355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Пьер Лаплас » Изложение системы мира » Текст книги (страница 3)
Изложение системы мира
  • Текст добавлен: 26 марта 2017, 00:30

Текст книги "Изложение системы мира"


Автор книги: Пьер Лаплас



сообщить о нарушении

Текущая страница: 3 (всего у книги 35 страниц)

Можно различить, особенно вблизи новолуния, ту часть лунного диска, которая не освещена Солнцем. Эта слабая освещённость, которую называют пепельным светом, по крайней мере, в большей своей части вызвана светом, отражающимся на Луну освещённой земной полусферой. Это подтверждается тем, что пепельный свет становится заметнее около новолуния, когда самая большая часть освещённой земной полусферы обращена к Луне. В самом деле, очевидно, что Земля являла бы наблюдателю, находящемуся на Луне, фазы, похожие на те, которые нам являет Луна, но вследствие большей протяжённости поверхности Земли более яркие. 1

Лунный диск представляется нам покрытым большим числом неизменяющихся пятен, которые были с большой тщательностью наблюдены и описаны. Они доказывают, что Луна всегда повёрнута к нам почти одним и тем же полушарием, а это значит, что она вращается вокруг своей оси за время, равное времени её обращения вокруг Земли. Действительно, если вообразить наблюдателя, помещённого в центр Луны, предполагаемой прозрачной, он увидит Землю и свой луч зрения вращающимися вокруг себя, и так как этот луч пересекает поверхность Луны приблизительно в одной и той же точке, ясно, что эта точка должна вращаться за то же время и в ту же сторону, что и Земля вокруг наблюдателя.

Однако систематические наблюдения лунного диска обнаружили небольшие изменения в его виде: можно заметить, что пятна попеременно то приближаются, то отдаляются от его краёв. Те из них, которые очень близки к краям, исчезают и появляются вновь, совершая периодические колебания, которые были названы либрациями Луны. Чтобы представить себе главные причины этого явления, надо учесть, что лунный диск, видимый из центра Земли, ограничивается окружностью лунного шара, перпендикулярной к лучу зрения. На плоскость этого круга проектируется обращённая к Земле полусфера Луны, внешний вид которой зависит от её вращательного движения. Если бы Луна не имела вращательного движения, её радиус-вектор при каждом лунном обороте описывал бы по её поверхности окружность большого круга, все части которого последовательно представлялись бы нашему зрению. Но в то время как вектор стремится описать эту окружность, лунный шар, вращаясь, всё время с большой точностью возвращает на этот радиус одну и ту же точку своей поверхности и, следовательно, то же полушарие – к Земле. Неравенства в движении Луны приводят к небольшим различиям в её облике. Вращательное движение Луны, не участвуя в этих неравенствах заметным образом, непостоянно относительно радиуса-вектора, который поэтому пересекает лунную поверхность в разных точках. Вследствие этого лунный шар совершает относительно этого радиуса колебания, соответствующие неравенствам своего движения, и попеременно то скрывает, то открывает часть своей поверхности.

Однако лунный шар испытывает ещё другую либрацию, по широте, перпендикулярную описанной. Из-за неё области, расположенные около полюсов вращения Луны, попеременно исчезают и появляются вновь. Чтобы понять сущность этого явления, предположим, что ось вращения перпендикулярна к плоскости эклиптики. Когда Луна будет в своём восходящем узле, оба её полюса будут на южном и северном краях видимого полушария. По мере возвышения над эклиптикой Северный полюс и ближайшие к нему области исчезнут из вида, тогда как области, близкие к Южному полюсу, будут открываться всё больше и больше до того момента, когда светило, достигнув своей самой большой северной широты, начнёт возвращаться к эклиптике. Описанные явления тогда повторяются в обратном порядке. Когда же Луна, достигнув нисходящего узла, затем опустится под эклиптику, у Северного полюса произойдут те же явления, которые имели место у Южного.

Ось вращения Луны не совсем точно перпендикулярна к эклиптике, и её наклон приводит к явлениям, которые можно понять, вообразив, что она движется по самой эклиптике таким образом, что её ось вращения всё время остаётся параллельной самой себе. Ясно, что тогда каждый полюс будет виден на продолжении половины обращения Луны вокруг Земли и не виден во время второй половины, так что области, расположенные очень близко к полюсам, будут попеременно открываться и исчезать.

