355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Пьер Лаплас » Изложение системы мира » Текст книги (страница 4)
Изложение системы мира
  • Текст добавлен: 26 марта 2017, 00:30

Текст книги "Изложение системы мира"


Автор книги: Пьер Лаплас



сообщить о нарушении

Текущая страница: 4 (всего у книги 35 страниц)

Глава VIII О САТУРНЕ, О ЕГО СПУТНИКАХ И ЕГО КОЛЬЦЕ

Сатурн движется с запада на восток с периодом в 10759 суток. Продолжительность его синодического обращения равна 378 суткам. Его движение, происходящее очень близко к плоскости эклиптики, подчинено неравенствам, похожим на неравенства в движениях Марса и Юпитера. Его движение делается обратным или перестаёт им быть, когда планета перед или после противостояния находится на удалении от Солнца в 121g [109°]. Длительность обратного движения около 139 суток, а длина пути приблизительно равна 7g [6°]. В момент противостояния видимый диаметр Сатурна максимален, а его средняя величина близка к 50сс [16"].

В системе мира Сатурн представляется уникальным в своём роде. Часто его можно увидеть посредине между двумя маленькими телами, которые кажутся примыкающими к нему; их форма и размеры очень изменчивы. Иногда они превращаются в кольцо, которое кажется окружающим планету, в другое время они полностью исчезают, и тогда Сатурн выглядит круглым, как и другие планеты. Тщательно следя за этими странными видоизменениями и сопоставляя их с положениями Сатурна относительно Солнца и Земли, Гюйгенс обнаружил, что они вызываются широким и тонким кольцом, окружающим Сатурн и всюду отделённым от него. Это кольцо, наклонённое под углом 31.g85 [28.°67] к плоскости эклиптики, с Земли видно всегда только наклонно в виде эллипса, самая большая ширина которого равна приблизительно половине длины. Эллипс суживается всё больше и больше по мере того, как луч зрения, проведённый от Сатурна к Земле, опускается к плоскости кольца, причём его задняя дуга наконец скрывается за планетой, а передняя сливается с ней. Но его тень, проектирующаяся на диск Сатурна, образует тёмную полосу, которая видна в сильные телескопы, и доказывает, что Сатурн и его кольцо – непрозрачные тела, освещаемые Солнцем. Тогда можно различить лишь части кольца, выступающие с каждой стороны Сатурна. Толщина этих частей постепенно уменьшается, и они наконец исчезают, когда Земля оказывается в плоскости кольца, толщина которого слишком мала, чтобы её можно было увидеть. Кольцо исчезает ещё в том случае, когда Солнце, оказавшись в его плоскости, освещает его только с ребра. Оно продолжает быть невидимым, пока его плоскость проходит между Солнцем и Землёй, и появляется снова только тогда, когда в силу взаимных движений Сатурна и Солнца Земля и Солнце оказываются по одну сторону от той плоскости.

Так как плоскость кольца встречается с солнечной орбитой в каждый полупериод обращения Сатурна, исчезновение и появление кольца повторяются приблизительно через каждые 15 лет, но часто при разных обстоятельствах. В одном и том же году могут случиться два появления и два исчезновения кольца, но никогда больше.

Во время исчезновения кольца его ребро отражает к нам солнечный свет, но он слишком слаб, чтобы быть заметным. Однако понятно, что для его наблюдения достаточно увеличить силу телескопов. Именно это сделал Гершель: он не переставал видеть его, в то время как оно было невидимым для других наблюдателей.

