебания и длина волны. В этих формулах два упомянутых выше представления о свете, как и о материи, резко противостоят одно другому. В то время как энергия и импульс ассоциируются с понятием частицы и, следовательно, по классическим представлениям могут характеризоваться определёнными пространственно-временны́ми координатами, период колебаний и длина волны относятся к неограниченному в пространстве и времени цугу плоских гармонических волн. Только с помощью принципа суперпозиции можно установить связь с обычным способом описания. В самом деле, ограничение протяженности волновых полей в пространстве и времени всегда может рассматриваться как следствие интерференции группы элементарных гармонических волн. Де Бройль 3 показал, что переносная скорость объектов 3a, которым сопоставляются волны, может быть представлена как раз с помощью так называемой групповой скорости волн. Пусть элементарная плоская волна имеет вид
3 L. de Вrоglie. Thèse. Paris, 1924.
3a Точнее: индивидуальных объектов (в оригинале – individual). – Прим ред.
𝐴 cos 2π
(𝑡ν
–𝑥σ
𝑥
–𝑦σ
𝑦
–𝑧σ
𝑧
+δ)
.
Здесь 𝐴 и δ – постоянные, определяющие соответственно амплитуду и фазу; величина ν=1/τ – частота колебаний, σ𝑥, σ𝑦, σ𝑧 – волновые числа в направлении соответствующих осей координат (их можно рассматривать как векторные компоненты волнового числа σ=1/λ в направлении распространения); ν/σ – волновая, или фазовая, скорость; групповая же скорость определяется как 𝑑ν/𝑑σ. Согласно теории относительности, для частицы со скоростью 𝑣 имеем
𝐸
=
𝑣
𝑐²
𝐽
и
𝑣𝑑𝐸
=
𝑑𝐽
,
где 𝑐 – скорость света. Следовательно, из соотношения (1) фазовая скорость равна 𝑐²/𝑣, а групповая скорость равна 𝑣. То обстоятельство, что, вообще говоря, фазовая скорость больше скорости света с, указывает сразу на символический характер этих рассуждений. В то же время возможность отождествления скорости частицы с групповой скоростью указывает на область применимости пространственно-временны́х представлений в квантовой теории. Здесь проявляется дополнительный характер описания, поскольку применение групп волн с необходимостью связано с отсутствием строгости в определении периода и длины волны, а следовательно, согласно соотношениям (1), и соответствующих величин энергии и импульса. Ограниченное волновое поле может быть представлено, строго говоря, только суперпозицией множества элементарных волн, соответствующих всевозможным значениям ν и σ𝑥, σ𝑦, σ𝑧. Средняя разность этих значений для двух элементарных волн группы по порядку величины даётся в наиболее благоприятном случае условиями
Δ
𝑡
Δ
ν
=
Δ
𝑥
Δ
σ
𝑥
=
Δ
𝑦
Δ
σ
𝑦
=
Δ
𝑧
Δ
σ
𝑧
=1,
где Δ𝑡, Δ𝑥, Δ𝑦, Δ𝑧 означают протяженность волнового поля во времени и в направлениях пространства, соответствующих координатным осям. Эти соотношения, известные из теории оптических инструментов, в особенности из исследований Рэлея разрешающей способности спектральных приборов, выражают условие, что цуги волн могут гаситься вследствие интерференции на пространственно-временны́х границах волнового поля. Эти соотношения могут рассматриваться так же как отсутствие фазы у группы в целом, в том же смысле, что и у элементарных волн.
Таким образом, из соотношений (1) находим
Δ
𝑡
Δ
𝐸
=
Δ
𝑥
Δ
𝐽
𝑥
=
Δ
𝑦
Δ
𝐽
𝑦
=
Δ
𝑧
Δ
𝐽
𝑧
=ℎ;
(2)
эти соотношения дают максимально возможную точность определения энергии и импульса объекта, сопоставленного волновому полю. В общем случае условия приписания некоторых значений энергии и импульса волновому полю с помощью соотношений (1) будут гораздо менее благоприятными. Даже если структура группы волн соответствует вначале соотношениям (2), то с течением времени она будет испытывать такие изменения, что становится всё менее пригодной для представления объекта. Именно в этом обстоятельстве и лежит парадоксальность вопроса о природе света и материальных частиц. Ограниченность классических понятий, выражаемая соотношениями (2), кроме того, тесно связана с ограниченной применимостью классической механики, соответствующей в волновой теории материи геометрической оптике, в которой распространение волн изображается «лучами». Только в предельном случае таких «лучей» можно однозначно определить энергию и импульс на основе пространственно-временны́х представлений. Для общего определения этих понятий мы должны придерживаться непосредственно законов сохранения, рациональная формулировка которых составляет основную проблему символических методов, к которой мы обратимся ниже.