Наконец, наблюдатель находится не в центре Земли, а на её поверхности, и середину видимого им полушария Луны определяет луч зрения, проведённый от его глаза в центр Луны. Ясно, что вследствие лунного параллакса этот луч в зависимости от высоты этого светила над горизонтом пересекает поверхность Луны в существенно различных точках.

Все эти причины создают только видимую либрацию Луны. Они являются чисто оптическими и нисколько не влияют на её действительное движение. Это движение может, однако, подвергаться небольшим неравенствам, но они едва ощутимы. 2

Иначе обстоит дело с изменениями плоскости лунного экватора. Усердные наблюдения пятен на Луне позволили Доминико Кассини обнаружить, что ось этого экватора вовсе не перпендикулярна к эклиптике, как это предполагали раньше, и что её последовательные положения не в точности параллельны между собой. Этот великий астроном пришёл к следующим результатам, представляющим одно из его самых прекрасных открытий и охватывающим всю астрономическую теорию истинной либрации Луны. Если вообразить первую плоскость, проходящую через центр Луны перпендикулярно её оси вращения и совпадающую с экватором, вторую плоскость, проходящую через тот же центр параллельно эклиптике, и третью плоскость – плоскость лунной орбиты, то если отвлечься от периодических неравенств наклонности и узлов Луны, эти три плоскости постоянно будут иметь общую линию пересечения. Вторая плоскость, расположенная между двумя другими, составляет с первой угол около l.g67 [1.°50], и с третьей —угол в 5.g7155 [5.°1440]. Таким образом, пересечения лунного экватора с эклиптикой, или его узлы, всегда совпадают со средними узлами лунной орбиты и, как и они, имеют обратное движение, период которого равен 6793.39108 суток. В этом интервале оба полюса экватора и лунной орбиты описывают небольшие окружности, параллельные эклиптике; при этом её полюс располагается таким образом, что эти три полюса находятся постоянно на большом круге небесной сферы.

На поверхности Луны возвышаются высокие горы. Их тени, падая на равнины, образуют пятна, которые изменяются в зависимости от положения Солнца. На краю освещённой части лунного диска горы представляются в виде зубцов, которые простираются за пределы линии освещения на величину, измерение которой показало, что их высота, по крайней мере, три тысячи метров. По направлению теней было выяснено, что лунная поверхность усеяна глубокими впадинами, похожими на наши моря. Наконец, представляется, что эта поверхность имеет следы вулканических извержений. Возникновения новых пятен и вспышек, много раз наблюдавшихся на тёмной стороне, как будто даже указывают на активную вулканическую деятельность.

Глава V О ПЛАНЕТАХ, ОСОБЕННО О МЕРКУРИИ И ВЕНЕРЕ

Среди бесконечного числа сверкающих точек, которыми усыпан небесный свод и которые сохраняют почти постоянное взаимное положение, десять светил, всегда видимых, если они не погружены в солнечные лучи, двигаются по весьма сложным законам, исследование которых составляет одну из основных задач астрономии. Из этих светил, названных планетами, Меркурий, Венера, Марс, Юпитер и Сатурн были известны ещё в самой глубокой древности, так как их можно видеть простым глазом, а Уран, Церера, Паллада, Юнона и Веста своим недавним открытием обязаны телескопам. Две первые из этих планет не отдаляются от Солнца дальше определённых пределов. Другие удаляются на все угловые расстояния. Движения всех этих тел заключены в поясе небесной сферы, названном зодиаком, разделяемом по ширине на две равные части плоскостью эклиптики.

Меркурий никогда не отдаляется от Солнца за пределы 32g [29°]. Когда он начинает появляться по вечерам, его едва можно различить в лучах вечерней зари. В последующие дни он всё больше и больше освобождается от них и, удалившись от Солнца приблизительно на 25g [23°], снова возвращается к нему. В этом интервале движение Меркурия относительно звёзд прямое. Но когда при своём приближении к Солнцу он оказывается от него на расстоянии, не превышающем 20g [18°], он кажется остановившимся, после чего его движение становится обратным. Затем Меркурий продолжает приближаться к Солнцу и наконец погружается вечером в его лучи. После некоторого периода, когда он невидим, его можно снова заметить утром выходящим из солнечных лучей и удаляющимся от Солнца. Его движение оказывается обратным, как и перед исчезновением, но, отдалившись от Солнца на расстояние в 20s [18°], он снова останавливается и затем начинает прямое движение; он продолжает удаляться от Солнца до расстояния в 25g [23°], потом снова приближается к нему и утром погружается в лучи зари, чтобы вскоре снова появиться вечером и повторить такие же явления.

