355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Владимир Сыромятников » 100 рассказов о стыковке. Часть 2 » Текст книги (страница 8)
100 рассказов о стыковке. Часть 2
  • Текст добавлен: 9 октября 2016, 05:03

Текст книги "100 рассказов о стыковке. Часть 2"


Автор книги: Владимир Сыромятников



сообщить о нарушении

Текущая страница: 8 (всего у книги 51 страниц)

Одна из основных целей участия в научных конференциях – завязывать новые знакомства. Именно так произошло на симпозиуме в Тулузе в 1992 году. Приблизительно через полгода после тулузских встреч в столовой НПО «Энергия» для иностранцев мы случайно снова встретились с М. Франчи, который являлся одним из руководителей разработки европейского манипулятора в голландской фирме Фоккер Спейс & Системз (ФСС). Этот манипулятор сначала создавался для европейского шаттла «Гермес». Когда программа начала испытывать трудности, европейцы стали искать применение своей разработке. Мы договорились о специальной встрече, которая состоялась в начале 1993 года, с этой встречи началась наша совместная работа. После начальной фазы исследования задач и возможностей европейского манипулятора на российской станции «Мир-2» мы представили наши предложения руководству. Постепенно проект ERA (European Robotic Arm), как его стали называть, становился все более реальным в отличие от многих других российско–европейских разработок, которые закрывались после предварительных этапов. Проект ERA, уже в рамках российского сегмента МКС «Альфа», поддержало руководство Европейского космического агентства (ЕКА), совет министров европейских стран, и особенно – правительство Голландии, решив финансировать более половины общих затрат. В последующие годы мне тоже пришлось затратить немало усилий, чтобы убедить руководство НПО «Энергия» и РКА не отказываться от сотрудничества с европейцами в этой перспективной области, а такой манипулятор без кооперации мы уже не в состоянии были создать. Чтобы приблизиться к западной робототехнике, требовалось поработать с европейцами.

ERA – это гораздо больше чем просто манипулятор. Это современная робототехническая система, которая построена на передовой электромеханике и микроэлектронике, интегрированная в рационально распределенную архитектуру. Основные подсистемы управления роботом размещены в самой руке, включая автономный компьютер. Каждый из семи шарниров механической руки имеет электрический привод с прецизионным датчиком угла и управляющей электроникой. Такое построение сократило электрические связи между шарнирами и компьютером, уменьшило вес и повысило надежность.

ERA относилась к третьему поколению роботов: систему оснастили искусственным зрением, которое позволяет увидеть цель, автономно сблизиться и захватить ее.

При проектировании ERA стремились к тому, чтобы система стала гибкой в управлении, с этой целью предусмотрели как автоматические режимы, так и управление вручную. Причем космонавтам дали возможность управлять манипулятором, инициируя автоматические операции или реализуя их в ручных режимах, как находясь внутри станции, так и снаружи, в открытом космосе. На начальном этапе программы, при строительстве и сборке на орбите, все работы должны выполняться почти так же, как на Земле, сочетая ручные и механизированные операции. Планируется, что ERA, как подъемный кран, будет перемещать тяжелые грузы и, как лифт, транспортировать самих космонавтов, доставляя и поддерживая их на нужном рабочем месте в условиях невесомости.

Переносной пульт управления на гибком кабеле, рассчитанный на работу в космическом скафандре, действительно позволит выполнить на орбите почти все, что может делать крановщик на Земле.

В будущем, когда космический дом будет построен, электростанция развернута на орбите, а все оборудование установлено, ERA должна обслуживать различные системы станции, помогать в исследованиях. На этом этапе космонавту не потребуется так часто выходить в открытый космос, а бортовой пульт управления разместится внутри. Дополнительно планируется отладить радиоуправление с Земли, из ЦУПа.

Работать с Европой было интересно в различных аспектах. Прежде всего, в манипуляторе использовалась передовая западная технология, последние достижения в робототехнике. Далее, было интересно прочувствовать в деле ЕКАвский подход к проектированию, менеджменту, согласованию интерфейсов и т. п. И, наконец, с общечеловеческой точки зрения, контакты моих специалистов давали им много, прежде всего в осознании сильных и слабых наших сторон. Благодаря этому проекту некоторые из них получили возможность съездить впервые в жизни за рубеж. Если бы не политика «не пущать», порой проводимая руководством, эту возможность получили бы еще больше нужных и достойных людей, которых старались оттеснить, от поездок, как бы они не заработали слишком много «гульдей» (по меткому выражению нашего проектанта Р. Беглова, называвшего так голландские гульдены, валюту Нидерландов). Контракт с фирмой «Фоккер» оказался одним из немногих, в котором оплата участников совместных работ как?то, пусть отдаленно, приближалась к цивилизованным стандартам.