Наклонность кольца к эклиптике измеряется наибольшим раскрытием видимого нами эллипса. Положение его узлов на плоскости эклиптики легко выводится из положения Сатурна, когда появление или исчезновение кольца зависит от встречи его плоскости с Землёй. Все явления такого рода, происходящие при одинаковых сидерических положениях узлов, обусловлены этой встречей. Другие происходят при встрече этой плоскости с Солнцем. Поэтому по положению Сатурна в моменты, когда кольцо появляется или исчезает, можно определить, зависит ли это от встречи его плоскости с Солнцем или с Землёй. Когда эта плоскость проходит через Солнце, положение узлов даёт положение Сатурна, видимого из центра Солнца, и тогда можно определить расстояние по прямой от Сатурна до Земли так, как определяется расстояние до Юпитера с помощью наблюдения затмений его спутников. В треугольнике, образованном тремя прямыми, соединяющими центры Солнца, Сатурна и Земли, имеем углы при Земле и Солнце, откуда легко вывести расстояние от Солнца до Сатурна в долях радиуса солнечной орбиты. Таким способом находим, что Сатурн, когда его видимый диаметр равен 50сс [16"], приблизительно в девять с половиной раз дальше от нас, чем Солнце.

Видимый диаметр кольца при среднем расстоянии до планеты, по точным измерениям Араго, равен 118.сс58 [38."42]. Видимая ширина кольца 17.сс858 [5."786]. Его поверхность не сплошная. Чёрная концентрическая полоса разделяет его на две части, которые, по-видимому, образуют два разных кольца, из которых внешнее уже внутреннего. Несколько чёрных полос, замеченных некоторыми наблюдателями, как будто даже указывают на большее число этих колец. Наблюдение нескольких блестящих точек на кольце позволило Гершелю узнать, что оно вращается с запада на восток с периодом в 0.437 суток вокруг оси, перпендикулярной его плоскости и проходящей через центр Сатурна.

Вокруг этой планеты видны семь спутников, движущихся с запада на восток по почти круговым орбитам. Шесть первых движутся почти в плоскости кольца. Орбита седьмого ближе к плоскости эклиптики. Когда этот спутник находится к востоку от Сатурна, его яркость ослабляется настолько, что он делается едва различимым. Это может происходить только из-за пятен, покрывающих ту полусферу, которая обращена к нам. Но для постоянного повторения этого явления при том же положении необходимо, чтобы этот спутник, похожий в этом на Луну и на спутники Юпитера, вращался вокруг своей оси за время, равное его обращению вокруг Сатурна. Таким образом, равенство продолжительности вращения и обращения представляется общим законом движения спутников.

Диаметры Сатурна не равны между собой: тот, который перпендикулярен плоскости кольца по крайней мере на 1/11 короче диаметра, лежащего в его плоскости. Сравнивая это сжатие с сжатием Юпитера, можно с большой долей вероятности заключить, что Сатурн быстро вращается вокруг меньшего из своих диаметров и что кольцо движется в плоскости его экватора. Гершель подтвердил этот вывод путём непосредственных наблюдений, которые показали, что вращение Сатурна, как и все движения планетной системы, направлено с запада на восток, и продолжительность одного оборота равна 0.428 суток, что мало отличается от времени вращения Юпитера. Замечательно, что время оборота этих двух самых больших планет почти одинаково, оно меньше половины суток, тогда как меньшие планеты вращаются с периодом, очень близким к одним суткам.

Гершель наблюдал ещё на поверхности Сатурна пять полос, приблизительно параллельных его экватору.

Глава IX ОБ УРАНЕ И ЕГО СПУТНИКАХ

Планета Уран из-за своей малости ускользнула от древних астрономов. Флемстид в конце позапрошлого века, Майер и Лемонье в прошлом веке уже наблюдали её как маленькую звезду. Но только в 1781 г. Гершель обнаружил её движение, и немного позже, тщательно следя за этим светилом, установили, что это настоящая планета. Как Марс, Юпитер и Сатурн, Уран движется с запада на восток вокруг Земли. Время его сидерического обращения около 30 687 суток. Его движение, которое происходит весьма близко к плоскости эклиптики, становится попятным, когда перед противостоянием планета находится на расстоянии 115g [104°] от Солнца. Оно перестаёт быть таким, когда после противостояния планета, приближаясь к Солнцу, удалена от него не более чем на 115g [104°]. Продолжительность обратного движения около 151 суток, и дуга его равна 4g

