Текст книги "Избранные научные труды"
Автор книги: Нильс Бор
Жанр:
Физика
сообщить о нарушении
Текущая страница: 34 (всего у книги 58 страниц)
Обнаружение соотношений дополнительного характера является немаловажной задачей и в психологии, где условия для анализа и синтеза переживаний очень сходны с ситуацией, имеющей место в атомной физике. Фактически использование слов вроде мысли и чувства, в равной мере неизбежных для описания многообразия психических переживаний, относится к взаимоисключающим ситуациям, характеризуемым различным проведением линии, разграничивающей субъект и объект. В частности, выделение отдельного места чувству свободы воли связано с тем обстоятельством, что ситуации, в которых мы сталкиваемся со свободой воли, несовместимы с психологическими ситуациями, в которых предпринимаются обоснованные попытки причинного анализа. Другими словами, когда мы говорим слова «я хочу», мы тем самым отвергаем логическую аргументацию.
В общем и целом подход к проблеме объяснения, содержащийся в понятии дополнительности, напрашивается сам собой в нашем положении разумных существ и очень напоминает учение древних мыслителей о том, что в поисках гармоничного отношения к жизни никогда нельзя забывать, что мы сами являемся одновременно и актёрами, и зрителями драмы жизни. Конечно, относительно этого высказывания, как и относительно большинства предложений, составляющих всю эту статью от начала до конца, справедливо утверждение, что нашей целью может быть лишь стремление передать другим наши знания и взгляды посредством языка, в котором практическое применение всякого слова находится в дополнительном соотношении с попытками его строгого определения.
Институт теоретической физики
Копенгагенский университет
1949
72 ДИСКУССИИ С ЭЙНШТЕЙНОМ ПО ПРОБЛЕМАМ ТЕОРИИ ПОЗНАНИЯ В АТОМНОЙ ФИЗИКЕ *
*Discussion with Einstein on Epistemological Problems in Atomic Physics. «А. Einstein, philosopher-scientist». Evanston, 1949, p. 201—241.
Когда я получил от издателя серии «Современные философы» («Living Philosophers») предложение написать статью для настоящего тома, в котором современные исследователи чествуют Альберта Эйнштейна за его колоссальный вклад в развитие естественных наук и в котором они выражают благодарность всего нашего поколения за проложенный его гением путь, я много размышлял о том, как бы мне лучше выразить, насколько я ему обязан за его вдохновляющие идеи. При этом я живо вспомнил встречавшиеся мне на протяжении ряда лет многочисленные случаи, когда я имел удовольствие обсуждать с Эйнштейном гносеологические проблемы, поставленные новейшим развитием атомной физики; и я подумал, что едва ли я мог бы дать что-нибудь лучшее, чем рассказ об этих спорах, которые – хотя они и не привели к полному согласию – были для меня чрезвычайно ценными и стимулирующими. В то же время я надеюсь, что такой рассказ может дать более широким кругам представление о том, насколько полезен был открытый обмен мыслями для прогресса в области, где новые результаты время от времени требовали от нас пересмотра наших воззрений.
*
Главным предметом нашего спора с самого начала был вопрос о том, какую позицию следует занять по отношению к тем отклонениям от привычных принципов описания природы, которые характерны для новейшего развития физики. Я имею в виду тот путь, на который вступила физика в первом году нашего века в результате открытия Планком универсального кванта действия. Это открытие выявило в законах природы черту атомистичности, которая выходит далеко за пределы старого учения об ограниченной делимости материи; действительно, это открытие показало нам, что классические теории физики являются идеализациями, которые допускают однозначное применение только в тех предельных случаях, когда все величины размерности действия велики по сравнению с квантом действия. На обсуждении стоял вопрос, следует ли рассматривать отказ от причинного описания атомных процессов, фактически содержащийся в попытках овладеть новым положением вещей, как временное пренебрежение идеалами, которые в конечном счёте снова вернут свои права, или же дело идёт о необратимом шаге на пути к настоящей гармонии между анализом и синтезом физических явлений. Для того чтобы дать как можно более ясное представление о том фоне, на котором протекали наши споры, и об аргументах, выдвигавшихся в пользу той или другой из противоположных точек зрения, я считаю необходимым напомнить с достаточной подробностью главные черты того развития теории, в которое сам Эйнштейн внёс такой решающий вклад.