На релятивистском языке содержание соотношений (2) можно формулировать в утверждении, что согласно квантовой теории существует общая взаимная связь между максимальной точностью определения пространственно-временны́х векторов и соответственно векторов энергии-импульса, связанных с объектом. Это обстоятельство может рассматриваться как простое символическое выражение взаимно дополняющей природы пространственно-временно́го описания и требований причинности. Однако в то же самое время общий характер этой связи позволяет до некоторой степени примирить законы сохранения с пространственно-временны́м представлением наблюдений; представление о совпадении точно определённых событий в некоторой точке пространства-времени заменяется представлением о неточно определённых объектах в пределах конечных пространственно-временны́х областей.
Это обстоятельство позволяет избежать известных парадоксов, с которыми мы сталкиваемся при попытке описания рассеяния излучения свободными электрическими частицами и столкновения двух таких частиц. Описание рассеяния с помощью классических понятий требует конечной протяженности излучения в пространстве и времени, в то время как в изменении движения электрона, требуемом квантовым постулатом, очевидно, речь идёт о мгновенном действии, происходящем в определённой точке пространства. Но как и в случае излучения, для электрона невозможно определить его энергию и импульс, не рассматривая конечной пространственно-временно́й области. Больше того, применение законов сохранения к данному процессу предполагает, что точность определения вектора энергии-импульса одна и та же как для излучения, так и для электрона. Следовательно, согласно соотношениям (2), обоим объектам при взаимодействии может быть приписана пространственно-временна́я область одних и тех же размеров.
Аналогичное замечание справедливо и для столкновения двух материальных частиц, хотя на значение квантового постулата для этого явления не обращалось внимания, пока не была понята необходимость волнового представления. Здесь этот постулат действительно представляет идею индивидуальности частиц, которая, отвечая требованию причинности, выходит за пределы пространственно-временно́го описания. В то время как физическое содержание идеи световых квантов целиком связано с законами сохранения энергии и импульса, в случае электрических частиц должно учитываться в этой связи и сохранение электрического заряда. Едва ли нужно напоминать, что для более детального описания взаимодействия между объектами мы не можем ограничиться только фактами, выраженными в формулах (1) и (2); мы должны прибегнуть к процедуре, которая позволит нам учесть связь объектов, характеризующую рассматриваемое взаимодействие, в которой и проявляется роль электрического заряда. Как мы увидим ниже, такая процедура требует дальнейшего отказа от наглядности в обычном смысле.
§ 3. Измерения в теории квантов
В упомянутом исследовании непротиворечивости квантовых методов Гейзенберг установил соотношения (2) как выражение максимально возможной точности, с которой пространственно-временны́е координаты и компоненты вектора энергии-импульса для некоторой частицы могут быть измерены одновременно. Его взгляды основываются на следующем соображении. С одной стороны, координаты частицы могут быть измерены с любой желаемой степенью точности, используя, например, какой-нибудь оптический инструмент, при условии, что для освещения используется излучение с достаточно короткой длиной волны. Однако, согласно квантовой теории, рассеяние излучения данным объектом всегда связано с конечным изменением импульса, которое тем больше, чем короче длина волны. С другой стороны, импульс частицы может быть измерен с любой желаемой точностью, например по эффекту Допплера для рассеянного излучения, если только применяемая длина волны настолько велика, что можно пренебречь эффектом отдачи; но тогда определение пространственных координат частицы становится соответственно менее точным.
Суть этого рассмотрения состоит в неизбежности квантового постулата при оценке возможностей измерения. Необходимо более детальное исследование этих возможностей определения, чтобы выявить общий дополнительный характер описания. В самом деле, прерывное изменение энергии и импульса во время измерения не могло бы само по себе служить препятствием, чтобы приписать точные значения пространственно-временны́м координатам и компонентам вектора энергии-импульса до и после процесса. Взаимная неопределённость, всегда присущая значениям этих величин, является по существу, как следует из предшествующего анализа, результатом ограниченной точности, с которой могут быть определены изменения энергии и импульса, когда волновые поля, применяемые для определения пространственно-временны́х координат частицы, достаточно ограничены.
