Текст книги "Мир приключений 1986 г."
Автор книги: Кир Булычев
Соавторы: Игорь Росоховатский,Игорь Подколзин,Павел Вежинов,Альберт Иванов,Ярослав Голованов,Олег Воронин,Евгений Карелов,Григорий Темкин
Жанры:
Научная фантастика
,сообщить о нарушении
Текущая страница: 51 (всего у книги 53 страниц)
ИЩУ ПЛАНЕТУ СО ВСЕМИ УДОБСТВАМИ…
Уникальная? Согласен. Но уникальная – не значит единственная. Да, Солнцу повезло – оно обладает одним из чудес Вселенной. Но вправе ли мы приравнивать редкость к неповторимости? Мы ведь знаем, что Солнце – звезда вполне рядовая, наверняка не уникальная, ничем особенно не примечательная среди других светил и нашей Галактики, и других известных нам галактик. Так, быть может, и планетарные системы вокруг подобных (или иных) звезд тоже не уникумы? И что вообще известно нам о других планетных системах, вне зависимости от того, есть или нет на них жизнь?
Мало что известно. Американский астроном Питер ван де Камп, один из упорнейших наблюдателей неба, проведший у телескопа обсерватории Спраул буквально десятки лет, очень увлекался проблемой неизвестных нам планетных систем. Он понимал, что ни в какой, даже самый сильный телескоп разглядеть далекую маленькую, да к тому же не излучающую свет планету невозможно. Но возможно другое. Следить за звездой и ловить момент, когда планета (или несколько планет) пройдет по светящемуся диску звезды. Изучая изменения яркости молодой переменной звезды RU – Lupi, шведские астрономы в 1974 году пришли к выводу, что звезда эта окружена целым роем так называемых протопланет, пылевых сгустков, планетных «полуфабрикатов», которые со временем, сжимаясь под действием собственных гравитационных сил, могут превратиться в плотные небесные тела.
При прохождении планеты по диску звезды ее блеск может уменьшиться на один процент, что в принципе можно уловить современными приборами. Вся сложность в том, что никто не знает, когда это произойдет. Известный советский астроном Василий Иванович Мороз подсчитал, что для того, чтобы «поймать» планету таким образом, нужно наблюдать в течение года каждую ночь три тысячи звезд.
Таким образом, технически доступный вроде бы метод не обещал в обозримом будущем больших успехов, и Питер ван де Камп пошел другим путем. О планетах, коль скоро их не видно, расскажет сама звезда, но расскажет не изменением своей яркости, а изменением своих небесных координат. Он разработал методику косвенного поиска планетных систем – путем математического анализа отклонений в поведении самой звезды. Как ни ничтожна масса планет в сравнении с массой звезды, планеты все–таки должны, подчиняясь законам Ньютона, как–то взаимодействовать со звездой, вносить чуть заметные возмущения в ее движение. Хотя наблюдения Питера ван де Кампа происходили на границе точности аппаратуры, когда измеряемая величина почти равна допустимой погрешности измерений самого прибора, он был убежден, что открыл несколько звезд с планетными системами. В 1969 году он опубликовал сообщение, что у звезды Барнарда, второй ближайшей к нам звезды, которую отделяет от Солнца всего около шести световых лет, согласно его расчетам, должно быть, по крайней мере, две планеты величиной приблизительно с Юпитер. Если применять солнечные масштабы, то одна из них находится между Землей и Марсом – на орбите пояса астероидов, другая – на орбите Юпитера. Между ними, возможно, существуют и другие, меньшие по размерам планеты, влияние которых столь ничтожно, что обнаружить их невозможно.
Эти работы были продолжены исследователями университета Британской Колумбии, и, проанализировав периодичность этих возмущений, они пришли к выводу, что вокруг звезды Барнарда вращается по крайней мере пять довольно больших планет с массой от 0,7 до 1,6 массы нашего Юпитера [6]6
По другим данным: от 0,4 до 1 массы Юпитера.
[Закрыть].