Можно отметить еще один аспект. Работа с европейцами проводилась параллельно с подготовкой к стыковке Спейс Шаттла с ОС «Мир», с поставкой АПАС-89 американской фирме «Роквелл» (кстати, тоже по почти цивилизованному контракту), работавшей под контролем НАСА. В этих двух проектах наша роль была противоположной: мы являлись разработчиками системы стыковки, а «Роквелл» интегрировал нашу аппаратуру на «Орбитере». ЕКА и фирма «Фоккер» разрабатывали манипулятор ERA, а мы интегрировали эту систему на борту русского сегмента МКС «Альфа». Опыт, приобретенный в обоих проектах, дополнял друг друга и помогал эффективно продвигаться вперед. Традиционно нам не хватало сил, квалифицированных кадров, число которых, к сожалению, сокращалось: самые активные уходили в эти годы в коммерцию.

Следует также отметить, что обеспечить интеграцию системы ERA оказалось задачей очень сложной. Дело в том, что манипулятор требовалось не просто стационарно установить и обеспечить все электрические связи. По своим функциональным возможностям ERA не только европейская рука, мы вместе превратили ее в африканскую обезьяну, которая стала лазать по ветвям космической станции, перешагивать с модуля на модуль, закрепляя себя то одним, то другим концом, а вторым могла срывать «созревшие бананы». Перешагивая с места на место, надо не просто закрепиться, в каждой новой точке необходимо подключиться к бортовой сети электропитания, шине данных между компьютером, встроенным в ERA, и бортовым компьютером станции, соединить цепи видеоканала и телеметрической информации. По всему российскому сегменту требовалось расставить эти, базовые точки, по которым сможет шагать ERA. Чтобы сократить пешеходный путь, мы разработали так называемую транспортную тележку, которая двигалась вдоль основной фермы. Однако из?за технических трудностей от нее пришлось отказаться.

Неоценимое значение для нас в проекте, связанном с разработкой и интеграцией ERA, имел опыт, приобретенный при создании манипулятора для «Бурана». Использование этого опыта может стать какой?то компенсацией за безрезультатно растраченные силы.

В начале 1995 года при работе над российско–европейской робототехнической системой для МКС «Альфа» мы неожиданно столкнулись с оппозицией Канадского космического агентства (ККА). Канадцы сделали попытку установить монополию в области робототехники в рамках этой программы, заявив, что, если потребуется, они обеспечат миграцию шагающих роботов на российский сегмент. Работая над манипулятором для «Бурана», мы, естественно, оглядывались на канадскую фирму «Спар», которая вместе с ККА являлась основным исполнителем в создании аналогичной системы для американского Спейс Шаттла. Канадцы внесли большой вклад в эту программу и сделали многое для развития космической техники в своей стране. Объективно, им было чем гордиться, недаром к традиционной эмблеме Канады – кленовому листу – все чаще и чаще стали прибавлять современный научно–технический символ – контур искусственной космической руки. Под эгидой ККА в стране создали мощную базу для исследования, разработки и изготовления космической робототехники. Эта база должна стать основным вкладом Канады в программу МКС «Альфа». Канадцы заявили, что ERA не нужна и что они готовы решить все задачи при помощи их манипуляторных систем.

Наш анализ показывал, что технически и организационно обеспечить такие операции было очень сложно. Потребовалось несколько встреч с участием космических агентов Европы, США, Канады и России, пришлось привести и выслушать многие аргументы, включая применимость антимонопольных законов к космической технике, прежде чем удалось отстоять право Старого Света на свой путь.