Как известно, Больцман впервые установил наличие внутренней связи между законами термодинамики и статистическими закономерностями, которые проявляются в механических системах с большим числом степеней свободы. Идея о существовании этой связи была руководящей идеей Планка в его остроумном исследовании проблемы теплового излучения-исследовании, приведшем его к фундаментальному открытию. Рассуждения Планка были в основном статистического характера; Планк весьма осторожно избегал окончательных выводов о том, в какой мере существование кванта действия означает отход от основных законов механики и электродинамики. Сущность же великого вклада Эйнштейна в квантовую теорию (1905) как раз и состояла в признании того, что такие физические явления, как фотоэффект, могут непосредственно зависеть от индивидуальных квантовых эффектов 1 В те же годы, когда Эйнштейн, развивая свою теорию относительности, создавал тем самым новую основу физики, он одновременно исследовал своим дерзким умом новые черты атомизма, уводившие далеко за рамки классической физики.
1 A. Einstein. Ann. Phys., 1905, 17, 132 (см. перевод: А. Эйнштейн. Собр. научн. трудов, т. 3. М., 1966, стр. 92. – Прим. ред.).
Таким путём безошибочная интуиция Эйнштейна привела его шаг за шагом к выводу, что всякий радиационный процесс состоит из испускания или поглощения индивидуальных световых квантов или «фотонов» с энергией и количеством движения
𝐹=ℎν
и
𝑃=ℎσ;
(1)
здесь ℎ – постоянная Планка, тогда как ν – число колебаний в единицу времени, а σ —число волн на единицу длины. Представление о фотоне при всей его плодотворности выдвинуло совершенно непредусмотренную дилемму, поскольку всякая простая корпускулярная картина излучения явно несовместима с явлениями интерференции, которые представляют важную особенность процессов излучения и могут быть описаны только при помощи волновой картины. Острота дилеммы подчёркивается тем фактом, что интерференционные явления – это единственное средство для определения тех самых понятий частоты и длины волны, которые входят в соотношения для энергии и количества движения фотона.
При таком положении вещей не могло быть и речи о попытке причинного анализа явлений излучения; речь может идти только о том, чтобы путём комбинированного применения противоположных картин вычислять вероятности отдельных актов излучения. Здесь очень важно полностью отдавать себе отчёт в том, что при таких обстоятельствах привлечение вероятностных законов преследует существенно другие цели, чем обычное применение статистических соображений в качестве практического способа объяснения свойств механических систем с весьма сложной структурой. В самом деле, в квантовой физике дело не в такого рода сложности, а в непригодности классической системы представлений для передачи своеобразных чарт неделимости или «индивидуальности», характеризующих элементарные процессы.
Непригодность теорий классической физики для объяснения атомных процессов всё яснее выявлялась по мере нашего ознакомления со строением атомов. Прежде всего открытие Резерфордом атомного ядра (1911) одним ударом вскрыло непригодность классических представлений механики и электродинамики для объяснения свойственной атому стабильности. И здесь теория квантов снова дала ключ к выяснению положения вещей; в частности, появилась возможность объяснить как стабильность атомов, так и эмпирические законы, которым подчиняются спектры элементов. В основе этого объяснения лежит предположение о том, что всякая реакция атома, ведущая к изменению его энергии, включает в себя полный переход атома из одного так называемого стационарного квантового состояния в другое и что, в частности, спектры испускаются ступенчатым процессом, причём каждый переход сопровождается испусканием монохроматического кванта света, энергия которого в точности равна энергии эйнштейновского фотона.
Эти представления, вскоре подтверждённые опытами Франка и Герца (1914) над возбуждением спектров при ударе электронов об атомы, заключают в себе дальнейший отказ от причинного способа описания; ибо толкование спектральных законов явно предполагает, что атом в возбуждённом состоянии имеет, вообще говоря, возможность перейти с испусканием фотонов в одно из своих состояний с меньшей энергией. Действительно, самое представление о стационарных состояниях несовместимо с каким-либо предписанием относительно выбора между такими переходами и допускает только применение понятия об относительных вероятностях отдельных процессов перехода. При оценке таких вероятностей единственной основой служил так называемый принцип соответствия, возникший из стремления найти наиболее тесную связь между статистическим описанием атомных процессов и следствиями, которые следовало бы ожидать на основании классической теории. Последняя должна быть непосредственно применима только в предельном случае, когда рассматриваемые на всех этапах анализа явлений величины размерности действия велики по сравнению с универсальным квантом действия.