Если судить об удалённости Урана по медленности его движения, оп должен быть на границе планетной системы. Его видимый диаметр очень мал и едва достигает 12сс [4"]. По наблюдениям Гершеля, вокруг него движутся шесть спутников по почти круговым орбитам, приблизительно перпендикулярным к плоскости эклиптики. Чтобы их обнаружить, необходимы очень сильные телескопы. Только два из них – второй и четвёртый– были опознаны другими наблюдателями. Опубликованные Гершелем наблюдения над остальными четырьмя спутниками слишком малочисленны, чтобы определить элементы их орбит и даже бесспорно подтвердить их существование.5

Глава X О ТЕЛЕСКОПИЧЕСКИХ ПЛАНЕТАХ ЦЕРЕРЕ, ПАЛЛАДЕ, ЮНОНЕ И ВЕСТЕ

Эти четыре планеты так малы, что их можно увидеть только в сильные телескопы. Первый день этого века замечателен открытием планеты Цереры, сделанным Пиацци в Палермо. Паллада была обнаружена в 1802 г. Ольберсом, Юнону в 1803 г. открыл Хардинг и, наконец, в 1807 г. Ольберс заметил Весту. Как и у других планет, движение этих светил происходит с запада на восток; они также движутся попеременно в прямом и обратном направлениях, но недостаточность времени, прошедшего с их открытия, не позволяет с точностью установить продолжительность их обращения и законы движения. Известно только, что периоды их сидерических обращений близки между собой и у первых трёх приблизительно равны 4 годам с двумя третями, а продолжительность обращения Весты представляется на год более короткой.

Паллада может удаляться от плоскости эклиптики гораздо больше, чем планеты, известные с древности, и чтобы охватить это отклонение, надо значительно расширить Зодиак.6

Глава XI О ДВИЖЕНИИ ПЛАНЕТ ВОКРУГ СОЛНЦА

Если бы человек ограничился лишь собиранием фактов, наука была бы только их бесплодным перечнем, и никогда не смог бы он познать великие законы природы. Сравнивая факты между собой, постигая их взаимоотношения и восходя таким путём ко всё более и более обширным явлениям, он наконец пришёл к открытию этих законов, запечатлённых в их самых разнообразных проявлениях. Раскрываясь, природа показала человеку небольшое число причин, рождающих множество наблюдавшихся им явлений, и он смог определить, что ещё они должны произвести. Когда он убедился, что ничто не нарушает связь причин и их проявлений, он обратил взгляды в будущее, и перед его взором предстали те явления, которые природа произведёт со временем.

До сих пор только в теории системы мира после длинного ряда счастливых усилий человеческий разум поднялся до такой высоты. Первая гипотеза, придуманная для объяснения видимых планетных движений, оказалась только несовершенным эскизом этой теории. Но искусным образом представив видимые явления, она сделала их доступными для расчётов, и мы увидим, что, подвергнувшись изменениям, которые одно за другим диктовались наблюдениями, она превратилась в истинную систему мира.

Самое замечательное из того, что являют нам движения планет, – это смена их прямых и обратных движений, которая может быть только результатом сложения двух движений, попеременно то совпадающих, то противоположных по направлению. Наиболее естественная гипотеза для их объяснения была придумана древними астрономами. Она заключалась в том, что три верхние планеты они предполагали движущимися в прямом направлении по эпициклам, центры которых в том же направлении описывают окружности вокруг Земли. Тогда если рассматривать планету в самой низкой точке её эпицикла, или самой близкой к Земле, ясно, что она в этом положении движется в сторону, противоположную движению эпицикла, который всегда переносится параллельно самому себе. Поэтому если предположить, что первое из этих движений превалирует над вторым, видимое движение планеты будет попятным и максимальным. Напротив, если планета находится в самой высокой точке эпицикла, оба движения совпадают, и видимое движение оказывается прямым и наибольшим. Идя от первого из этих положений ко второму, можно считать, что планета продолжает иметь обратное видимое движение, которое непрерывно уменьшается, становится равным нулю и затем превращается в прямое. Но наблюдения показывают, что максимальное обратное движение всегда имеет место в моменты противостояния планеты с Солнцем. Поэтому необходимо, чтобы каждый эпицикл описывался за время, равное времени обращения этого светила, и чтобы планета оказывалась в своей самой низшей точке во время противостояния с Солнцем. Из этого понятно, почему во время противостояния видимый диаметр планеты максимален. Что касается двух нижних планет, которые никогда не отдаляются от Солнца дальше некоторого предела, то их попеременно прямое и обратное движения можно объяснить, предположив, что они движутся в прямом направлении по эпициклам, центры которых описывают каждый год, и в том же направлении окружности вокруг Земли и, кроме того, в тот момент, когда планеты достигают самой нижней точки своего эпицикла, они оказываются в соединении с Солнцем. Такова наиболее древняя астрономическая гипотеза, принятая и улучшенная Птолемеем и получившая имя этого астронома.