После докладов на международных конференциях по робототехнике молодые люди нередко спрашивали меня о том, как нам удавалось реализовывать космические проекты в очень короткие сроки, затрачивая на них сравнительно небольшие средства. Разработка станции «Фридом» стоила НАСА более девяти миллиардов долларов, это на бумажный?то этап проекта! Европейцы (ЕКА) также затратили огромные средства на такие проекты, как «Гермес», не добившись никаких практических результатов. С окончанием холодной войны и привлечением России к большим международным космическим проектам мы оказались вовлеченными в совместную деятельность. Стали понятными многие преимущества и недостатки наших партнеров. Некоторым из наших руководителей западный стиль работы оказался даже по душе. С одной стороны, их метод работы действительно был фундаментальным: очень тщательно, последовательно, в несколько этапов выполнялись исследования и разработки на разных стадиях проекта, стремились ничего не упустить, не просчитаться. Однако на практике без сильного централизованного руководства и постоянной координации такой путь приводил к потере времени, растягиванию сроков, иногда на годы, и даже на десятилетия. Нередко большие проекты становились гигантскими, облипаясь попутчиками и оппортунистами.

Сначала мне казалось непонятным, даже парадоксальным, то, что руководители разных рангов были слабо заинтересованы в форсировании событий, в самом полете в космос. С другой стороны, все хорошо понимали, что каждый полет – это риск, а чем сложнее проект, тем риск больше. Мне кажется, что в конце концов я понял подход не в меру осторожных руководителей. Зачем рисковать, если и так хорошо, если современная компьютерная техника позволяет жить красивой, почти виртуальной жизнью. Она позволяет полно и красочно моделировать программу полета в тепличных условиях, при этом получая хорошую зарплату, работая в красивых офисах и уютных лабораториях, где чай и кофе подают длинноногие и красиво одетые секретарши.

Чтобы изменить положение, нужны лидеры и идеи, способные увлечь и повести вперед.

Наверное, как и в других областях человеческой деятельности, в космической индустрии требуется конкуренция если не политических, то каких?то других систем.

В конце XX века мы переживаем времена, когда время Королёва и фон Брауна прошло. Новые идеи или скучны, или не увязаны с реальностью, они не очень увлекают современную молодежь. Время от времени политические лидеры и руководители космических агентств пытались увлечь нас полетом на Марс или вернуться на Луну, но не получалось. В 1961 году все было и сложнее, и проще. Сложнее, потому что так высоко и далеко никто до этого не летал. Проще, потому что идея заворожила массы, увлекла специалистов и простых людей, а трудности были не до конца ясны, а значит, не так страшны. Мы были молодыми, а в молодости многое проще: вперед и вверх, без страха и сомнения. Политическая конфронтация рождала и поддерживала соревнование во многих областях, в том числе в пилотируемой космонавтике как символе эпохи. После демонтажа социализма российскую космонавтику номинально включили в единое мировое русло.

Есть ли выход? Тупик ли это, в который зашло одно из самых фантастических, захватывающих и грандиозных свершений второй половины XX века? Я и мои коллеги, как и многие люди одного поколения, ищем ответ на эти вопросы. Может быть, осмысление пройденного пути поможет заглянуть в будущее и отыскать маяки в густом тумане на рубеже веков.

Что касается робототехники, надо найти хорошее применение роботам в космосе. Наверняка им найдется там место, если сама космическая техника найдет себе применение для человека, для развития цивилизации. Нужна наука и нужны прикладные исследования, требуется «поставить космос на службу человеку», как говорили у нас, при социализме, а многое говорилось правильно, но слова слишком часто расходились с делами.

Завершая короткий рассказ о космической робототехнике, я не мог не сказать об общих задачах. Действительно, создаваемые для МКС «Альфа» системы, европейско–российская ERA, американско–канадские роботы и манипуляторы, дают возможность человеку эффективно осваивать космос, работать как внутри станции, так и снаружи, они могут стать прообразом будущих систем. Если человечеству суждено в XXI веке осваивать космическое пространство по–настоящему в космических масштабах так, как еще до моего рождения предсказывал К. Э. Циолковский и как описывали позднее мои старшие современники Дж. О'Нейл и К. Эрике, то этой технике, зачатой нами, предстоит занять одно из центральных мест.

Мне придется еще вернуться к этим мыслям в последних рассказах.

3.11   Орбитальный комплекс «МИР»: апофеоз космического века

Известна история Эйфелевой башни, которую построили к открытию Всемирной выставки в Париже в 1889 году. Башня символизировала достижения инженерии XIX века. Проект, ярко окрашенный талантом Эйфеля – механика, строителя, архитектора, – сопровождался бурными дебатами, не испортит ли гигантское инженерное сооружение антураж города–музея. Даже принималось решение, что по завершении выставки башню разберут. Но произошло чудо: образ Парижа XX века неотделим от Эйфелевой башни, ставшей его символом.