Размах наибольших дигрессий Меркурия, или его самых больших удалений в каждую сторону от Солнца, изменяется в пределах от 18 до 32g [от 16° до 29°]. Продолжительность этих полных колебаний Меркурия, или возвращений в то же положение относительно Солнца, изменяется соответственно в пределах от 106 до 130 суток. Средняя дуга обратного движения охватывает около 15g [13°], а средняя продолжительность этого движения равна 33 суткам, но в разные периоды эти значения сильно различаются между собой. В общем движение Меркурия очень сложно и происходит неточно в плоскости эклиптики, Иногда Меркурий отклоняется от неё больше, чем на 5g [4.°5].

Несомненно, потребовался длинный ряд наблюдений, чтобы распознать идентичность двух светил, которые поочерёдно были видны утром и вечером удаляющимися или приближающимися к Солнцу. Но так как одно из них никогда не появлялось, пока не исчезало другое, решили, наконец, что это одна и та же планета, совершающая колебания по обе стороны Солнца.

Видимый диаметр Меркурия непостоянен. Его изменения имеют очевидную связь с положением планеты относительно Солнца и направлением её движения. Когда она утром погружается в солнечные лучи или появляется вечером, её диаметр минимален. Когда она исчезает вечером в солнечных лучах или появляется утром, он максимален. Средняя величина видимого диаметра Меркурия равна 21.сс3 [7"].

Иногда, в промежутке между вечерним исчезновением и утренним появлением Меркурия, можно видеть, как он проектируется на солнечный диск в виде чёрного пятна, движущегося по его хорде. Планету можно узнать по положению или по видимому диаметру, а также по возвратному движению, соответствующему тому, которое она должна иметь. Эти прохождения Меркурия являются настоящими кольцевыми затмениями Солнца и доказывают нам, что он заимствует свой свет от Солнца. Рассматривая Меркурий в сильные телескопы, можно увидеть его фазы, аналогичные фазам Луны и таким же образом обращённые к Солнцу. Вид этих фаз изменяется в зависимости от положения планеты относительно Солнца и направления её движения, что проливает яркий свет на свойства её орбиты.

Венера представляет нам такие же явления, как и Меркурий, с той лишь разницей, что её фазы гораздо более заметны, а колебания больше и продолжительнее. Наибольшие дигрессии Венеры варьируют в пределах от 50 до 53g [от 45° до 48°], а средняя продолжительность колебаний, пли возвращений в исходное положение, относительно Солнца равна 584 суткам. Возвратное движение начинается или кончается, когда планета, приближаясь к Солнцу или удаляясь от него утром, находится на угловом расстоянии около 32g [29°]. Дуга обратного движения близка к 18g [16°], и его средняя продолжительность равна 42 суткам. Обращение Венеры происходит не строго в плоскости эклиптики, от которой она отклоняется иногда на несколько градусов.

Продолжительности прохождений Венеры по солнечному диску, наблюдённые из очень удалённых друг от друга точек на Земле, сильно различаются между собой по той причине, которая приводит к различной продолжительности одного и того же солнечного затмения в разных странах. Вследствие параллакса этой планеты различные наблюдатели относят её к разным точкам солнечного диска, и она описывает хорды разной длины. Разность длительностей прохождения Венеры по солнечному диску в 1769 г., наблюдённых в Отаити [Таити] в Южном море и в Каянебурге в шведской Лапландии, превысила 15 мин. Эти длительности могут быть определены с большой точностью, их разность даёт очень точное значение параллакса Венеры, и, следовательно, её расстояние от Земли в момент соединения.3 Замечательный закон, который мы изложим в ходе открытий, позволивших его вывести, связывает этот параллакс с параллаксом Солнца и всех планет, что придаёт наблюдениям этих прохождений большое значение для астрономии. Повторившись с интервалом в 8 лет, прохождения не наступают затем более века, чтобы снова повториться с коротким восьмилетним интервалом, и т.д. Два последних прохождения произошли 5 июня 1761 г. и 3 июня 1769 г.4 Астрономы разместились в наиболее благоприятных для наблюдения местах, и из совокупности всех их определений был выведен параллакс Солнца, равный 26.сс54 [8"60] на среднем расстоянии от Земли. Два ближайших прохождения произойдут 8 декабря 1874 г. и 6 декабря 1882 г.