В этой гипотезе ничто не указывает на абсолютные величины кругов и эпициклов. То, что мы видим, даёт только отношения их радиусов. По-видимому, Птолемей не занимался также определением относительных расстояний от планет до Земли. Он только полагал, что верхние планеты, у которых период обращения более длинный, находятся дальше; затем он помещал под Солнцем эпицикл Венеры и ещё ниже эпицикл Меркурия. При столь неопределённой гипотезе неясно, почему дуги обратного движения верхних планет тем меньше, чем они дальше удалены, и почему подвижные радиусы верхних эпициклов постоянно параллельны радиусу-вектору Солнца и подвижным радиусам двух нижних кругов. Этот параллелизм, который был введён в гипотезу Птолемея уже Кеплером, ясно проявляется во всех наблюдениях движения планет, параллельного и перпендикулярного эклиптике. Но причина этих явлений делается очевидной, если считать эти эпициклы и круги равными солнечной орбите. Легко убедиться, что рассматриваемая гипотеза, изменённая таким образом, сводится к предположению о том, что все планеты обращаются вокруг Солнца, которое в своём истинном или видимом движении вокруг Земли уносит центры их орбит. Такое простое расположение планет в системе не оставляет больше ничего неопределённого и с очевидностью доказывает связь прямых и обратных движений планет с движением Солнца. Оно исключает из гипотезы Птолемея круги и эпициклы, ежегодно описываемые планетами, а также те, которые он ввёл для объяснения их движений перпендикулярно к эклиптике. Соотношения, которые вывел этот астроном между радиусами двух нижних эпициклов и радиусами кругов, описываемых их центрами, выражают теперь средние расстояния планет от Солнца в долях среднего расстояния от Солнца до Земли. Эти же соотношения, обратные для верхних планет, выражают их средние расстояния от Солнца или от Земли. Простоты этой гипотезы было бы уже достаточно, чтобы её принять, однако наблюдения с телескопами не оставляют никаких сомнений в этом отношении.