В течение последних 20–и лет XX космического века наши мысли и дела оказались связанными с орбитальным комплексом «Мир». По размерам и архитектуре, по продолжительности полета и по широкому международному участию, наконец, по красоте и величию конструкции, летящей на фоне голубой Земли или бездонного космоса, по силе воздействия на умы и воображение людей ОК «Мир» намного превзошел ожидания и планы его проектантов. Чтобы построить и поддерживать в полете это сооружение, потребовались огромные усилия и воля сотен тысяч людей, созвездия талантов в разных областях человеческой деятельности, профессионалов, посвятивших себя этому делу в течение нескольких десятилетий.

В самом конце столетия развернулись дебаты, что делать с этим космическим «Миром».

Можно провести параллели между двумя этими сооружениями, разделенными столетием. Два инженерных и архитектурных чуда в большой мере символизируют свое время. Чего достигла человеческая фантазия и технология, во что воплотили инженеры свои проекты, все это ярко проявилось в этих свершениях – сначала на Земле, а через сто лет в космосе. Это рассказ о начальном этапе космической эпопеи, о том, что было сделано в середине 80–х, чтобы проект состоялся. Остальные рассказы книги так или иначе связаны с нашим орбитальным «Миром». Начиналось все это в головах космических архитекторов, к тому времени вступивших в пору зрелости, и в набросках на чистых листах бумаги.

Станция «Салют-7», выведенная на орбиту 19 апреля 1982 года, летала высоко над Землей, к ней стыковались пилотируемые «Союзы» и грузовые «Прогрессы», а мы уже работали над проектом станции следующего поколения, получившей позднее название орбитального комплекса (ОК) «Мир».

«Салют-7» мало отличался от своего предшественника «Салюта-6»: те же два причала, те же основные системы. Обе программы в целом оказались успешными. В течение 1982–1985 годов на «Салюте-7» побывало 9 экипажей, полет станции и жизнедеятельность экипажей обеспечили 12 грузовиков «Прогресс». Надежность и безопасность полетов значительно возросли. Отказы время от времени возникали, но не часто.

Со 2 октября 1984 года ОС «Салют-7» летала в беспилотном режиме. В марте 1985 года она неожиданно перестала отзываться: прекратилась телеметрия, прием радиокоманд. «Салют-7» умирала на орбите. Первым отказало электричество: без правильной ориентации панели солнечной батареи (СБ) недостаточно освещались солнцем и не генерировали необходимой электроэнергии. Без электричества современная жизнь невозможна, тем более в космосе. За станцией продолжали следить пассивными средствами. В конце концов, решили вернуть ее к жизни.

К лету удалось подготовить экспедицию спасения, которой стал экипаж «Союза Т-13»: В. А. Джанибеков, ветеран «Союза» – «Аполлона», уже летавший на станцию «Салют», и В. П. Савиных. То, что им удалось сделать на орбите в июне 1985 года, стало, пожалуй, самым большим достижением по проведению ремонтно–восстановительных работ в космосе. Я не собираюсь здесь подробно описывать эту спасательную миссию, хотя мне вместе со многими специалистами пришлось активно участвовать в подготовке этой операции на Земле и поддерживать наших выдающихся верхолазов из ЦУПа. Нас многому научила эта космическая спасательная эпопея, опыт которой очень пригодился в ближайшем будущем.

Когда в начале 1986 года запустили новый ОК «Мир», «Салют-7» еще летал на орбите, его основные системы продолжали функционировать. В мае 1986 года проделали еще одну совершенно уникальную операцию. Первый экипаж ОК «Мир» составляли Л. Кизим и В. Соловьев, прибывшие туда 15 марта на КК «Союз–Т». Они отстыковались от «Мира» 5 мая, совершили перелет к ОС «Салют-7» и стыковку с ним на следующий день. Выполнив там несколько научных и прикладных экспериментов, 25 июня космонавты снова отстыковались от «Салюта» и во второй раз догнали свой «Мир», состыковались с ним и, проведя там еще 20 дней, вернулись на Землю. После обсуждений и споров, по предложению К. П. Феоктистова, решили, что целесообразно сохранить «Салют-7» на орбите, максимально увеличив высоту полета: это позволяло получить дополнительную ценную информацию о работоспособности бортовых систем.

Станция «Салют-7» продолжала летать в космосе до 7 февраля 1991 года. Став снова неуправляемой, она постепенно снижалась до тех пор, пока не вошла в атмосферу, после чего упала в южной малонаселенной части Аргентины, не принеся, к счастью, никакого вреда, хотя и наделала много шума.