В то время ещё не намечалось никакой общей непротиворечивой квантовой теории; тогдашняя точка зрения на эти вопросы может быть, однако, иллюстрирована следующим отрывком из доклада 2, сделанного автором в 1913 г.: «Я надеюсь, что говорил достаточно ясно для того, чтобы вы поняли, насколько сильно приведённые рассуждения отклоняются от той замечательно последовательной системы понятий, которую по праву называют классической электродинамической теорией. С другой стороны, именно тем, что я так сильно подчёркивал это противоречие, я пытался дать вам почувствовать, что со временем всё-таки можно будет привести новые понятия в какую-то систему».
2 N. Bohr. Fys. Tidss., 1914, 12, 97; «Theory of spectra and Atomic Constitution», Cambridge, University Press, 1922 (статья 7, т. I).
Важный шаг вперёд в развитии квантовой теории был сделан самим Эйнштейном в его знаменитой статье 1917 г. о равновесном излучении 3. В ней он показал, что закон Планка о тепловом излучении допускает простой вывод на основе предположений, совпадающих с основными идеями квантовой теории строения атомов. С этой целью Эйнштейн формулировал общие статистические правила для излучательных переходов между стационарными состояниями. При этом он считал, что процессы испускания и поглощения будут иметь место не только для атомов, подвергаемых действию излучения (причём вероятность их в единицу времени будет пропорциональна интенсивности падающего света), но что даже при отсутствии внешних возмущений могут иметь место спонтанные процессы излучения, число которых в единицу времени соответствует некоторой априорной вероятности. По поводу последнего пункта Эйнштейн весьма выразительно подчеркнул фундаментальный характер статистического описания тем, что указал на аналогию между предположением о существовании спонтанных излучательных переходов и хорошо известными законами, управляющими превращениями радиоактивных веществ.
3 A. Einstein. Phys. Zs., 1917, 18, 121 (см. перевод: А. Эйнштейн. Собр. научн. трудов, т. 3, стр. 393. – Прим. ред.).
В связи со своим тщательным анализом вытекающих из термодинамики требований в отношении задач излучения Эйнштейн ещё больше заострил дилемму, указав, что если его рассуждения справедливы, то всякий процесс излучения должен иметь определённое направление. Последнее нужно понимать в том смысле, что не только атом, поглощающий квант света, получает от фотона количество движения, направление которого соответствует направлению распространения фотона, но что и излучающий атом получает импульс в противоположном направлении, причём это имеет место, несмотря на то, что по волновой картине не может быть и речи о предпочтительном направлении в акте излучения. Отношение самого Эйнштейна к таким поразительным выводам выражено в нескольких фразах в конце упомянутой выше его статьи 3: «Эти свойства элементарных процессов заставляют считать почти неизбежным построение собственно квантовой теории излучения. Слабость теории состоит, с одной стороны, в том, что она не приближает нас к объединению с волновой теорией, и, с другой стороны, в том, что она предоставляет „случаю“ время и направление элементарных процессов; тем не менее я питаю полное доверие к надёжности того пути, на который мы вступили».
Когда в 1920 г. при моем посещении Берлина я в первый раз встретился с Эйнштейном – что было для меня великим событием, – эти фундаментальные вопросы и были темой наших разговоров. Обсуждения, к которым я потом часто мысленно возвращался, добавили к моему восхищению Эйнштейном ещё и глубокое впечатление от его непредвзятой научной позиции. Его пристрастие к таким красочным выражениям, как «призрачные поля (Gespensterfelder), управляющие фотонами», не означало, конечно, что он склонен к мистицизму, но свидетельствовало о глубоком юморе, скрытом в его проницательных замечаниях. И всё-таки между нами оставалось некоторое расхождение в отношении нашей точки зрения и наших видов на будущее. При его мастерстве согласовывать, казалось бы, противоречащие друг другу факты, не отказываясь от непрерывности и причинности, Эйнштейн, быть может, меньше, чем кто-либо другой, был склонен отбросить эти идеалы, – меньше, чем кто-либо, кому такой отказ представлялся единственной возможностью согласовывать многообразный материал из области атомных явлений, накапливавшийся день ото дня при исследовании этой новой отрасли знаний.