Мы уже видели, что затмения спутников Юпитера позволяют определить расстояние этой планеты от Солнца, и из этих определений вытекает, что она описывает вокруг него почти круговую орбиту. Мы видели также, что появления и исчезновения кольца Сатурна дают нам его расстояние до Земли – приблизительно в девять с половиной раз большее, чем расстояние от Земли до Солнца. Это соотношение весьма близко к выведенному Птолемеем отношению радиуса орбиты Сатурна к радиусу его эпицикла. Отсюда следует, что этот эпицикл равен солнечной орбите, и, таким образом, Сатурн описывает почти правильный круг вокруг Солнца. Фазы, наблюдаемые у двух нижних планет, с очевидностью доказывают, что планеты движутся вокруг Солнца. В самом деле, проследим движение Венеры и изменение её видимого диаметра и фаз. Когда по утрам планета начинает выходить из солнечных лучей, она появляется до восхода Солнца в виде серпа, её видимый диаметр максимален. Значит, она ближе к нам, чем Солнце, и почти в соединении с ним. Её серп увеличивается, а видимый диаметр уменьшается по мере того, как она удаляется от Солнца. Отойдя приблизительно на 50g [45°] от этого светила, она начинает приближаться к нему, всё больше открывая нам освещённое полушарие; её видимый диаметр продолжает уменьшаться до тех пор, пока она не погрузится утром в солнечные лучи. В этот момент Венера представляется нам полной, а её видимый диаметр минимальным. Следовательно, в этом положении она дальше от нас, чем от Солнца. Исчезнув на некоторое время, эта планета вновь появляется вечером и повторяет в обратном порядке все явления, которые она демонстрировала перед исчезновением. Её освещённое полушарие всё больше и больше отворачивается от Земли, её фазы уменьшаются, и в то же время видимый диаметр увеличивается по мере её удаления от Солнца. Достигнув расстояния около 50g [45°] от этого светила, она снова возвращается к нему. Её фазы продолжают уменьшаться, а диаметр увеличиваться до тех пор, пока она снова не погрузится в солнечные лучи. Иногда, в интервале между её вечерним исчезновением и утренним появлением, можно увидеть её в виде пятна, движущегося по диску Солнца. Из этих явлений ясно, что Солнце находится почти в центре орбиты Венеры, которую оно уносит одновременно со своим движением вокруг Земли. Меркурии показывает нам явления, подобные описанным, и, таким образом, Солнце находится также в центре его орбиты.

Итак, видимые движения планет и изменения их фаз приводят нас к общему выводу, а именно, что «все эти светила движутся вокруг Солнца, которое в своём истинном или видимом обращении вокруг Земли как будто уносит фокусы их орбит». Примечательно, что этот вывод вытекает из гипотезы Птолемея, если окружности и эпициклы, каждый год описываемые в соответствии с этой гипотезой, положить равными солнечной орбите. При таком предположении гипотеза перестаёт быть чисто идеальной и годной единственно для представления в воображении небесных движений. Вместо того, чтобы предполагать планеты обращающимися вокруг воображаемых центров, помещаем в фокусе их орбит большие тела, которые своим воздействием могут удерживать их на своих орбитах, и, таким образом, постигаем причины круговых движений.

Глава XII О КОМЕТАХ

Часто можно заметить светила, которые сперва едва видны, затем увеличивают свою яркость и скорость движения, потом снова уменьшают их и наконец исчезают из вида. Эти светила называются кометами. Почти всегда комета сопровождается туманностью, которая, разрастаясь, иногда оканчивается очень протяжённым хвостом; этот хвост должен быть крайне разреженным, поскольку через его необъятную глубину видны звёзды. Появление комет, сопровождаемых этими длинными шлейфами света, долгое время пугало людей, которых всегда потрясают необычайные события, если их причины неизвестны. Свет науки рассеял эти напрасные страхи, которые в века невежества внушали кометы, затмения и многие другие явления.

Кометы, как и все светила, участвуют в суточном движении неба, и это, вместе с малостью их параллаксов, показывает, что они не являются метеорами, порождёнными в нашей атмосфере. Их собственные движения очень сложны. Кометы двигаются во всех направлениях и не придерживаются, как планеты, направления с запада на восток и плоскостей, мало наклонённых к эклиптике.

Глава XIII О ЗВЕЗДАХ И ИХ ДВИЖЕНИЯХ

Параллаксы звёзд неощутимы; их диски, рассматриваемые в самые сильные телескопы, сводятся к светящимся точкам, чем эти светила отличаются от планет, у которых телескоп увеличивает видимые размеры. Малость видимого диаметра звёзд доказывается, в особенности гем, сколь малое время они затрачивают на исчезновение при покрытии их Луной. Это время, не превышающее секунды, указывает, что этот диаметр меньше 5cc дуги [1."6]. Яркость света самых блестящих звёзд в сравнении с их малостью заставляет считать, что они гораздо дальше удалены от нас, чем планеты, и не занимают, как последние, свои свет у Солнца, но светятся сами, а так как даже самые слабые звёзды подвержены тем же движениям, что и самые яркие, и сохраняют постоянное взаимное положение, очень вероятно, что все эти светила одной природы и что это – светящиеся тела большего или меньшего размера, расположенные дальше или ближе, но за пределами солнечной системы.

