355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Джеймс Максвелл » Трактат об электричестве и магнетизме » Текст книги (страница 26)
Трактат об электричестве и магнетизме
  • Текст добавлен: 20 января 2018, 13:30

Текст книги "Трактат об электричестве и магнетизме"


Автор книги: Джеймс Максвелл



сообщить о нарушении

Текущая страница: 26 (всего у книги 34 страниц)

2Proc. R. S. Edin., Dec. 15, 1851 and R. S. Edin., 1854

С другой стороны, применяя тепловой метод, мы. знаем, что единственным источником энергии является электрический ток, и что в определённом участке цепи током не совершается никакой работы, кроме нагревания этого участка проводника. Поэтому, если мы можем измерить количество тока и количество выделенного или поглощённого им тепла, то мы можем определить и электродвижущую силу, потребную для создания этого тока в данном участке проводника, причём такое измерение совершенно не зависит от действия контактных сил в других участках цепи.

Электродвижущая сила на соединении двух металлов, определённая таким методом, не объясняет Вольтовой электродвижущей, силы, описанной в п. 246. Последняя оказывается, вообще говоря, много больше, чем та, о которой идёт речь в данном разделе, и иногда имеет противоположный знак. Поэтому предположение, что потенциал металла следует измерять потенциалом воздуха, находящегося в контакте с этим металлом, должно быть ошибочным. Большую часть Вольтовой электродвижущей силы нужно искать не в месте соединения двух металлов, а на одной или обеих поверхностях, отделяющих эти металлы от воздуха или от другой среды, которая образует третий элемент цепи.

250. Открытие Зеебеком (Seebeck) термоэлектрических токов в цепях, составленных из различных металлов с разной температурой мест соединения, показывает, что в замкнутой цепи эти контактные силы не всегда уравновешивают друг друга. Ясно, однако, что в замкнутой цепи, составленной из различных металлов при однородной температуре, контактные силы должны уравновешиваться. Если бы это было не так, то существовал бы ток, образовавшийся в цепи, и этот ток можно было бы использовать для приведения в действие какого-нибудь механизма или для выделения тепла в цепи, т. е. для совершения работы. При этом не происходило бы никакого расходования энергии, поскольку температура во всех участках цепи одна и та же и нет ни химических, ни каких-либо других изменений.

Поэтому, если эффект Пельтье на соединении двух металлов 𝑎 и 𝑏 определяется постоянной 𝚷𝑎𝑏, если ток течёт от 𝑎 к 𝑏, то для цепи, составленной из двух металлов с одной и той же температурой, мы должны иметь 𝚷𝑎𝑏+𝚷𝑏𝑎=0, а для цепи из трёх металлов 𝑎, 𝑏 и 𝑐 𝚷𝑏𝑐+𝚷𝑐𝑎+𝚷𝑎𝑏=0.

Из этого соотношения следует, что эти три эффекта Пельтье не являются независимыми и один из них может быть определён через два других. Например, если мы примем металл 𝑐 за стандартный и если напишем 𝑃𝑎=𝐽𝚷𝑎𝑏 и 𝑃𝑏=𝐽𝚷𝑏𝑐, то 𝐽𝚷𝑎𝑏=𝑃𝑎-𝑃𝑏. Величина 𝑃𝑎 зависит от температуры и от природы металла 𝑎.

251. Магнус (Magnus) показал, что в цепи, составленной из металла одного сорта, не возникает тока, как бы ни менялись сечение проводника и температура в различных участках цепи.

Поскольку в этом случае имеет место теплопроводность и связанная с ней диссипация энергии, мы не можем, в отличие от предыдущего случая, считать этот результат самоочевидным. Например, электродвижущая сила между двумя участками цепи могла бы зависеть от того, идёт ли ток из более толстой части проводника в более тонкую или в обратном направлении. Электродвижущая сила могла бы также зависеть от того, быстро или медленно идёт ток от горячего участка проводника к холодному или наоборот. При этом было бы возможно существование тока в цепи, составленной из металла одного сорта при различном нагреве разных её частей.