В последующие годы, в течение которых атомные проблемы привлекали к себе внимание быстро растущего круга физиков, кажущиеся противоречия внутри квантовой теории ощущались всё острее. Очень показательна дискуссия, возникшая в 1922 г. в связи с открытием эффекта Штерна и Герлаха. С одной стороны, этот эффект давал убедительное подтверждение представлению о стационарных состояниях и, в частности, для построенной Зоммерфельдом квантовой теории эффекта Зеемана; с другой же стороны, как ясно показали Эйнштейн и Эренфест 4, наличие такого эффекта ставило непреодолимые трудности перед всякой попыткой наглядно представить себе поведение атома в магнитном поле. Подобные же парадоксы возникли в результате открытия Комптоном (1924) изменения длины волны, сопровождающего рассеяние рентгеновских лучей электронами. Как известно, этот опыт дал самое непосредственное доказательство справедливости точки зрения Эйнштейна на перенос энергии и количества движения при процессах излучения. Однако в то же время было очевидно, что никакая простая картина явления как столкновения частиц не может дать исчерпывающего его описания. Под впечатлением таких трудностей временно возникли даже сомнения в сохранении энергии и количества движения в индивидуальных процессах излучения 5. Такие сомнения, однако, вскоре исчезли перед лицом уточнённых опытов, выяснивших наличие однозначного соотношения между отклонением фотонов и соответствующей отдачей электрона.
4 A. Einstein, Р. Ehrenfest. Zs. f. Phys., 1922, 11, 31 (см. перевод: А. Эйнштейн. Собр. научн. трудов, т. 3, стр. 422. – Прим. ред.).
5 N. Bohr, Н. A. Kramers, J. С. Slater. Phil. Mag., 1924, 47, 785 (статья 25, т. I).
Путь к выяснению положения вещей был проложен только развитием более объемлющей теории квантов. Первым шагом к этой цели было предуказание де Бройлем (в 1925 г.) того факта, что двойственность волна – частица не ограничивается свойствами излучения, но в равной мере неизбежна и при описании поведения материальных частиц. Эта мысль была вскоре убедительно подтверждена опытами над явлениями интерференции электронов. Эйнштейн сразу же радостно приветствовал эту мысль, так как им уже была установлена глубоко лежащая аналогия между свойствами теплового излучения и свойствами газов в так называемом вырожденном состоянии 6. Новая линия была с огромным успехом продолжена Шредингером (1926), который, в частности, показал, как стационарные состояния атомной системы могут быть представлены при помощи собственных решений волнового уравнения. Путь к установлению вида волнового уравнения был ему указан формальной аналогией между механическими и оптическими проблемами, на которую впервые обратил внимание Гамильтон. Парадоксальные черты теории квантов, однако, нисколько не смягчились; они, пожалуй, даже обострились ещё больше в силу кажущегося противоречия между требованиями свойственного волновому описанию общего принципа наложения и присущими атомным процессам чертами индивидуальности.
6 A. Einstein. Berl. Вег., 1924, р. 261; 1925, р. 3, 18 (см. перевод: А. Эйнштейн. Собр. научн. трудов, т. 3, стр. 481, 489, 503. – Прим. ред.).
В это же время Гейзенберг (1925) заложил основы рациональной квантовой механики, которая получила быстрое развитие благодаря важным вкладам Борна и Иордана, а также Дирака. Теория вводит формальный аппарат, в котором кинематические и динамические переменные классической механики заменяются абстрактными символами, подчиняющимися некоммутативной алгебре. Несмотря на отказ от понятия траектории частицы, основные уравнения механики в их гамильтоновой канонической форме были сохранены без изменений, а постоянная Планка вошла лишь в перестановочные соотношения
𝑞𝑝
–
𝑝𝑞
=
√
–1
ℎ
2π
,
(2)
справедливые для каждой пары сопряженных переменных 𝑞 и 𝑝. Вводя для абстрактных символов представление в форме матриц с элементами, относящимися к переходам между стационарными состояниями, оказалось возможным впервые дать принципу соответствия количественную формулировку. Напомним здесь, что важный предварительный шаг в этом направлении был сделан (в частности, Крамерсом) при построении квантовой теории дисперсии; в основе этой теории лежат эйнштейновские общие правила для вероятностей процессов поглощения и испускания.