У некоторых звёзд наблюдаются периодические изменения интенсивности света, отчего они и названы переменными. Иногда были видны звёзды, появляющиеся почти внезапно и после периода яркого блеска исчезающие. Такой была знаменитая звезда, наблюдавшаяся в 1572 г. в созвездии Кассиопеи. За короткое время она достигла яркости, превышающей яркость самых прекрасных звёзд и даже Юпитера. Затем её свет ослабел, и через 16 месяцев после её открытия она исчезла, не изменив своего положения на небе. Её цвет претерпел значительные изменения. Сперва она была ослепительно белой, затем стала красновато-жёлтой и наконец свинцово-белой. Какова причина этих явлений? Очень протяжённые пятна, которые периодически обращают к нам переменные звёзды, вращаясь вокруг самих себя, подобно последнему спутнику Сатурна, или, может быть, прохождение больших непрозрачных тел, обращающихся вокруг этих звёзд, объясняют периодические изменения блеска. Что же касается внезапно появляющихся звёзд с очень ярким светом и затем исчезающих, то можно сделать правдоподобное предположение, что это – большие пожары, случившиеся по экстраординарным причинам на их поверхности. Это предположение подтверждается изменением их цвета, аналогичным тому, которое мы видим на Земле при воспламенении и сгорании тел.

Белое свечение неправильной формы, которому дали название Млечного пути, окружает небо в виде пояса. С помощью телескопа можно увидеть, что это – огромное множество слабых звёзд, которые представляются нам столь сближенными, что их совокупность образует сплошное сияние. В разных частях неба можно увидеть ещё маленькие белесые пятна, названные туманностями. Некоторые из них, по-видимому, той же природы, что и Млечный путь. В телескоп видно, что они также представляют собой скопления большого числа звёзд. Другие видны только как сплошное белое сияние. Очень вероятно, что они образованы из светящейся очень разреженной материи, рассеянной в небесном пространстве в виде различных скоплений, постепенная конденсация которых образовала звёзды во всем их разнообразии. Замечательные изменения, наблюдённые в некоторых туманностях, и в особенности в прекрасной туманности Ориона, хорошо объясняются этой гипотезой и придают ей большую вероятность.

Взаимная неподвижность звёзд побудила астрономов относить к ним, как к неподвижным точкам, собственные движения других небесных тел. Для этого их нужно было классифицировать, чтобы можно было их узнавать. С этой целью звёздное небо было разделено на группы звёзд, названные созвездиями. Необходимо было ещё иметь точные положения звёзд на небесной сфере, и вот как этого достигли.

Вообразим большой круг, проходящий через полюса мира и через центр какого-нибудь светила, называемый кругом склонений и пересекающий экватор под прямым углом. Дуга этого круга, заключённая между экватором и центром светила, измеряет его склонение – северное или южное в зависимости от наименования полюса, к которому она ближе.

Для всех светил, расположенных на одной параллели и имеющих одинаковые склонения, необходимо иметь ещё один элемент, чтобы определить их положение. Для этого выбрали дугу экватора, заключённую между кругом склонений и точкой весеннего равноденствия. Эта дуга, отсчитываемая от точки равноденствия в направлении собственного движения Солнца, т.е. с запада на восток, называется прямым восхождением. Таким образом, положение светил определяется их прямым восхождением и склонением.

Сравнение меридианной высоты светила с высотой полюса даёт расстояние этого светила от экватора, или его склонение.7 Определение его прямого восхождения для древних астрономов представляло большие трудности из-за невозможности непосредственно сравнивать положения звёзд и Солнца. Чтобы определить прямые восхождения звёзд, они пользовались Луной как промежуточным звеном для измерения разности её прямого восхождения днём – с Солнцем, а ночью – со звёздами, и учитывали собственные движения Луны и Солнца за интервал между наблюдениями. Получив из теории прямое восхождение Солнца, они выводили прямые восхождения некоторых главных звёзд, к которым относили остальные. Таким способом Гиппарх составил первый каталог звёзд, о котором мы знаем. Много позже этот метод был уточнён благодаря использованию вместо Луны планеты Венеры, которую иногда можно видеть в середине дня и движение которой в коротких промежутках времени медленнее и не так неравномерно, как лунное. В наши дни, когда применение маятниковых часов позволяет измерять время очень точно, мы можем непосредственно и значительно точнее, чем древние астрономы, определить разность прямых восхождений звёзд и Солнца по времени, протёкшему между их прохождениями через меридиан.