Еще в 1936 году астроном Рейл открыл огромную планету, масса которой более чем в 40 раз превосходит массу Юпитера. Эта сверхпланета обращается вокруг звезды Росс 614, и год ее длится 15 земных лет. С тех пор темные, то есть холодные, спутники–планеты нашли у многих звезд: 70 Змееносца, 61 Лебедя В, проксима Центавра, Лаланд 21185 и других. Подозревают, что планетные системы есть у звезды эпсилон Эридана, Cin 182354 и у некоторых других звезд. Все это дает право советскому астрофизику члену–корреспонденту АН СССР Всеволоду Сергеевичу Троицкому утверждать, что сегодня «нет оснований сомневаться в большой распространенности планетных систем».
Американец Карл Саган также считает, что, например, в шаровом звездном скоплении М–13, насчитывающем около 30 тысяч звезд, примерно половина имеет планетные системы.
«В нашей Галактике около 200 миллиардов звезд, – рассчитывает член–корреспондент Академии наук Чехословакии Рудольф Пешек. – Четверть из них может иметь планеты. Каждая сотая планета может иметь жизнь».
Американский астроном профессор Г.Эбт считает, что цифры чехословацкого ученого завышены. По его мнению, лишь 10 процентов звезд нашей Галактики имеет планеты и (тут Эбт очень осторожен в выражениях) «на части этих планет нельзя исключить возможности существования той или иной формы жизни».
«Во Вселенной наиболее распространены звезды с массой несколько меньшей, чем у Солнца, и с немного большим временем жизни. У таких звезд очень вероятны планетные системы, и они обеспечивают условия, пригодные для жизни…» – так считает английский ученый В. Фирсов. Оптимисты, как пишет нью–йоркский журнал «Сайенс дайджест», считают, что в Галактике 130 миллиардов планетных систем. Подсчитано даже, что во всей доступной нашему наблюдению Вселенной 1021 планетных систем – цифру эту ни назвать, ни тем более вообразить невозможно!
Я мог бы приводить все новые и новые данные, но, чувствую, у читателей уже кружится голова от этих миллионов, миллиардов, 1021, недоступных воображению нормального человека. Но в приведенных примерах споры, если можно так сказать, носят лишь количественный характер: одни ученые более щедры и наделяют Вселенную большим количеством планет, а следовательно, большим шансом возникновения жизни, другие более скупы и осторожны в своих подсчетах.
Однако это вовсе не значит, что разногласия лишь количественные. Есть и качественные.
Во Вселенной, как показали исследования последних лет, довольно распространены системы двойных звезд. Из шести ближайших к Солнцу звезд по крайней мере пять – двойные. Это может быть большая звезда и звезда–карлик или примерно равновеликие тела. (Таким образом, хотя мы часто подчеркиваем непримечательность нашего Солнца, оно примечательно хотя бы тем, что это одиночная звезда). Если вокруг двойных звезд обращаются планеты, орбиты их должны иметь довольно причудливую форму, отражающую взаимное влияние на них двух солнц. Вряд ли на таких планетах возможны, скажем, «классические», земные смены времен года и даже дня и ночи. Короче, такие планеты живут, по нашим, земным, меркам весьма запутанной жизнью. Поэтому знаменитый астроном X.Шепли пришел к выводу, что «в качестве благоприятных (для жизни. – Я.Г.) мы должны рассматривать только одиночные звезды и, может быть, очень широкие пары, в которых одна звезда не влияет на устойчивость орбитального движения планет вокруг другой».
Рудольф Пешек также исключает двойные и кратные звезды из списков претендентов на возникновение жизни: «Планета, чтобы на ней возник благодатный «бульон» для зарождения жизни, должна иметь орбиту, близкую к круговой; не слишком жаться к звезде и не быть от нее чересчур далеко». Непригодными для жизни считал все двойные и кратные звезды и известный советский астроном В.Г.Фесенков. «Планетные орбиты вокруг двойных и кратных звезд неизбежно отличаются чрезвычайной сложностью, – писал он. – Таким образом, только одиночные звезды могут иметь около себя населенные планеты». Сам Фесенков считал, что из десяти звезд восемь – двойные и кратные. Так же думал известный американский астроном Джерард Койпер.