Следовательно, рассуждая так же, как в случае явления Пельтье, мы найдём, что если при прохождении тока через проводник из металла одного сорта имеет место тепловой эффект, который меняет знак при обращении тока, то это возможно лишь в том случае, когда ток течёт от мест с более высокой к местам с более низкой температурой или наоборот. Пусть тепло, выделяемое в проводнике из металла одного сорта при прохождении тока от места, где температура равна 𝑥, до места, где она равна 𝑦 имеет величину 𝐻. Тогда

𝐽𝐻

=

𝑅𝐶²𝑡

𝑆

𝑥𝑦

𝐶𝑡

,

и электродвижущая сила, стремящаяся поддерживать ток, равна 𝑆𝑥𝑦.

Пусть 𝑥, 𝑦, 𝑧 – значения температуры в трёх точках однородной цепи. Тогда мы должны иметь

𝑆

𝑦𝑧

+

𝑆

𝑧𝑥

+

𝑆

𝑥𝑦

=

0

в соответствии с результатом Магнуса. Если мы примем температуру 𝑧 за нулевую и если обозначим 𝑄𝑥=𝑆𝑥𝑧 и 𝑄𝑦=𝑆𝑦𝑧, мы найдём 𝑆𝑥𝑦=𝑄𝑥-𝑄𝑦 где 𝑄𝑥 зависит от температуры 𝑥. Характер этой зависимости определяется природой металла.

Если мы рассмотрим теперь цепь, составленную из двух металлов 𝑎 и 𝑏, причём то соединение, где ток идёт от 𝑎 к 𝑏, находится при температуре 𝑥, а соединение, где ток идёт от 𝑏 к 𝑎 – при температуре 𝑦, то электродвижущая сила будет равна

𝐹

=

𝑃

𝑎𝑥

𝑃

𝑏𝑥

+

𝑄

𝑏𝑥

𝑄

𝑏𝑦

+

𝑃

𝑏𝑦

𝑃

𝑎𝑦

+

𝑄

𝑎𝑦

𝑄

𝑎𝑥

,

где 𝑃𝑎𝑥 -значение величины 𝑃 для металла 𝑎 при температуре 𝑥 Это соотношение перепишем в виде

𝐹

=

𝑃

𝑎𝑥

𝑄

𝑎𝑥

(

𝑃

𝑎𝑦

𝑄

𝑎𝑦

)

(

𝑃

𝑏𝑥

𝑄

𝑏𝑥

)

+

𝑃

𝑏𝑦

𝑄

𝑏𝑦

.

Поскольку в неоднородно нагретых цепях, составленных из различных металлов, вообще говоря, имеются термоэлектрические токи, из последнего соотношения следует, что величины 𝑃 и 𝑄, относящиеся к одному и тому же металлу и к одной и той же температуре, вообще говоря, различны.

252. Существование величины 𝑄 было впервые показано сэром У. Томсоном в его уже цитированном мемуаре как следствие из открытого Каммингом (Cumming)3 явления термоэлектрической инверсии. Камминг показал, что порядок следования некоторых металлов в термоэлектрической шкале различен при высоких и при низких температурах, так что при определённой температуре два металла могут стать нейтральными друг относительно друга. Так, например, если в цепи, состоящей из меди и железа, одно соединение поддерживается при обычной температуре, а температура другого повышается, возникает ток, который идёт от меди к железу через более горячее соединение. При этом электродвижущая сила растёт, пока горячее соединение не достигнет температуры 𝑇 которая по Томсону примерно равна 284°С. Если температура горячего соединения растёт дальше, электродвижущая сила уменьшается, и, наконец, при достаточно высокой температуре направление тока меняется. Обращение тока легче получить, повышая температуру более холодного соединения. Если температура обоих соединений превышает величину 𝑇 ток идёт в направлении от железа к меди через более нагретое соединение, т. е. в направлении, противоположном тому, которое имело место при температуре обоих соединений ниже 𝑇.