Подобным же образом можно относить положения звёзд к эклиптике, что особенно полезно в теории Луны и планет. Воображают большой круг, проходящий через центр светила перпендикулярно к плоскости эклиптики; этот круг называют кругом широты. Дуга этого круга, заключённая между эклиптикой и светилом, измеряет его широту, северную или южную, в зависимости от наименования полюса, расположенного с той же стороны эклиптики. Дуга эклиптики между кругом широты и точкой весеннего равноденствия, отсчитываемая с запада на восток от этой точки, называется долготой светила, положение которого, таким образом, определяется его долготой и широтой. Легко понять, что если известна наклонность экватора к эклиптике, долготы и широты светил могут быть выведены из наблюдённых значений их прямых восхождений и склонений.

Понадобилось немного лет, чтобы обнаружить изменения в прямых восхождениях и склонениях звёзд. Вскоре было замечено, что, меняя положение относительно экватора, они сохраняли ту же широту; из этого вывели, что изменения их прямых восхождений и склонений вызваны общим движением этих звёзд вокруг полюсов эклиптики. Эти изменения можно ещё представить иначе, полагая звёзды неподвижными и заставляя двигаться вокруг этих полюсов полюса экватора. В этом движении наклонность экватора к эклиптике остаётся неизменной, а узлы, или точки равноденствий, равномерно отступают на 154.сс63 [50."10] в год. Раньше мы уже видели, что это отступление точек равноденствия делает тропический год немного короче звёздного. Таким образом, разница обоих годов, звёздного и тропического, и изменения прямых восхождений и склонений звёзд зависят от этого движения, из-за которого полюс экватора описывает ежегодно дугу в 154.сс63 [50."10] маленького круга на небесной сфере, параллельного плоскости эклиптики. Именно в этом и заключается явление, известное под названием прецессии равноденствий.

Точность, которой современная астрономия обязана применению оптических труб в астрономических инструментах и часам с маятником, позволила обнаружить небольшие периодические неравенства в наклонении экватора к эклиптике и в прецессии равноденствий. Брадлей, который открыл их и с исключительной тщательностью следил за ними в течение многих лет, вывел закон, который может быть представлен следующим образом.

Вообразим полюс экватора движущимся по периметру малого эллипса, касательного к небесной сфере, с центром, который можно рассматривать как средний полюс экватора. Этот центр каждый год равномерно описывает 154.сс63 [50."10] параллели к эклиптике, на которой он расположен. Большая ось этого эллипса находится всегда в плоскости круга широты и соответствует дуге этого большого круга в 59.сс56 [19."30], а малая ось соответствует дуге в 111.сс30 [Зб."06] его параллели. Положение истинного полюса экватора на этом эллипсе определяется так: в плоскости эллипса воображают маленькую окружность с тем же центром и с диаметром, равным большой оси. Положим, что радиус этого круга движется равномерно в попятном направлении так, что он совпадает с той половиной большой оси, которая ближе к эклиптике, всякий раз, когда средний восходящий узел лунной орбиты совпадает с точкой весеннего равноденствия. Далее из конца этого подвижного радиуса опустим перпендикуляр на большую ось эллипса. Точка, в которой этот перпендикуляр пересечёт эллипс, и есть место истинного полюса экватора. Это движение полюса называется нутацией.