Большие изменения видимого диаметра Венеры доказывают нам, что её расстояние от Земли очень сильно меняется. Оно меньше всего в момент прохождения Венеры по Солнцу, когда её видимый диаметр равен приблизительно 189сс [61"]. Средняя величина этого диаметра, по определениям Араго, равно 52.сс173 [16"904].

Движение нескольких пятен на поверхности Венеры позволило Доминико Кассини определить период её вращения. Он оказался чуть меньше одних суток. Шрётер путём наблюдения её рогов, а также нескольких светящихся точек около краёв её неосвещённой части подтвердил этот результат вызвавший некоторые сомнения. Он оценил период её обращения в 0.d973 и нашёл, так же как и Кассини, что экватор Венеры составляет с эклиптикой значительный угол. Наконец, из своих наблюдений он вывел существование очень высоких гор на её поверхности и по закономерностям ослабления яркости при переходе от освещённой части к тёмной заключил, что эта планета окружена протяжённой атмосферой, преломление которой мало отличается от преломления земной атмосферы. Исключительная трудность обнаружения этих явлений даже в самые сильные телескопы делает их наблюдение в нашем климате весьма сложным. Они заслуживают внимания наблюдателей, расположенных на юге, под небом, благоприятствующим наблюдениям. Но когда зрительные впечатления весьма слабы, очень важно оградить себя от игры воображения, которое может оказать на них большое влияние, так как внутренние образы, порождённые им, часто изменяют вид наблюдаемых объектов.

Своей яркостью Венера превосходит все другие планеты и звёзды. Иногда она становится настолько яркой, что её можно видеть среди дня невооружённым глазом. Этот феномен, зависящий от возвращения планеты к тому же положению относительно Солнца, повторяется с интервалом около 19 месяцев, а самая большая яркость наблюдается каждые 8 лет. Хотя это явление довольно частое, оно всегда вызывает удивление необразованных людей, которые по своему легковерному невежеству считают его связанным с наиболее замечательными современными им событиями.

Глава VI О МАРСЕ

Обе рассмотренные нами планеты кажутся сопровождающими Солнце в качестве его спутников, и их среднее движение вокруг Земли такое же, как у него. Другие планеты удаляются от Солнца на любые угловые расстояния, но их движения имеют такие соотношения с солнечным, которые не позволяют сомневаться в его влиянии на эти движения.

Марс представляется нам движущимся вокруг Земли с запада на восток. Средняя продолжительность его сидерического обращения очень близка к 687 суткам, а синодического обращения, или его возвращения в начальное положение относительно Солнца, – к 780 суткам. Движение его крайне неравномерно. Когда мы начинаем видеть его по утрам выходящим из солнечных лучей, это движение прямое и наиболее быстрое. Затем оно понемногу замедляется и, когда планета находится от Солнца на расстоянии 152g [137°], становится равным нулю. Далее оно меняется на обратное, и его скорость возрастает до момента противостояния Марса с Солнцем. Скорость эта, достигнув максимума, начинает уменьшаться и становится равной нулю, когда Марс, приближаясь к Солнцу, оказывается от него на угловом расстоянии в 152g [137°]. Обратное движение продолжается в течение 73 суток, за которые Марс описывает обратную дугу около 18g [16°]. Затем движение снова становится прямым, планета продолжает своё приближение к Солнцу и наконец вечером погружается в его лучи. Эти своеобразные явления возобновляются при каждом противостоянии Марса с довольно большими отклонениями в протяжённости и продолжительности обратного движения.