3Cambridge Transactions, 1823.

Таким образом, если одно из соединений находится при нейтральной температуре 𝑇, а второе либо теплее, либо холоднее первого, то в соединении, находящемся при нейтральной температуре, устанавливается ток, текущий от меди к железу.

253. Исходя из этого факта, Томсон рассуждал следующим образом.

Предположим, что второе соединение находится при температуре меньшей, чем 𝑇. Возникающий ток может быть использован для работы какой-нибудь машины или для нагревания проволоки. Эта затрата энергии должна сопровождаться превращением тепла в электрическую энергию, т. е. где-то в цепи тепло должно исчезать. Но при температуре 𝑇 железо и медь нейтральны друг к другу, поэтому на горячем соединении не происходит обратных тепловых эффектов. На холодном же соединении, в согласии с законом Пельтье, происходит выделение или поглощение тепла током.

Таким образом, тепло может исчезать только в медном или в железном участках цепи, так что или ток в железе, текущий от горячего соединения к холодному, должен охлаждать железо, или ток в меди, текущий от холодного соединения к горячему, должен охлаждать медь, или же оба эти явления должны иметь место одновременно. С помощью кропотливой серии искусных экспериментов Томсону удалось обнаружить обратимое тепловое действие тока, текущего между участками с различной температурой, причём он нашёл, что действие тока в железе и в меди противоположно 4.

4 «On the Electrodynamic Qualities of Metals». Phil. Trans., Part III, 1856.

Когда поток материальной жидкости движется через трубу от горячего её конца к холодному, поток нагревает трубу, а когда поток движется от холодного конца трубы к горячему, он охлаждает трубу. Эти эффекты зависят от величины удельной теплоёмкости жидкости. Если бы мы предположили, что электричество, положительное или отрицательное, представляет собой материальную жидкость, мы могли бы измерить её удельную теплоёмкость по тепловым эффектам в неоднородно нагретом проводнике. Но эксперименты Томсона показали, что положительное электричество в меди и отрицательное электричество в железе переносят тепло от горячего участка цепи к холодному.

Таким образом, приняв, что или положительное, или отрицательное электричество представляет собой жидкость, способную нагреваться и охлаждаться и передавать тепло другим телам, мы придём к выводу, что это предположение не выполняется в железе для положительного электричества, а в меди – для отрицательного. Поэтому следует отказаться от обоих этих гипотез.

Это научное предсказание обратимого воздействия, которое оказывает электрический ток на неравномерно нагретый проводник из металла одного сорта, даёт ещё один поучительный пример применения Закона Сохранения Энергии для указаний новых направлений научного исследования. Томсон также применил Второй Закон Термодинамики для установления связи между величинами, которые мы обозначили через 𝑃 и 𝑄, и рассмотрел возможные термоэлектрические свойства тел, строение которых различно в различных направлениях. Он также изучил на опыте условия, при которых эти свойства меняются под действием давления, намагничения и т. д.

254. Профессор Тэт 5 недавно исследовал электродвижущую силу в термоэлектрических цепях, составленных из разных металлов, контакты между которыми имеют разную температуру. Он нашёл, что электродвижущая сила в контуре с хорошей точностью выражается формулой

𝐸

=

𝑎(𝑡

1

–𝑡

2

)

[𝑡

0

–(𝑡

1

+𝑡

2

)/2]

,

где 𝑡1 – абсолютная температура горячего соединения, 𝑡2 холодного, a 𝑡0 – температура, при которой оба металла нейтральны друг к другу. Коэффициент 𝑎 зависит от природы двух металлов, составляющих цепь. Справедливость этого закона в широкой области значений температуры была проверена профессором Тэтом и его учениками, и он надеется создать такую термоэлектрическую цепь, которая будет служить как прибор для измерения температуры в его опытах по исследованию теплопроводности, а также и в других случаях, где ртутный термометр либо неудобен, либо не покрывает достаточного температурного интервала.