При описанных выше движениях взаимные положения звёзд сохраняются. Но великий наблюдатель,2 которому мы обязаны открытием нутации, обнаружил у всех этих светил общее периодическое движение, которое немного изменяет их взаимное расположение. Чтобы представить себе это движение, надо вообразить, что каждая звезда ежегодно описывает маленькую параллельную эклиптике окружность, центр которой соответствует среднему положению звезды, а диаметр, видимый с Земли, равен 125сс [40."5], и что звезда движется по этой окружности, как Солнце по своей орбите, однако так, что Солнце всегда опережает её на 100g [90°]. Эта окружность проектируется на поверхность неба в виде эллипса, большее или меньшее сжатие которого зависит от высоты звезды над эклиптикой, причём малый радиус его относится к большому как синус этой высоты к радиусу. Отсюда происходят все изменения этого периодического движения звёзд, называемого аберрацией.

Независимо от этих общих движений, некоторые звёзды имеют собственные очень медленные, но с течением времени ставшие заметными движения. Они до сих пор были заметны главным образом у Сириуса и Арктура – двух из наиболее ярких звёзд. Но всё приводит к мысли, что будущие века обнаружат подобные движения и у других звёзд.8

Глава XIV О ФИГУРЕ ЗЕМЛИ, ОБ ИЗМЕНЕНИИ СИЛЫ ТЯЖЕСТИ НА ЕЕ ПОВЕРХНОСТИ И О ДЕСЯТИЧНОЙ СИСТЕМЕ МЕР И ВЕСОВ

Вернёмся с неба на Землю и посмотрим, что узнали мы из наблюдений о её размерах и фигуре, которая, как мы уже видели, очень близка к сферической. Сила тяжести, везде направленная к её центру, удерживает тела на её поверхности, хотя в диаметрально противоположных точках, или у антиподов, они имеют противоположные положения. Небо и звёзды всегда видны над Землёй, так как понятия подъёма или опускания относятся только к направлению силы тяжести.

С того момента, когда человек узнал о сферичности Земли, на которой он живёт, любопытство побуждало его измерить её размеры. Поэтому очень вероятно, что первые такие попытки относятся к временам, гораздо более древним, чем те, о которых история сохранила нам сведения, и что их результаты были утеряны во время физических и моральных потрясений, перенесённых Землёй. Отношения многих мер, употреблявшихся в глубокой древности, как между собой, так и к длине земной окружности, заставляют подозревать, что в очень древние времена эта длина была не только хорошо известна, но и служила основой для совершенной системы мер, следы которой находят в Египте и в Азии.9 Как бы то ни было, первое точное измерение Земли, о котором мы имеем достоверные сведения, было выполнено Пикаром во Франции в конце позапрошлого века и затем несколько раз проверялось. Принцип этого измерения легко понять. Перемещаясь к северу, мы видим, что полюс всё больше и больше поднимается: меридианная высота звёзд, расположенных на севере, увеличивается, а у звёзд, расположенных на юге, уменьшается. Некоторые из них даже делаются невидимыми. Первые понятия о кривизне Земли несомненно обязаны наблюдениям этих явлений, которые не могли не обратить на себя внимание людей в первые века существования человеческих обществ, когда сезоны и их возвращения различали лишь по восходу и заходу главных звёзд, сравнивая их с восходами и заходами Солнца. Возвышение или понижение звёзд позволяет определить угол, который образуют в точке своего пересечения отвесные линии, восставленные на концах проведённой по Земле дуги, так как этот угол, очевидно, равен разности меридианных высот одной и той же звезды без угла, под которым был бы виден из центра этой звезды пройденный путь, а этот последний угол, как в этом убедились, неощутимо мал. После этого остаётся только измерить этот пройденный путь, но было бы долго и трудно применять наши обычные способы измерения к такому большому расстоянию. Гораздо проще связать его концы цепью треугольников с базой в 12 000—15 000 м и, учитывая точность, с которой можно определить углы этих треугольников, получить очень точно его длину. Таким образом была измерена дуга земного меридиана, пересекающего Францию. Равная 1/100 прямого угла, часть этой дуги, середина которой соответствует высоте полюса в 50g [45°], почти в точности равна 100 000 м.


    Ваша оценка произведения:

Популярные книги за неделю