Марс движется не строго в плоскости эклиптики и иногда отклоняется от неё на несколько градусов. Изменения его видимого диаметра очень велики. На среднем расстоянии до планеты он равен 19.сс40 [6"29] и увеличивается по мере приближения к противостоянию, достигая 56.сс43 [18"08]. В это время параллакс Марса становится ощутимым и делается примерно вдвое больше солнечного. Тот же закон, который связывает параллаксы Солнца и Венеры, равным образом имеет место для параллаксов Солнца и Марса, и наблюдения этого последнего уже позволили узнать приближённое значение параллакса Солнца раньше, чем произошли последние прохождения Венеры по диску Солнца, позволившие определить этот параллакс с большей точностью.

Можно заметить, что диск Марса изменяет свою форму и делается овальным в зависимости от положения относительно Солнца. Его фазы доказывают, что он получает свой свет от Солнца. Пятна, наблюдаемые на его поверхности, позволили определить, что он вращается с запада на восток с периодом в 1.02733 суток вокруг оси, наклонённой на 66.g33 [59.°70] к эклиптике. Его диаметр, измеренный в направлении полюсов, немного меньше, чем в направлении экватора. По измерениям Араго, эти диаметры относятся как 189 к 194, причём величина диаметра, приведённая выше, является средней из них.

Глава VII О ЮПИТЕРЕ И ЕГО СПУТНИКАХ

Юпитер движется с запада на восток с периодом, очень близким к 4332.6 суток. Продолжительность его синодического обращения около 399 суток. Он подвержен неравенствам, подобным неравенствам Марса. Перед противостоянием этой планеты Солнцу, когда она удалена от него на угловое расстояние около 128g [115°], её движение делается обратным, убыстряется до момента противостояния, затем постепенно замедляется до нуля и снова делается прямым, когда планета, приближаясь к Солнцу, отстоит от него на 128g [115°]. Длительность обратного движения составляет 121 сутки, а дуга этого движения равна llg [10°]. Однако в протяжённости и продолжительности обратных движений Юпитера существуют значительные вариации. Движение этой планеты происходит не строго в плоскости эклиптики, от которой она отклоняется иногда на 3 или 4g.

На поверхности Юпитера наблюдается несколько тёмных полос, параллельных между собой и плоскости эклиптики. Наблюдаются ещё и другие пятна, движение которых позволило установить вращение этой планеты с запада на восток вокруг оси, почти перпендикулярной эклиптике, с периодом в 0.41377 суток. Изменения некоторых из этих пятен и заметные различия в продолжительности вращения, выведенные из их движения, наводят на мысль, что они не жёстко связаны с Юпитером. Представляется, что это облака, переносимые ветром с разными скоростями в очень неспокойной атмосфере.

После Венеры Юпитер самая яркая планета; иногда он даже превосходит её блеском. Его видимый диаметр увеличивается до максимума во время противостояний и доходит до 141.сс6 [45."9]. Среднее же его значение в направлении экватора равно 113.сс4 [З6."7]. Однако он неодинаков во всех направлениях. Планета заметно сжата у своих полюсов вращения, и путём очень точных измерений Араго нашёл, что её диаметр в направлении полюсов относится к экваториальному диаметру как 167 к 177.

Вокруг Юпитера наблюдаются четыре маленьких светила, которые его постоянно сопровождают. Их взаимное расположение непрерывно меняется, они как бы раскачиваются в обе стороны от планеты, и по полным протяженностям этих качаний определяют их порядок, называя первым тот из спутников, у которого размах качания наименьший. Иногда можно видеть, как они проходят по диску Юпитера и отбрасывают на него свою тень, которая описывает на этом диске хорду. Это говорит о том, что Юпитер и его спутники – непрозрачные тела, освещаемые Солнцем. Становясь между Солнцем и Юпитером, своими тенями спутники создают на этой планете настоящие затмения Солнца, вполне похожие на те, которые создаёт Луна на Земле.

Тень, которую Юпитер отбрасывает позади себя (относительно Солнца), объясняет другой феномен, являемый спутниками. Часто можно видеть, что они исчезают несмотря на то, что до диска планеты ещё далеко. Третий и четвёртый иногда появляются вновь по ту же сторону от этого диска. Эти исчезновения полностью похожи на затмения Луны, и сопровождающие их обстоятельства не оставляют в этом никакого сомнения. Исчезновение спутников происходит всегда со стороны диска Юпитера, противоположной Солнцу и, следовательно, с той стороны, где находится отбрасываемый им конус тени. Они затмеваются ближе к диску Юпитера, когда планета находится ближе к своему противостоянию. Наконец, длительность их затмений в точности соответствует времени, которое они должны затратить для пересечения теневого конуса. Следовательно, спутники обращаются с запада на восток вокруг этой планеты.