5Proc. Roy. Soc. Edin. Session 1870-1871, p. 308, также Dec. 18, 1871.

По теории Тэта, величина, которую Томсон называет удельной теплоёмкостью электричества, пропорциональна абсолютной температуре для каждого чистого металла, хотя её значение и даже знак различны для разных металлов. Отсюда с помощью законов термодинамики он вывел следующие результаты. Пусть 𝑘𝑎𝑡, 𝑘𝑏𝑡 и 𝑘𝑐𝑡 – удельные теплоёмкости электричества в трёх металлах 𝑎, 𝑏 и 𝑐 соответственно. Пусть далее 𝑇𝑏𝑐, 𝑇𝑐𝑎, 𝑇𝑎𝑏 – значения температуры, при которой соответствующие пары этих металлов нейтральны друг к другу. Тогда уравнения

(𝑘

𝑏

–𝑘

𝑐

)

𝑇

𝑏𝑐

+

(𝑘

𝑐

–𝑘

𝑎

)

𝑇

𝑐𝑎

+

(𝑘

𝑎

–𝑘

𝑏

)

𝑇

𝑎𝑏

=0

,

𝐽𝚷

𝑎𝑏

=

(𝑘

𝑎

–𝑘

𝑏

)

𝑡

(𝑇

𝑎𝑏

–𝑡)

,

𝐸

𝑎𝑏

=

(𝑘

𝑎

–𝑘

𝑏

)

(𝑡

1

–𝑡

2

)

[𝑇

𝑎𝑏

–½(𝑡

1

+𝑡

2

)]

выражают связь между значениями нейтральных температур, коэффициентом Пельтье и электродвижущими силами в термоэлектрической цепи.

ГЛАВА IV

ЭЛЕКТРОЛИЗ

Электролитическая проводимость

255. Я уже отмечал, что когда электрический ток в любой части цепи проходит через некоторые сложные вещества, называемые Электролитами, прохождение тока сопровождается определённым химическим процессом, который называется Электролизом. В этом процессе вещество разлагается на две компоненты, называемые Ионами, из которых одна, называемая Анионом, или электроотрицательной компонентой, появляется на Аноде, т. е. в том месте, где ток входит в электролит, а другая компонента, называемая Катионом, появляется на Катоде, т. е. в том месте, где ток выходит из электролита.

Полное исследование электролиза есть в равной мере задача Химии и науки об Электричестве. Мы проведём его рассмотрение с точки зрения науки об электричестве, не обсуждая приложений к теории строения химических соединений.

Из всех электрических явлений электролиз, по-видимому, в наибольшей степени позволяет нам проникнуть в истинную природу электрического тока, потому что здесь мы находим потоки обычного вещества и токи электричества, составляющие важные стороны одного и того же явления.

По-видимому, именно по этой самой причине при современной неполноте наших представлений об электричестве теории электролиза являются столь неудовлетворительными.

Основной закон электролиза, установленный Фарадеем и подтверждённый к настоящему времени в опытах Бетца (Beetz), Гитторфа (Hittorf) и других, состоит в следующем.

Число электрохимических эквивалентов электролита, разложенных при прохождении электрического тока в течение заданного времени, равно числу единиц электричества, которые перенесены током за то же время.

Электрохимический эквивалент вещества – это такое количество вещества, которое разлагается в процессе электролиза единичным током, проходящим через вещество за единицу времени, или, другими словами, при прохождении единицы электричества. Если единица электричества определена в абсолютной системе, то абсолютное значение электрохимического эквивалента для каждого вещества может быть выражено в гранах или граммах.