Это было позже, а к середине 80–х в пилотируемой космонавтике ощущался застой. Нужно было сделать следующий шаг. Если осваивать околоземный космос, требовалось наращивать масштабы. И, конечно, высшему руководству нужны были новые достижения. Два причала, как известно, прибавили очень много для орбитальных станций 2–го поколения – «Салютов» 6 и 7. Основной базой для орбитального комплекса «Мир» стали та же техника и технология, те же компоненты и средства запуска: РН «Протон» и «Семерка», те же 20–тонные модули, транспортные корабли «Союз» и «Прогресс», которые сформировали космический сегмент. Наземный сегмент также остался прежним: средства подготовки и запуска на космодроме Байконур, наземный командно–измерительный комплекс, Центр управления полетами (ЦУП), Центр подготовки космонавтов (ЦПК), средства спасения экипажа после возвращения на Землю. Ряд модифицированных систем добавили к обоим сегментам. Однако принципиальным шагом все?таки стала новая конфигурация, можно сказать, космическая архитектура. Именно она изменила внешний облик станции и ее внутреннее содержание. Так же, как при переходе ко 2–му поколению станций, орбитальный комплекс начинался с новой конфигурации стыковочных причалов. К переднему переходному отсеку станции, добавили еще четыре боковых причала. Этот отсек сферической формы превратился теперь в своеобразную гроздь, состоявшую почти из одних стыковочных агрегатов.

С легкой руки прессы, агрегаты стали называть стыковочными узлами. Мне это название никогда не нравилось, оно не отражало существа его конструкции: узел – это что?то связанное. Вот на ПхО на станции «Мир» действительно образовался узел, он связал пять стыковочных агрегатов в единое целое. В конечном итоге этот узел ввели для того, чтобы связать пять модулей будущего орбитального комплекса всех четырех модулей. По мере прилета модулей и сборки на орбите оставался свободным лишь рабочий осевой причал, к которому продолжали стыковаться дежурные «Союзы», а иногда грузовые «Прогрессы».

Разработка конфигурации и компоновки ОС «Мир» проводилась под руководством К. П. Феоктистова. Его талант проектанта в этой работе проявился наиболее ярко. Мне много пришлось поработать с ним в 1983–1984 годах, прежде всего над конфигурацией ПхО, перестыковкой и другими системами. К. П. Феоктистов являлся заместителем Ю. П. Семёнова, в те годы главного конструктора орбитальных комплексов. Они неплохо взаимодействовали, хорошо дополняя друг друга. Главный был организатором, подбирал команду, хорошо отличал реальное от фантазий. Его зам был проектантом с большим кругозором и знаниями, генератором многих идей. К сожалению, этому плодотворному сотрудничеству оставалось жить не так долго.

Разработанная конфигурация оказалась прежде всего удачной, потому что позволила построить действительно красивый и эффектный космический дом на орбите. Как на Земле, так и в космосе дом должен смотреться, внешний вид всегда отражает особенности сооружения и его предназначение. Глядя на ОК «Мир», мне всегда верилось, что это по–настоящему космическое сооружение красивее, чем все картины художников–фантастов и футуристов.

Конечно, дело было не только во внешнем виде, он лишь отражал существо проекта. Конфигурация ОС «Мир» быстро стала классической: узловой способ сборки больших сооружений на орбите прослеживался во всех проектах последующих лет. Этот подход стал ведущим принципом сборки в проекте Международной космической станции (МКС), сначала «Фридом», а затем «Альфа». Эти «ноды» [Node – узел (англ.)] стали модулями МКС, на которые нам пришлось в середине 90–х годов устанавливать наши АПАСы.

От идеи, от начальной конфигурации до реализации всегда лежал длинный тернистый путь. Настоящий архитектор – это инженер, владеющий техникой основных систем, которые собирают, строят, а потом обслуживают орбитальный дом. В космосе это прежде всего технические системы сближения и стыковки. Отсек ПхО стал не только узлом стыковочных агрегатов. На нем разместились антенны, мишени, сигнальные огни – все то, что обеспечивало сближение и причаливание.

На ПхО пришлось расположить также элементы нашей новой системы перестыковки. Дело в том, что подход, прямая стыковка модулей к боковым причалам по ряду причин практически невозможна. Чтобы решить эту проблему, приняли двухступенчатую процедуру сборки модулей на переходном отсеке. Их решили сначала стыковать к осевому рабочему причалу, а затем при помощи специального манипулятора перестыковать к боковому причалу.