Как было вскоре показано Шредингером, эта матричная форма квантовой механики приводит к результатам, совпадающим с теми, какие можно получить с помощью методов волновой теории, которые часто оказываются более удобными в математическом отношении. В последующие годы были постепенно разработаны общие методы такого описания атомных процессов, которое по существу является статистическим; эти методы объединили логически непротиворечивым образом характерную для квантовой теории черту неделимости атомных процессов с требованиями, вытекающими из принципа наложения.
Из многочисленных достижений этого времени упомянем прежде всего, что аппарат квантовой механики позволил дать формулировку принципу, которому подчиняются состояния систем с несколькими электронами; этот принцип был установлен Паули на основании анализа атомных спектров ещё до построения квантовой механики. Количественный охват большого эмпирического материала не оставлял больше сомнений в плодотворности и пригодности аппарата квантовой механики; однако абстрактный характер этого аппарата вызывал широко распространённое чувство неудовлетворённости. В самом деле, прояснить положение вещей можно было здесь только путём более глубокого исследования проблемы наблюдений в атомной физике.
Эта фаза развития была, как известно, начата в 1927 г. Гейзенбергом 7, указавшим на то, что данные о состоянии атомной системы всегда страдают своеобразной «неопределённостью». Так, всякое измерение положения электрона при помощи прибора, работающего на высокочастотном излучении (например, микроскопа), связано согласно основным уравнениям (1) с обменом импульсом между электроном и измерительным прибором, причём этот обмен будет тем больше, чем точнее стремятся измерить положение. Сравнивая такие рассуждения с требованиями, вытекающими из формального аппарата квантовой механики, Гейзенберг обратил внимание на тот факт, что перестановочное соотношение (2) накладывает на точность, с которой могут быть фиксированы две сопряженные переменные 𝑞 и 𝑝, взаимное ограничение, выражающееся зависимостью
Δ
𝑞
⋅
Δ
𝑝
≈
ℎ,
(3)
причём Δ𝑞 и Δ𝑝 представляют неопределённости в измеряемых значениях этих переменных. Это соотношение неопределённостей указывает на тесную связь между принятым в квантовой механике статистическим способом описания и фактическими измерительными возможностями. Как показал Гейзенберг, оно имеет благодаря этому величайшее значение для объяснения парадоксов, к которым приводят попытки анализа квантовых эффектов при помощи обычных физических представлении.
7 W. Неisеnbеrg. Zs. f. Phys., 1927, 43, 172.
На международном конгрессе физиков в Комо, посвященном памяти Вольты и созванном в сентябре 1927 г., новейшие успехи атомной физики были предметом обстоятельных дискуссий. В своем докладе 8 я развил тогда точку зрения, которую кратко можно охарактеризовать словом «дополнительность»; эта точка зрения позволяет, с одной стороны, охватить характерную для квантовых процессов черту неделимости и, с другой стороны, разъяснить существующие в этой области особенности постановки задачи о наблюдении. Для этого решающим является признание следующего основного положения: как бы далеко ни выходили явления за рамки классического физического объяснения, все опытные данные должны описываться при помощи классических понятий.
8 N. Bohr. «Atti del Congresso Internationale dei Fisici», Como, Settembre 1927; Nature, 1928, 121, 78, 580 (статья 32).
Обоснование этого состоит просто в констатации точного значения слова «эксперимент». Словом «эксперимент» мы указываем на такую ситуацию, когда мы можем сообщить другим, что именно мы сделали и что именно мы узнали. Поэтому экспериментальная установка и результаты наблюдений должны описываться однозначным образом на языке классической физики.