Электрохимические эквиваленты различных веществ пропорциональны их обычным химическим эквивалентам. Однако обычные химические эквиваленты представляют собой всего лишь численные соотношения, в которых вещества соединяются, в то время как электрохимические эквиваленты – это определённые количества вещества, зависящие от выбора единицы электричества. Каждый электролит состоит из двух компонентов, которые в процессе электролиза появляются в тех местах, где ток входит в электролит и выходит из него, и нигде больше. Следовательно, если мы представим себе некоторую воображаемую поверхность внутри электролита, то количество электролиза, идущего через эту поверхность, выраженное числом электрохимических эквивалентов каждого из компонентов, которые переносятся через эту поверхность в противоположных направлениях, будет пропорционально полному электрическому току через поверхность.

Таким образом, реальный перенос ионов через вещество электролита в противоположных направлениях – это часть явления проводимости при прохождении электрического тока через электролит. В каждой точке электролита, через который идёт электрический ток, существуют два взаимно противоположных потока вещества, состоящие один из анионов, другой из катионов, имеющие те же линии тока, что и электрический ток, и пропорциональные ему по величине.

Поэтому чрезвычайно естественно предположить, что токи ионов – это токи, переносящие электричество, и, в частности, что каждая молекула катиона заряжена определённым фиксированным количеством положительного электричества, и это количество одинаково для молекул всех катионов, а каждая молекула аниона заряжена равным по величине количеством отрицательного электричества.

Тогда движение ионов в противоположных направлениях через электролит даёт полное физическое описание электрического тока. Мы можем сравнить это движение ионов с движением жидкостей и газов друг через друга в процессе диффузии. Между этими двумя процессами имеется та разница, что при диффузии различные вещества только перемешиваются и смесь не является однородной, в то время как при электролизе они находятся в химической связи и электролит однороден. При диффузии причиной, определяющей движение вещества в данном направлении, является уменьшение количества этого вещества на единицу объёма в этом направлении. При электролизе же движение каждого иона вызывается электродвижущей силой, действующей на заряженные молекулы.

256. Клаузиус 1 который много занимался теорией молекулярных движений в твёрдых телах, полагает, что молекулы всех тел находятся в состоянии постоянного движения, но что в твёрдых телах каждая молекула никогда не уходит дальше некоторого расстояния от своего начального положения, в то время как молекула жидкости, пройдя некоторое расстояние от своего начального положения, равно может как двинуться ещё дальше, так и двинуться назад. Таким образом, молекулы жидкости, кажущейся неподвижной, непрерывно меняют своё положение, переходя нерегулярным образом от одной части жидкости к другой.

1 Pogg. Ann., Cl, р. 338 (1857).

В химически сложной жидкости, как полагает Клаузиус, молекулы не только путешествуют указанным образом, но, кроме того, между сложными молекулами происходят соударения, в результате которых составляющие их более простые молекулы часто отделяются и меняют своих партнёров, так что один и тот же отдельный атом может быть в один момент времени связан с одним атомом другого вида, а в другой момент времени – с другим.

Этот процесс, по мнению Клаузиуса, протекает в жидкости всё время, но когда на жидкость действует электродвижущая сила, то движение молекул, в котором до этого не было никакого выделенного направления, начинает испытывать влияние этой электродвижущей силы, так что положительно заряженные молекулы больше стремятся двигаться к катоду, чем к аноду, а отрицательно заряженные молекулы больше стремятся двигаться в противоположном направлении. Поэтому молекулы катиона в течение того времени, когда они свободны, пробиваются к катоду, но при этом всё время задерживаются в пути, соединяясь на время с молекулами аниона, которые тоже пробиваются сквозь толпу, но в противоположном направлении.

257. Эта теория Клаузиуса позволяет нам понять, как получается, что хотя для реального разложения электролита нужна электродвижущая сила конечной величины, тем не менее прохождение тока через электролит подчиняется закону Ома, так что любая электродвижущая сила в электролите, даже самая малая, вызывает пропорциональный по величине ток.