Таким образом, вероятность возникновения жизни, по Фесенкову, резко снижалась.
«Но исключение всех двойных и кратных систем из общей схемы жизни совершенно произвольно, – возражал ему В.Фирсов. – Сложные орбиты, особенно в форме восьмерки, конечно, возможны в двойных системах с умеренным расстоянием между звездами. В этом случае будут создаваться неблагоприятные колебания температуры поверхности планет. В кратных системах возможны и еще более запутанные орбиты. Но возможны не то же самое, что должны, и простые орбиты гораздо более вероятны».
Ничего не понимаю. Книга В.Фирсова вышла в Лондоне в 1963 году, в 1966–м переведена на русский язык, а в 1968 году Ф.Честнов в книге «Одиноки ли мы во Вселенной», ссылаясь на новые расчеты, доказывает прямо противоположное: именно орбита планеты в форме восьмерки вокруг двойных звезд способствует возникновению на ней жизни. «Сначала планета движется вокруг одного светила, затем вокруг другого, и орбита оказывается замкнутой, – пишет он. – Поток тепла, получаемый планетой, будет меняться в сравнительно небольших пределах».
Член–корреспондент АН СССР Н.С.Кардашев тоже не согласен с В.Г.Фесенковым. Он считает, что «возникновение и развитие жизни на планетах около кратных звездных систем также возможно».
Всю эту круговерть мнений и доводов, в которой нелегко разобраться, я привел умышленно, чтобы подвести вас к выводу самостоятельному, ненавязанному.
Итак, каковы сегодняшние наши представления о возможности внеземной жизни? Постараемся сформулировать их с искренним беспристрастием. В Солнечной системе, кроме Земли, нет мира, населенного разумными существами. Будущее обнаружение примитивных форм жизни не исключается полностью, но вероятность его, очевидно, невелика. В пределах нашей Галактики и в иных галактиках должны в принципе существовать разумные существа. Однако вероятность появления этих существ, равно как и вероятность возникновения планет около иных солнц, способных эти существа породить, нам неизвестны. Семья братьев по разуму существует, но мы не знаем, сколько братьев в этой семье и где они живут. Таков итог. Печальный итог. Печальный, поскольку знания наши в безмерности Вселенной есть величина невидимая. Кроме того, существует еще одно труднопреодолимое препятствие: мы собираемся искать жизнь, не зная, что мы собираемся искать, ибо мы не знаем, что такое жизнь.
КАК СДЕЛАТЬ ЖИВОЕ ИЗ НЕЖИВОГО?
Да, сегодня мы не можем дать ответ и на центральный, наиважнейший вопрос проблемы CETI [7]7
CETI – английская аббревиатура, которая в настоящее время широко распространена как в научной, так и в научно–популярной литературе. Мы тоже будем ею пользоваться. CETI соответствует русскому: «проблема поиска внеземных цивилизаций».
[Закрыть]: является ли жизнь непременным условием эволюции Вселенной или это нечто случайное, из ряда вон выходящее, правило ли это или исключение из правил?
Совсем недавно, еще в начале нашего века, очень грамотный и рассудительный немец доктор Вильгельм Мейер, поставив этот вопрос в своем фундаментальном труде «Мироздание», придумал оригинальный ответ. Если жизнь обязательное свойство существования материи, «тогда, – пишет он, – в наше представление надо ввести, кроме мертвых, еще живые атомы; из мертвых могут создаться только мировые (то есть небесные. – Я.Г.) тела… из живых атомов – организованные существа, способные чувствовать и мыслить. В таком случае нет возникновения жизни; жизнь вечно была и будет, пока есть материя…»
Да, все было бы расчудесно, если бы эти «живые атомы» существовали в действительности. Но где их искать? В доступной нам части Вселенной 1000 000 000 000 000 000 000 звезд, и, куда бы мы ни направили свои спектрометры, отовсюду ответ один: атомы – кирпичики мироздания – едины во всей Вселенной, никаких иных элементов, кроме тех, что живут в многоэтажном доме таблицы Менделеева, нигде не обнаружено. Нет, доктор Мейер, в том–то вся загвоздка, что жизнь как–то возникает из «мертвых», по вашему определению, атомов.