Из этого основного положения, обсуждение которого стало главной темой излагаемой здесь дискуссии, можно сделать следующий вывод. Поведение атомных объектов невозможно резко отграничить от их взаимодействия с измерительными приборами, фиксирующими условия, при которых происходят явления. В самом деле, неделимость типичных квантовых эффектов проявляется в том, что всякая попытка подразделить явления требует изменения экспериментальной установки и тем самым влечёт за собой новые возможности принципиально неконтролируемого взаимодействия между объектами и измерительными приборами. Вследствие этого данные, полученные при разных условиях опыта, не могут быть охвачены одной-единственной картиной; эти данные должны скорее рассматриваться как дополнительные в том смысле, что только совокупность разных явлений может дать более полное представление о свойствах объекта.
При этих обстоятельствах приписывание атомным объектам обычных физических атрибутов существенным образом связано с неоднозначностью; непосредственно это обнаруживается в дилемме, касающейся корпускулярных и волновых свойств электронов и фотонов, где мы имеем дело с как бы противоречащими друг другу картинами, из которых каждая представляет существенную сторону того, что даёт нам опыт. Все кажущиеся парадоксы могут быть устранены путём исследования тех (несовместимых) условий опыта, при которых наблюдаются дополнительные явления. Поучительным примером этого может служить эффект Комптона, непротиворечивое описание которого вначале представляло такие большие трудности. В этом примере разъяснение состоит в том, что всякая установка, пригодная для изучения обмена энергией и количеством движения между электронами и фотонами, необходимо должна оставлять в пространственно-временно́й локализации процесса допуски, достаточные для того, чтобы придать определённость понятиям волнового числа и частоты [эти величины входят в соотношения (1)]. И обратно, всякая попытка более точного определения места столкновения между фотоном и электроном сделала бы невозможным подведение более точного баланса энергии и количества движения; невозможность эта обусловлена неизбежным взаимодействием с неподвижными масштабами и часами, определяющими пространственно-временну́ю систему отсчёта.
Как подчёркнуто в докладе, надлежащим средством для дополнительного описания как раз и служит формальный аппарат квантовой механики. Этот формальный аппарат представляет собою чисто символическую схему, позволяющую делать предсказания результатов опытов, производимых в определённых условиях, которые должны характеризоваться при помощи классических понятий. Эта схема связана с классической теорией принципом соответствия. Следует напомнить, что и в соотношении неопределённости (3) мы имеем дело с таким следствием формального аппарата, которое не может быть недвусмысленно выражено словами, приспособленными для описания классической картины физического явления. Так, после фразы: «Мы не можем одновременно узнать положение и количество движения атомного объекта» —немедленно возникает вопрос о физической реальности двух таких атрибутов объекта, а на этот вопрос можно ответить, только исследуя условия для недвусмысленного применения пространственно-временны́х понятий, с одной стороны, и динамических законов сохранения, с другой. Объединение этих понятий в цельную картину причинной цепи явлений составляет сущность классической механики. Что касается закономерностей, находящихся вне досягаемости такого классического описания, то место для них освобождается именно благодаря тому, что изучение дополнительных явлений требует взаимно исключающих экспериментальных установок.
Возникшая в атомной физике необходимость заново рассмотреть те основания, на которые должно опираться непротиворечивое применение элементарных физических идей, напоминает в некотором смысле ситуацию, с которой столкнулся в свое время Эйнштейн. Эта ситуация побудила Эйнштейна пересмотреть основания, на которые опираются все применения пространственно-временны́х понятий, и благодаря тому, что в процессе пересмотра было подчёркнуто фундаментальное значение проблемы наблюдения, в результате наше физическое мировоззрение приобрело замечательную стройность и единство. Несмотря на всю новизну и необычность способа рассмотрения, теория относительности сохраняет причинное описание, применяемое внутри каждой данной системы отсчёта; в квантовой же механике мы вынуждены отказаться и от этого, отказаться из-за неконтролируемого взаимодействия между объектами и измерительными приборами. Этот факт, однако, отнюдь не указывает на ограниченность или неполноту квантовомеханического описания, и приведённая в моем докладе в Комо аргументация как раз имела целью показать, что точка зрения «дополнительности» может рассматриваться как разумное обобщение идеала причинности.