По теории Клаузиуса, разложение и восстановление электролита происходит непрерывно, даже в отсутствие тока, поэтому самая малая электродвижущая сила оказывается достаточной для того, чтобы придать этому процессу некоторую степень направленности и тем самым вызвать токи ионов, а следовательно, и электрический ток, который составляет часть того же самого явления. Однако внутри электролита ионы никогда не бывают свободны в конечном количестве, и именно для освобождения ионов и нужна конечная электродвижущая сила.

Ионы накапливаются у электрода, так как последовательные порции ионов по мере появления у электродов, вместо того чтобы найти молекулы противоположных ионов, готовые с ними соединиться, вынуждены пребывать в обществе себе подобных молекул, с которыми они соединиться не могут. Для того чтобы могло происходить это явление, электродвижущая сила должна иметь конечную величину. При этом также возникает электродвижущая сила противоположного знака, которая вызывает обратный ток, если убрать другие электродвижущие силы. Когда наблюдается эта обратная электродвижущая сила, вызванная скоплением ионов у электрода, говорят, что электроды Поляризованы.

258. Один из лучших методов определения того, является некоторое тело электролитом или нет, состоит в том, что тело помещается между двумя платиновыми электродами и через него в течение некоторого времени пропускается электрический ток. Затем электроды отъединяются от гальванической батареи и соединяются с гальванометром, для того чтобы наблюдать, идёт ли через гальванометр обратный ток, вызванный поляризацией электродов. Такой ток, вызванный накоплением разных веществ на двух электродах, служит доказательством того, что исследуемое вещество было разложено электролитически при прохождении первичного тока от батареи. Этот метод часто можно применять в тех случаях, когда трудно определить наличие продуктов разложения на электродах прямыми химическими методами (см. п. 271).

259. В отношении тех вопросов, которые мы уже рассмотрели, теория электролиза выглядит вполне удовлетворительно. Она объясняет электрический ток, природа которого нам непонятна, связывая его с потоками составляющих электролит материальных компонентов, движение которых, хотя и невидимое глазу, может быть легко продемонстрировано. Как показал Фарадей, теория чётко объясняет, почему электролит, который проводит электричество в жидком состоянии, становится непроводящим при затвердевании. Действительно, пока молекулы не могут перемещаться из одной части в другую, электролитическая проводимость не может иметь места, и для того, чтобы быть проводником, вещество должно быть в жидком состоянии – раствором или расплавом.

Но если пойдём дальше и примем, что молекулы ионов в электролите действительно заряжены некоторыми определёнными количествами электричества, положительными или отрицательными, так что ток в электролите есть просто ток переноса, мы увидим, что это заманчивое предположение ставит нас на очень скользкую почву.

Прежде всего мы должны принять, что в любом электролите каждая молекула катиона, когда она освобождается у катода, передаёт катоду заряд положительного электричества, количество которого одно и то же у всех молекул, не только данного катиона, но у всех других катионов. Точно так же каждая молекула аниона при освобождении передаёт аноду заряд отрицательного электричества, численное значение которого совпадает с численным значением положительного заряда, переносимого молекулой катиона, при противоположном знаке заряда.

Если вместо единственной молекулы мы рассмотрим большое их число, составляющее электрохимический эквивалент иона, то суммарный заряд всех молекул будет равен, как мы уже видели, одной единице электричества, положительной или отрицательной.

260. Мы до сих пор не знаем, сколько молекул содержит электрохимический эквивалент любого вещества, но молекулярная теория, существующая в химии и подкрепляемая многими физическими соображениями, предполагает, что число молекул в электрохимическом эквиваленте есть одна и та же величина для всех веществ. Мы можем поэтому в духе спекуляций молекулярной теории предположить, что число молекул в одном электрохимическом эквиваленте равно неизвестному в настоящее время числу N, способ определения которого мы, возможно, найдём 2.