Наблюдения затмений спутников дают наиболее верный способ изучения их движений. Сравнивая затмения, разделённые большими промежутками времени и наблюдённые вблизи противостояния планеты, с высокой точностью получают сидерический и синодический периоды обращения спутников вокруг Юпитера. Таким путём было найдено, что движение спутников Юпитера почти круговое и равномерное. Так как эта гипотеза приблизительно удовлетворяет затмениям, в которых мы видим эту планету в одинаковых положениях относительно Солнца, в любое время можно предопределить положение спутников, видимое из центра Юпитера.

Отсюда вытекает простой и довольно точный метод сравнения между собой расстояний от Юпитера и Солнца до Земли, метод, которого не хватало древним астрономам. Так как параллакс Юпитера неощутим даже при точности современных наблюдений и в то время, когда он ближе всего к нам, они судили о его отдалённости только по продолжительности обращения, полагая более удалёнными планеты, имеющие более длительный период обращения.

Предположим, что была наблюдена полная продолжительность затмения третьего спутника. В середине затмения спутник, видимый из центра Юпитера, находился весьма точно в противостоянии с Солнцем. Его положение среди звёзд, видимое из этого центра и легко выводимое из движения Юпитера и его спутников, было тем же, что и положение центра Юпитера, видимого из центра Солнца. Непосредственное наблюдение или известное нам движение Солнца дают положение Земли, видимой из центра этого светила. Таким образом, из треугольника, образованного прямыми, соединяющими центры Солнца, Юпитера и Земли, получим угол при Солнце. Непосредственное измерение даёт нам угол при Земле, что позволяет получить на момент середины затмения расстояния по прямой от Юпитера до Земли и Солнца в долях расстояния от Солнца до Земли. Таким способом было найдено, что когда видимый диаметр Юпитера равен 113.сс4 [З6."7], он находится, по крайней мере, в пять раз дальше от нас, чем Солнце. На таком же расстоянии диаметр Земли был бы виден под углом лишь в 10.сс4 [З."4]. Значит, объём Юпитера, по крайней мере, в тысячу раз больше объёма Земли.

Видимые диаметры спутников Юпитера столь малы, что нельзя точно измерить их величины. Были сделаны попытки оценить размеры спутников через время, затрачиваемое ими для проникновения в тень планеты. Но наблюдения дают большие расхождения в оценках из-за разницы в силе телескопов и в зрении наблюдателей, из-за различий в состоянии атмосферы, в высоте спутников над горизонтом, в их видимом расстоянии от Юпитера и в обращённых к нам полусферах. Сравнение блеска спутников не зависит от первых четырёх из указанных причин, которые лишь пропорционально изменяют их светимость. Поэтому оно может дать нам сведения о возвращении пятен, которое вызывается вращением этих тел, и, следовательно, о самом этом движении. Гершель, занимавшийся этими тонкими исследованиями, обнаружил, что спутники попеременно превосходят друг друга по яркости, – обстоятельство, очень подходящее для суждения о максимуме и минимуме их светимости. Сравнивая эти максимумы и минимумы с взаимными положениями этих светил, он нашёл, что они вращаются вокруг самих себя как Луна, за время, равное продолжительности их оборота вокруг Юпитера. Для четвёртого спутника этот результат был уже ранее получен Маральди по расположению одного и того же пятна, наблюдавшегося во время его прохождений по диску. Большая отдалённость небесных тел ослабляет явления, представляемые их поверхностью, до такой степени, что сводит их к очень малым изменениям светимости, которые ускользают от первого взгляда, и только долгие упражнения в наблюдениях такого рода делают их заметными. Поэтому не следует применять этот способ, на который так сильно влияет воображение, иначе как с исключительной осмотрительностью, чтобы не ошибиться относительно существования этих изменений и не впасть в заблуждение, рассуждая о причинах, от которых они зависят.


    Ваша оценка произведения:

Популярные книги за неделю