При определении положения с помощью оптических инструментов нужно помнить, что для образования изображения всегда требуется сходящийся пучок света. Обозначая через λ длину волны используемого излучения и через ε – так называемую числовую апертуру, т. е. синус половины угла сходимости, разрешающую способность микроскопа можно представить известным выражением λ/2ε. Даже если предмет освещается параллельным пучком света, так что импульс ℎ/λ падающего кванта известен по величине и направлению, конечное значение апертуры всё же будет мешать точному установлению отдачи, сопровождающей рассеяние. Даже если бы импульс частицы был точно известен до процесса рассеяния, сведения о компоненте импульса, параллельной фокальной плоскости, после наблюдения имели бы неопределённость, составляющую 2 εℎ/λ. Произведение наименьших неточностей, с которыми могут быть установлены пространственная координата и компонента импульса в определённом направлении, поэтому выражается как раз формулой (2). Вероятно, можно думать, что в оценке точности определения положения должна учитываться не только сходимость лучей, но и длина цуга волн, так как частица в течение конечного времени освещения может изменить свое положение. Однако ввиду того факта, что точное знание длины волны света не существенно для указанной выше оценки, легко видеть, что для любого значения апертуры цуг волн может быть выбран настолько коротким, чтобы можно было пренебречь изменением положения частицы за время наблюдения по сравнению с пределами точности определения положения, обусловленными конечной разрешающей способностью микроскопа.
При измерении импульса с помощью эффекта Допплера (с учётом эффекта Комптона) приходится пользоваться параллельным цугом волн. Однако для точности, с которой может быть измерено изменение длины волны рассеянного излучения, существенна протяженность цуга волн в направлении распространения. Если мы полагаем, что направления падающего и рассеянного излучений будут соответственно параллельны или противоположны направлению подлежащих измерению вектора положения и компонент импульса, то мерой точности определения скорости может считаться выражение 𝑐λ/2𝑙 где 𝑙 – длина цуга волн; при этом для простоты скорость света принята здесь большой по сравнению со скоростью частицы. Если 𝑚 – масса частицы, то неопределённость, связанная со значением импульса после наблюдения, равна 𝑐𝑚λ/2𝑙. В этом случае величина отдачи 2ℎ/λ достаточно хорошо определена и не приводит к заметной неопределённости в значении импульса частицы после наблюдения. В самом деле, общая теория эффекта Комптона позволяет рассчитать компоненты импульса в направлении излучения до и после отдачи по разности длин волн падающего и рассеянного излучений. Даже если бы начальные значения пространственных координат частицы были точно известны, наше знание положения после наблюдения будет содержать неопределённость. Действительно, вследствие невозможности приписать отдаче точный момент времени, мы знаем среднюю скорость в направлении наблюдения в течение процесса рассеяния только с точностью 2ℎ/𝑚λ Следовательно, неопределённость положения после наблюдения достигает 2ℎ𝑙/𝑚λ. И здесь произведение неточностей в измерении положения и импульса выражается, таким образом, общей формулой (2).
Так же как в случае определения положения, длительность процесса наблюдения при измерении импульса может быть сделана сколь угодно короткой, если только пользоваться излучением достаточно короткой длины волны. Тот факт, что отдача становится тогда больше, как мы видели, не влияет на точность измерения. Следует отметить далее, что, говоря неоднократно о скорости частицы, мы имели в виду в данном случае только связь с обычным пространственно-временны́м описанием. Как уже явствует из упомянутых выше соображений де Бройля, понятием скорости в квантовой теории надо пользоваться с осторожностью. Мы увидим также, что однозначное определение этого понятия исключается и квантовым постулатом; это следует особенно помнить при сравнении результатов последовательных наблюдений. В самом деле, положение некоторого объекта в два заданных момента времени может быть измерено с любой желаемой точностью; но если из таких измерений мы хотим обычным путём рассчитать скорость объекта, то мы должны ясно представлять себе, что мы имеем дело с некоторой абстракцией, из которой нельзя получить никакой однозначной информации о прошлом или будущем поведении объекта.
Согласно приведённым выше рассуждениям относительно возможностей определения свойства объектов, обсуждение точности измерения положения и импульса частицы, очевидно, нисколько не будет отличаться, если вместо рассеяния излучения мы обратимся к рассмотрению столкновений с другими материальными частицами. В обоих случаях мы видим, что рассматриваемая неопределённость в равной мере присуща как описанию средств измерения, так и описанию объекта. Действительно, этой неопределённости нельзя избежать при описании поведения объектов по отношению к координатной системе, определённой обычным путём с помощью твердых тел и невозмущаемых часов. Условия эксперимента – открывания и закрывания диафрагм и т. д. – позволяют сделать заключения только о пространственно-временно́й протяженности связанных с ним волновых полей.