2 См. примечание к п. 5.

Тогда каждая молекула, будучи освобождена из соединения, расстаётся с зарядом, величина которого равна 1/𝑁 и который положителен для катиона и отрицателен для аниона. Это определённое количество электричества мы будем называть молекулярным зарядом. Если бы величина его была известна, это была бы наиболее естественная единица электричества.

До сих пор мы только уточняли наши исходные предпосылки и упражняли наше воображение, следя за электризацией молекул и за разрядом этой электризации.

Освобождение ионов происходит одновременно с переходом положительного электричества от анода на катод. Ионы, когда они освобождены, не заряжены электричеством, следовательно, когда они находятся в соединении, они обладают молекулярными зарядами, о которых говорилось выше.

Однако, хотя легко говорить об электризации молекулы, не так легко представить себе, что это такое.

Мы знаем, что если два металла соприкасаются в любой точке, вся остальная часть их поверхностей оказывается заряженной. Если металлы имеют форму двух пластин, разделённых узким промежутком воздуха, заряд на каждой пластине может достигать значительной величины. Можно предположить что нечто подобное происходит и тогда, когда два компонента электролита находятся в соединении. Можно предположить, что каждая пара молекул соприкасается в одной точке, а остальная их поверхность заряжена из-за действия контактной электродвижущей силы.

Но для того чтобы объяснить это явление, мы должны ответить на вопрос, почему заряд, созданный таким образом на каждой молекуле, имеет фиксированную величину, и почему при соединении молекулы хлора с молекулой цинка молекулярные заряды оказываются такими же, как и при соединении молекулы хлора с молекулой меди, хотя электродвижущая сила между хлором и цинком много больше, чем между хлором и медью. Если заряд молекул объясняется действием контактной электродвижущей силы, почему тогда разные значения электродвижущей силы дают в точности равные заряды?

Предположим, однако, что мы перескочили через эту трудность, просто провозгласив факт постоянства молекулярного заряда. Для удобства описания мы назовём этот постоянный молекулярный заряд одной молекулой электричества.

Эта фраза, хотя она сама по себе и груба и не гармонирует с остальным содержанием этого трактата, позволит нам по крайней мере чётко установить то, что известно об электролизе, а также указать на серьёзные затруднения.

Каждый электролит должен рассматриваться как бинарная смесь его аниона и катиона. Анион или катион или оба они могут быть сложными телами, так что молекула аниона или катиона сама может быть образована из некоторого числа молекул простых тел. Молекула аниона и молекула катиона вместе образуют одну молекулу электролита.

Чтобы действовать в электролите как анион, молекула должна быть заряжена тем, что мы назвали одной молекулой отрицательного электричества, а для того чтобы действовать как катион, молекула должна быть заряжена одной, молекулой положительного электричества.

Эти заряды связаны с молекулами только в том случае, если молекулы объединяются, как катион и анион в электролите.

Когда молекулы подвергаются электролизу, они отдают свой заряд электродам и оказываются незаряженными телами после освобождения из соединения.

Если одна и та же молекула может быть катионом в одном электролите, анионом – в другом, а также входить в состав сложных тел, которые не являются электролитами, то мы должны предположить, что эта молекула получает положительный электрический заряд, когда она действует как катион, получает отрицательный заряд, когда она действует как анион, и что она совсем не имеет заряда, когда она не входит в состав электролита.

Например, йод действует как анион в химических соединениях йода с металлами и в йодисто-водородной кислоте, но, по имеющимся сведениям, действует как катион в соединении с бромом.

Эта теория молекулярных зарядов может рассматриваться как некоторый метод, помогающий нам запомнить множество фактов, относящихся к электролизу. Однако кажется крайне невероятным, что мы сохраним в какой-либо форме теорию молекулярных зарядов после того, как придём к пониманию истинной природы электролиза, ибо тогда у нас будут надёжные основания, на которых можно построить верную теорию электрических токов и тем самым избавиться от этих предварительных теорий.