Академик АН Эстонской ССР Густав Иоганнович Наан высказывается по этому поводу весьма категорично. «Коротко можно сказать так: если в вашем распоряжении есть атомы 24 химических элементов, существенно необходимых для «построения» жизни, и вы располагаете временем, скажем, 4,6 миллиарда лет, прошедшими с момента возникновения нашей планеты, а также соответствующими условиями, то рано или поздно вы получите некое разумное существо».
Думаю, что Наан прав: получим! Но весь вопрос сейчас для нас в том, как получим.
Наан, по сути, констатирует, факт, в котором нет сомнения: мы действительно существуем! Но для того чтобы представить себе ход развития жизни иных миров, мы должны расшифровать его постулат, решить частную задачу: узнать, как возникла жизнь на нашей Земле. Если бы мы могли объяснить свое собственное появление и существование, насколько проще стала бы вся проблема! Но и это мы объяснить не можем.
Советский ученый академик А.И.Опарин выдвинул полвека назад теорию возникновения жизни в теплых мелких лагунах доисторических океанов, где в биологическом «бульоне», предельно насыщенном цепочками сложных органических молекул, под действием солнечных лучей или электрических зарядов молний сплетались эти цепочки, превращая сложные молекулы в нечто принципиально новое, способное изменять свои качества и свойства под действием окружающей среды, производить с этой средой некий обмен веществ и в конце концов создавать нечто себе подобное. В обоснованной и строго научной логике рассуждений Опарина была все–таки ахиллесова пята. Более или менее ясно, как и почему образовались сложные органические молекулы. В принципе понятно и то, как самые примитивные микроорганизмы, постепенно усложняясь, породили все многообразие земной жизни. Но как ни крути, остается одна закавыка, слабое звено, должное соединять два конца безупречных построений: как все–таки неживое превращалось вдруг в живое? Предполагалось, что примерно 4,6 миллиарда лет назад на Земле, окутанной плотной атмосферой из аммиака, водорода, метана и водяных паров, возникли сложные органические соединения – аминокислоты, составляющие основу белковой жизни. За миллионы лет слепая природа методом бесконечных проб и ошибок сумела в конце концов создать некую длинную молекулу, которая была способна распадаться на отдельные куски, а затем каждый из кусков вновь «доращивался» до предельного размера, чтобы распасться в свою очередь. Такое дублирование уже напоминает в чем–то биологическую эволюцию. Но именно напоминает, не более. Это момент принципиальный, самый важный, потому что превратить очень сложное органическое соединение в очень примитивный живой организм несравненно сложнее, чем превратить амебу в человека. Академик А.А.Имшенецкий, всю жизнь занимавшийся изучением самых примитивных живых организмов, признает: «Самым трудным для нас остается расшифровка перехода от органического вещества к примитивному существу».
Есть детская игра: один что–нибудь прячет, другой ищет, а ему помогают: «Горячо! Холодно! Теплее, теплее!» Мне кажется, что Опарин где–то совсем рядом с тем местом, где упрятана истина, уже совсем «горячо», но секрет еще не раскрыт.