*
Во время общей дискуссии в Комо нам всем недоставало Эйнштейна. Но вскоре после этого, в октябре 1927 г., я имел возможность встретиться с ним в Брюсселе на 5-м Физическом конгрессе Института Сольвея, посвященном теме «Электроны и фотоны». На Сольвеевских съездах Эйнштейн всегда был одной из самых заметных фигур, и многие из нас пришли на это заседание в надежде узнать, какова будет реакция Эйнштейна на новейший этап развития теории – этап, который, по нашему мнению, принес удовлетворительное разъяснение проблем, впервые выдвинутых с такой проницательностью самим Эйнштейном. Во время дискуссий тема была освещена докладами со многих сторон; в частности, были доложены и соображения, изложенные на предыдущих страницах. Эйнштейн же выразил свою глубокую тревогу по поводу того, что в квантовой механике так далеко отошли от причинного описания в пространстве и времени.
Рис. 1
Чтобы пояснить свою точку зрения, Эйнштейн привёл на одном из заседаний 9 простой пример частицы (электрона или фотона), проникающей через отверстие или узкую щель в экране, за которым на некотором расстоянии поставлена фотографическая пластинка (рис. 1). Благодаря тому, что связанная с движением частицы волна претерпевает дифракцию (на рисунке эта волна изображена тонкими линиями), при этих условиях нельзя с уверенностью предсказать, в какой точке электрон попадет на фотографическую пластинку: можно только вычислить вероятность обнаружить электрон на опыте в некоторой заданной части пластинки. С таким описанием процесса связано одно кажущееся затруднение, которое сильно смущало Эйнштейна. Это затруднение состоит в следующем: если на опыте электрон был зарегистрирован в точке 𝐴 пластинки, то тем самым совершенно исключается возможность наблюдать какое-либо действие этого электрона в другой точке 𝐵, хотя законы обычного распространения волн не допускают какой-либо корреляции между двумя такими событиями.
9 A. Einstein. Institut International de Physique Solvay, Rapport et discussions du 5e Conseil. Paris, 1928, p. 253 (см. перевод: А. Эйнштейн. Собр. научн. трудов, т. 3, стр. 528, – Прим. ред.).
Точка зрения Эйнштейна вызвала в более тесном кругу горячие споры. Самое живое и стимулирующее участие принимал в этих спорах и Эренфест, который много лет был связан с нами обоими тесной дружбой. Разумеется, все мы поняли, что в приведённом выше примере положение не представляет аналогии статистическому рассмотрению сложных механических систем. Положение это скорее напоминало то, которое явилось предпосылкой для выводов, сделанных ранее самим Эйнштейном об определённой направленности индивидуальных излучательных эффектов, выводов, стоящих в столь резком противоречии с простой волновой картиной (ср. стр. 403). Центральным вопросом, вокруг которого шёл спор, был вопрос о том, исчерпывает ли квантовомеханическое описание то, что можно действительно наблюдать, или же, как настаивал Эйнштейн, анализ можно вести дальше; и нельзя ли в последнем случае достигнуть более полного описания явлений путём учёта детального баланса энергии и количества движения в элементарных процессах.
Рис. 2
Для пояснения хода мыслей Эйнштейна в его рассуждениях укажем здесь на некоторые простые особенности баланса количества движения и энергии в связи с определением положения частицы в пространстве и времени. Для этого мы рассмотрим простой случай частицы, проникающей через отверстие в диафрагме, причём отверстие или всегда открыто (рис. 2, а), или же может открываться и закрываться при помощи затвора (рис. 2, б). Параллельные равноотстоящие линии на левой стороне рисунка изображают последовательность плоских волн, соответствующую состоянию движения частицы, которая до прохода через диафрагму имеет количество движения 𝑃, связанное с волновым числом σ вторым соотношением (1). Благодаря дифракции волн при проходе через отверстие состояние движения частицы справа от диафрагмы изображается последовательностью сферических волн с определённым углом раствора θ, в случае рис. 2, б последовательность эта ограничена также и в радиальном направлении. Следовательно, описание этого состояния содержит неопределённость Δ𝑝 составляющей количества движения частицы, параллельной плоскости диафрагмы; в случае диафрагмы с затвором имеется также неопределённость Δ𝐸 в кинетической энергии частицы.