261. Одним из самых важных шагов в нашем познании электролиза явилось обнаружение вторичных химических процессов, возникающих при превращении ионов на электродах.

Во многих случаях вещества, которые обнаруживаются на электродах, не являются настоящими ионами электролиза, а представляют собой результат воздействия этих ионов на электролит.

Так, при электролизе раствора сульфата натрия током, который проходит также и через разбавленную серную кислоту, на анодах выделяются равные количества кислорода как в сульфате натрия, так и в разбавленной кислоте, а на катодах – равные количества водорода.

Но если проводить электролиз в подходящих сосудах, таких, как 𝑈-образные трубки или же сосуды с пористой перегородкой, так чтобы можно было отдельно исследовать вещество, окружающее каждый электрод, то выясняется, что в растворе сульфата натрия на аноде одновременно с одним эквивалентом кислорода выделяется один эквивалент серной кислоты, а на катоде наряду с одним эквивалентом водорода выделяется один эквивалент щёлочи.

На первый взгляд может показаться, что в соответствии со старой теорией строения солей сульфат натрия при электролизе разлагается на свои составные части – серную кислоту и щёлочь, и в то же время вода из раствора разлагается на составляющие её кислород и водород. Но такое объяснение было бы основано на допущении, что тот же самый ток, который, проходя через раствор серной кислоты, электролитически разлагает один эквивалент воды, выделил бы при прохождении через раствор сульфата натрия один эквивалент соли и одновременно один эквивалент воды, что было бы в противоречии с законом электрохимических эквивалентов.

Но если мы предположим, что сульфат натрия состоит не из компонент SO3 и Na2O а из SO4 и Na2, т. е. не из серной кислоты и щёлочи, а из кислотного остатка и натрия, тогда при электролизе кислотный остаток движется к аноду и там освобождается, но поскольку кислотный остаток не может существовать в свободном состоянии, он разбивается на серную кислоту и кислород в равном числе эквивалентов. В то же время натрий освобождается на катоде и здесь разлагает воду раствора, образуя один эквивалент щёлочи и один – водорода.

Газы, которые собираются у электродов в разбавленной серной кислоте, представляют собой составные части воды, а именно один объём кислорода и два объёма водорода. У анода также возрастает количество серной кислоты, но оно не равно одному эквиваленту.

Неясно, является чистая вода электролитом или нет. Чем лучше очищена вода, тем больше оказывается её сопротивление электролитическому прохождению тока. Малейших следов инородного вещества оказывается достаточно, чтобы намного уменьшить электрическое сопротивление воды. Электрическое сопротивление воды, измеренное различными исследователями, имеет настолько различающиеся значения, что мы не можем рассматривать эту величину как определённую. Чем чище вода, тем больше её сопротивление, и, если бы мы могли получить действительно чистую воду, весьма сомнительно, что она вообще была бы проводником.

Пока вода рассматривалась как электролит, а она действительно считалась построенной по типу электролитов, имелись веские причины предполагать, что вода представляет собой бинарное соединение и что два объёма водорода химически эквивалентны одному объёму кислорода. Однако, если мы допустим, что вода не является электролитом, мы свободны считать, что равные объёмы кислорода и водорода химически эквивалентны.

Динамическая теория газов приводит к предположению, что в идеальных газах равные объёмы всегда содержат равное число молекул и что главная часть удельной теплоёмкости, а именно та, которая обусловлена движением молекул вследствие теплового возбуждения, одинакова для равного числа молекул любого газа. Поэтому нам приходится предпочесть такую химическую систему, в которой равные объёмы кислорода и водорода рассматриваются как эквивалентные, а вода считается смесью двух эквивалентов водорода и одного эквивалента кислорода, и поэтому, вероятно, вода не поддаётся прямому электролизу.


    Ваша оценка произведения:

Популярные книги за неделю