Чаще всего теория опережает практику, и опыт – лишь памятник ей. Обелиск или надгробие. Но случается и иначе. Задолго до появления теории Опарина, в 1897 году, когда два югославских ученых, С.Лозанич и М.Йовишич, ставили биохимические опыты, воздействуя на различные органические соединения «потоком искр». Позднее, в 1913 году, скромный немецкий химик Вальтер Лёб, ничего не зная о теории Опарина, поскольку теории еще не было, а автор ее сидел на студенческой скамье, пропускал электрические разряды через смеси аммиака, воды и углекислоты. Он доказывал, что получал аминокислоту гликокол. Так ли, нет ли, не знаю. Знаю только, что справедливости ради не следует забывать эти первые опыты, – так трудно всегда быть первым…
Шли годы, и многие ученые в разных странах стремились создать искусственную жизнь. Моделировались условия детства земного шара, создавались газовые смеси и водные растворы, которые могли тогда образовываться, но высечь искру жизни из безжизненной материи не удавалось!
Может быть, наиболее тонкие эксперименты проделал в 1953 году молодой аспирант Чикагского университета Стенли Миллер. Создав в лаборатории модель земной атмосферы, Миллер стал пропускать через эту газовую смесь сильные электрические разряды и получил различные аминокислоты и другие органические соединения. Другие ученые повторяли эти опыты, заменяя искусственную молнию потоком ультрафиолетовых лучей, раскаляя газы и даже подвергая их воздействию ударных волн. Сидней Фокс из Флоридского университета изловчился и сделал следующий шаг вперед: он заставил полученные аминокислоты связываться между собой и получил еще более сложные соединения, названные им протеиноидами, крохотные белковые сферы. Шарики Фокса уже приближались по своим размерам к примитивным бактериям. Биохимики Сирил Поннамперума и Хуан Оро тоже сумели синтезировать несколько сложных органических соединений, лежащих в основе нуклеиновых кислот. Все явно ходили где–то очень близко, всем было «горячо», это была уже почти жизнь – «предбиологические соединения», как о них писали, но как много в этом «почти»!
Знай мы сегодня в деталях весь механизм возникновения жизни на Земле, у нас было бы больше оснований рассуждать о вероятности жизни во Вселенной. Но и только – больше оснований. Да, было бы просто великолепно стереть в истории своей эволюции все «белые пятна», тем более что мы (быть может, очень нескромно) полагаем, что земной опыт природы оказался удачным. Но следует ли из этого, что природа повторялась, используя однажды найденный путь? Даже разгадав все тайны земной жизни, мы не будем знать степени ее похожести на иную жизнь. Мне могут возразить, что коль скоро жизнь базируется на углеводородных соединениях, то всякое возможное многообразие в основе своей должно содержать нечто общее. Довод серьезный и логичный.
Тем более серьезный и логичный, что в 1968 году в космосе были обнаружены относительно сложные молекулы – аммиака и воды, через год – муравьиный альдегид. Затем выяснилось, что формальдегид, водород и гидроксильный радикал – широко распространенные в нашей Галактике соединения.
Еще через год нашли цианистый водород, который принимает участие в синтезе аминокислот и нуклеиновых кислот. И пошло, и поехало: цианацетилен, метиловый спирт, формамид, ацетонитрил, метилацетилен. И уже чисто органические соединения: цианамид, винилцианид, этанол, метиламин. В 1971 году американец Джонсон нашел на спектрограмме участка неба в созвездии Ориона полосы сложного многоатомного вещества с труднопроизносимым названием: двупиридилмагнийтетрабензопорфин – близкий родственник хлорофилла и гемоглобина. За десять лет работы ученых разных стран в космосе обнаружены спектры 46 сложных молекул. Это все очень интересно и позволяет говорить о том, что во Вселенной постоянно происходит некая интенсивная химическая эволюция. Но именно химическая, о биологической нам ничего не известно. Радиоастроном Дэвид Бул, который обнаружил в космосе много новых соединений, писал: «Конденсация звезды, уплотнение пыли и отдельных молекул в планеты и атмосферы и даже последующее возникновение жизни, возможно, представляют собой лишь часть единого астрономического эволюционного цикла в огромных масштабах времени». У Була нет фактов, он пишет «возможно», в нем говорит интуиция. Это очень важно, у интуиции много заслуг перед наукой. Но факты! Дайте факты! Где она, эта астробиологическая эволюция? Хоть тень ее, хоть намек, след, отблеск, где они?!
Вся земная жизнь построена из весьма ограниченного количества основных органических «кирпичиков»: двадцати аминокислот, пяти оснований, двух углеводов и одного фосфата. Все. Из 28 веществ создана незабудка, дельфин, белый гриб, туберкулезная палочка, кокосовая пальма, автор и читатель этого очерка. Для Земли хватило 28 веществ. Это закон? В иных условиях иных миров как будет меняться их количество? Не знаем…
Еще в середине XIX века классики химии – швед Йене Якоб Берцелиус, немец Фридрих Вёлер, француз Пьер Эжен Бертло начали анализировать химический состав метеоритов, пытаясь отыскать на этих небесных посланцах следы органической жизни. Они понимали, что метеорит, пробивший в жаре и пламени прозрачный щит земной атмосферы, это вовсе не тот метеорит, что летал в космических просторах. Во время своего движения он претерпевает многие изменения – и механические, и физические, и химические тоже. Но все–таки как не попробовать?! В 1834 году Берцелиус обнаружил присутствие органических соединений в некоторых типах метеоритов.
Широко работы эти развернулись уже в 70–х годах нашего века. Метеорит Мёрчисон, который взорвался над австралийским городом Мёрчисоном в 1969 году, прилетел очень вовремя, хотя и переполошил всю округу. Куски его подобрали довольно быстро, вероятность того, что биологические соединения Земли «испачкали» его, была невелика. Мёрчисоном занялся цейлонец Поннамперума, исследователь опытнейший и авторитетный. Он обнаружил в кусках метеорита 18 аминокислот, из которых 6 входят в состав белков живых организмов Земли, а 12 других неизвестны на нашей планете. Там были найдены спирты, парафины, фенолы, углеводы, органические кислоты. Некоторые вещества отличались от подобных им земных соединений. «Земля – это, в сущности, образцовая лаборатория процессов, которые могли происходить бесчисленное число раз в других солнечных системах», – писал Поннамперума. Осторожно писал – «могли происходить». А происходили ли? Он понимает, что объяснить появление сложных органических соединений в условиях космического вакуума и холода трудно. Но, безусловно, «могли происходить», если природа столь щедра на химические заготовки для органики, если она с такой удивительной расточительностью создает эти полуфабрикаты жизни.
Ну а раз так, не зря ли мы вообще ломаем голову? Быть может, зерно жизни принесено на Землю именно из космоса, а наша планета просто оказалась лабораторной склянкой с редкостно подходящим питательным раствором? Автором теории привнесения жизни извне, так называемой теории панспермии, был знаменитый шведский химик и физик Сванте Август Аррениус. В 1903 году он опубликовал фундаментальный труд «Учебник космической физики», в котором высказал предположение, что споры бактерий «прибились» к Земле лучами света. Как раз за год до этого великий русский физик Петр Николаевич Лебедев своими блестящими опытами измерил силу светового давления на газы. Аррениуса поддержали такие авторитеты, как Г.Гельмгольц, Ю.Либих, Дж.Томсон и другие. Есть у него поклонники среди ученых и в наши дни. Были и другие гипотезы: зародыши жизни достигали нашей планеты на метеоритах, кометах, частицах космической пыли.
Но все–таки противников у теории панспермии больше, чем поклонников.
Теорию панспермии потихоньку списали в архив науки, все как будто бы стало на свои места, как вдруг в 1973 году английский биофизик Ф.Крик и американский биохимик Л.Оргел выдвинули новую теорию панспермии – теорию направленной панспермии. Да, космические излучения убьют споры, да, пробиться им сквозь атмосферу сложно. Но ведь безо всяких хлопот с их стороны они могли быть доставлены на нашу планету не случайно, а сознательно, скажем, на неком космическом корабле инопланетян, – жизнь сознательно посеяна на Земле, как мы сознательно сеем на грядке морковку.
При всей своей фантастичности гипотеза Крика и Оргела имеет некую, для одних убедительную, для других неубедительную аргументацию. Если жизнь на Земле возникла самопроизвольно, размышляют ученые, то наиболее вероятно ее возникновение в разных точках нашей планеты. Где–то чуть раньше, где–то чуть позже, но в разных, а значит, при разных обстоятельствах – абсолютно одинаковых случайностей быть не может. Следовательно, существовало несколько независимых очагов превращения неживого в живое. Тогда чем можно объяснить тот неопровержимый факт, что все живые существа на Земле имеют один и тот же генетический код?
Сам Крик полушутя говорит, что сегодня нет недостатка в гипотезах, объясняющих одинаковость генетического кода всего живого, и он готов объявить конкурс на худшую гипотезу, которую, однако, можно было бы экспериментально проверить. Единый код – не есть ли это указание на то, что предок был один, скажем, колония микроорганизмов, доставленных на Землю с другой планеты? Впрочем, инопланетяне могли и не утруждать себя космическим полетом, а просто послать автоматическую станцию, подобную (но, разумеется, усложненную с учетом межзвездных расстояний) тем, которые мы посылаем на Луну, Марс или Венеру.
И еще один интересный довод в пользу своей гипотезы приводят Крик и Оргел. Они обратили внимание на то, что столь редкий и рассеянный на Земле химический элемент, как молибден, играет такую важную роль в земных биохимических процессах. Не означает ли это, что на далекой нашей прародине молибден был в избытке?
Гипотеза Крика и Оргела, на мой взгляд, полностью отвечает всем требованиям, которые мы можем предъявить к научной гипотезе. И главное, основному требованию всякой гипотезы: ее можно подтвердить или опровергнуть. Если, скажем, будет установлено, что процессы превращения неживого в живое и сегодня идут в разных точках земного шара при неких экстремальных условиях (скажем, в зоне вулканической деятельности плюс гроза с молнией) и при этом образуется нечто живое с одинаковым генетическим кодом, гипотеза будет опровергнута.
Но возможен и другой вариант. Если мы установим контакт с высокоразвитой цивилизацией, которая удостоверит, что она является нашей прародиной, гипотеза будет подтверждена. Думаю, что опровергнуть ее трудно, но подтвердить еще труднее.
В заключение своего рассказа о теории панспермии, давней ли Аррениуса или обновленной Криком и Оргелом, хочу заметить, что согласен с теми учеными, которые считают ущербной саму ее суть. «Ее сторонники, – писал Александр Александрович Имшенецкий, – допуская перенос жизни с одной планеты на другую, не решают вопроса о путях возникновения жизни на тех планетах или астероидах, откуда, по их мнению, жизнь попала на Землю…»
Нам еще придется вернуться к теории панспермии, но перед тем, как подвести традиционный частный микроитог, хотелось бы коснуться еще одного вопроса, который, правда, встречается чаще в фантастических романах, нежели в научных журналах. Но мы же договорились не обходить острые углы…
Крепко усвоив привычку все «примерять на себя», сравнивать с известным, мы говорим лишь о жизни на основе углеводородов. Во многом это справедливо. Подобная форма жизни стабильна, способна к быстрой и разнообразной эволюции, да, как вы только что прочли, и в космосе находим мы осколки именно углеводородных форм. Но подобно тому, как никто пока не может ни доказать, ни опровергнуть гипотезу панспермии, никто не может пока ни доказать, ни опровергнуть гипотезу о возможности существования жизни не только на углеводородной основе.
Основой жизни могут стать и другие элементы, особенно если они обладают свойствами, сближающими их с углеродом. Такие, как кремний, бор, азот, фосфор и даже сера. Уже существует понятие «кремнийорганика», полимеры на основе кремния – цепочки, которые могут входить в органические системы. «Кремниевые существа» теоретически возможны. Конечно, трудно себе представить, как «кремниевый человек» живет при температуре в 800 градусов и пьет вместо воды безводную серную кислоту. А ему столь же нелепо предположить, как это возможна жизнь при температурах даже ниже нуля и как можно пить воду!
Прекрасный фантаст Артур Кларк писал: «Стоит нам только выйти за пределы Солнечной системы, как мы сталкиваемся с космической действительностью совершенно иного порядка». Несмотря на это, именно в вопросах внеземной жизни мы проявляем поразительную трафаретность мышления. В старых изданиях можно найти фантастические рисунки инопланетных существ. Большеголовики на длинных ногах, их потом доделал до страшных марсианских спрутов Герберт Уэллс в своем романе «Война миров». Зайцы с телом крокодила, облагороженные летучие мыши, ящерки с восемью ногами… Увы, фантазия наша ограниченна. Я сам однажды решил изобрести нечто невероятное. Придумал существо с головой свиньи, телом жука, кошачьими лапами и хвостом крокодила. На большее воображения не хватило.
Знаменитый английский философ и общественный деятель нашего времени Джон Бернал, размышляя о жизни во Вселенной, писал: «В настоящее время у нас нет оснований ожидать идентичности форм жизни на Земле и на других небесных телах». Бернал был человеком больших знаний и широкого воображения. Те же качества отличали замечательного советского ученого и писателя, родоначальника нового направления в фантастической литературе, Ивана Антоновича Ефремова. Но мыслили они полярно. Мне выпало счастье недолгое время общаться с Ефремовым и говорить с ним об инопланетянах. Вот уж, казалось бы, от кого можно было в подобном вопросе ожидать ответов самых неожиданных. Но выдающийся фантаст отказывал природе в фантазии! Ефремов был убежден, что разумные существа иных цивилизаций могут слегка отличаться друг от друга пропорциями тела, разрезом глаз, цветом кожи, но в принципе все они должны иметь человеческий облик! Иван Антонович был убежден, что эволюция на любой планете непременно приведет разумное существо к двум ногам, двум рукам, двум глазам и т.д. Таким образом, и тут шла «примерка на себя», и тут проявлялся наш антропоцентризм: мы лучше всех! Я не большой знаток фантастической литературы, но, пожалуй, только у Станислава Лема в его «Солярисе» и в некоторых рассказах покойного американца Клиффорда Саймака инопланетный разум выходит за рамки привычных земных представлений. Мыслящий океан «Соляриса» – безусловно, находка, но и здесь образ подсказан Землей: океан… Увы, мы не можем придумать ничего, ранее не известного, и мера нашей фантазии ограничивается лишь умением компилировать, подгонять, противопоставлять, сталкивать, доводить до абсурда известное и виденное.
Ничего принципиально нового мы не в состоянии изобрести.
Мы не знаем, как выглядят наши братья по разуму, коль скоро они существуют. Убежден, что мы никогда не отыщем во Вселенной существ, подобных нам. Будут ли они красивы или безобразны, на наш взгляд, это вопрос человеческой эстетики, но они будут другими!
Дело не в форме тела – она может быть произвольна, – а в принципе коммуникативных связей. Они принципиально по–другому общаются друг с другом. Как мы общаемся? Речь, мимика, жест. Возможно, существуют некие телепатические явления, но природа их пока для нас не совсем ясна, так что не будем эту сложную тему затрагивать. А теперь представьте себе неких существ, которым ни речь, ни мимика, ни жест совершенно не известны. Они абсолютно неподвижны и в то же время не излучают никаких радиоволн, не ведают ни о каких телепатических каналах связи. Тело их при общении непрерывно изменяет свой цвет. По ним как бы катятся цветовые волны самых разнообразных оттенков. Ни один земной художник никогда даже близко не подходил к тем границам тончайшего восприятия оттенков, на которые способны эти радужные существа. Цветовой спектр при условии всех возможных сочетаний и комбинаций практически неисчерпаем. Таким образом, в общении между собой им доступно такое многообразие, такая точность передачи сути мысли, которую не может дать ни один земной язык, поскольку словарный его запас конечен и несоизмерим с возможностями цветовой палитры придуманных мною инопланетян.