Система перестыковки достойна отдельного описания, это сделано в одном из рассказов главы.

Отсек ПхО получился совсем небольшим, тесным внутри и перегруженным снаружи. Его габариты нельзя было увеличить: они определялись головным обтекателем РН «Протон». Пришлось проявить изобретательность, настоящую изворотливость, для того чтобы втиснуть все необходимое в сферу, меньшую, чем бытовой отсек КК «Союз».

ПхО стал не только переходным отсеком; с начала программы до конца 1989 года, когда к «Миру» пристыковался модуль «Квант-2», ПхО служил единственным шлюзом станции, через него экипажи неоднократно выходили в открытый космос. В этом тесном отсеке при каждом выходе оказывались два человека и два больших жестких скафандра. Одеть, вернее, влезть в этот скафандр не так?то просто даже в земных условиях. Одеться для прогулки в открытый космос в тесноте и в невесомости, наверно, еще сложнее.

Чтобы как?то разгрузить ПхО, чтобы несколько увеличить его внутренний объем, нам пришлось пережить еще одну эпопею – переконфигурацию на Земле. Уже на заключительном этапе работ решили уменьшить размеры и форму крышек. Крышка люка пассивного стыковочного агрегата обычно сделана в виде конуса, в который при стыковке попадает штырь стыковочного механизма. Пять конусов торчали внутрь отсека, занимая значительный объем. Заменив три конуса плоскими крышками, удалось немного увеличить внутреннее пространство ПхО, а попутно сэкономить около 30 кг веса.

Об этой весовой эпопее следует рассказать отдельно.

Дефицит веса обнаружился лишь за 9 месяцев до пуска, когда ОС «Мир» уже проходила интегральные испытания в нашем КИСе, в Подлипках, переехав туда из Филей, с завода имени Хруничева. Это было еще то событие, катастрофа почти космического масштаба. Перевес в полторы тонны произошел, главным образом, из?за дополнительных электрических кабелей, их стало значительно больше, чем на всех предыдущих «Салютах». Такого просчета никто не ожидал.

Дело в том, что базовый блок станции стал еще и электрическим узлом, которому предстояло объединить все другие будущие модули в единое системное целое. С этой целью заранее предусмотрели и проложили электрические связи, которые протянулись через весь 15–метровый базовый блок. Вот и набралось этих дополнительных проводов, меди, ни мало ни много, а около двух тонн. Проектантам из отдела Л. Горшкова, и в первую очередь ему самому, учинили суровый разнос, почти погром. Пришлось всем вместе, включая нас, системщиков, засучив рукава, облегчать свои конструкции. Почему?то и в последующие годы нам, стыковщикам, еще не раз приходилось расплачиваться за ошибки проектантов.

Тогда, в 1985 году, много аппаратуры перевели в так называемый разряд доставляемой, чтобы уменьшить вес базового блока. Эта аппаратура попала на станцию позже на грузовых кораблях и в других модулях.

Заменив боковые конуса плоскими крышками и частично решив одну проблему, мы породили другую, процедурную. Единственную боковую крышку–конус сделали сменной, в полете ее неоднократно предстояло переставлять каждый раз, когда требовалось стыковать очередной модуль. Ее устанавливали на тот причал, в который входил штырь стыковочного механизма. Сменить крышки, переставить конус в нужное место было не так?то просто, ведь за этой дверью, за крышкой – открытый космос. Таким образом, чтобы выполнить эту сменную операцию, требовалась длительная и сложная процедура: космонавты надевали скафандры, сбрасывали воздух из ПхО, открывали, переставляли и снова закрывали крышки, наддували отсек, проверяли герметичность и только тогда могли снова снять скафандры. Все это фактически – выход в открытое космическое пространство, со всеми его сложностями и опасностями.

Тогда, в 1985 году, другого выхода практически не было.

В предыдущих программах ОС «Салют» нам приходилось стыковать лишь 7–тонные КК «Союз» и «Прогресс» к 20–тонной станции. Масса каждого модуля, так же как базового блока, равнялась 20 тоннам, а сам «Мир», как забеременевшая слониха, постепенно тяжелел после каждой стыковки: 20, 27, 47, 67, 80 тонн. Наш старый стыковочный механизм со штырем нуждался в усилении. Его амортизационной системе предстояло поглощать в 3 раза большую энергию при столкновении этих многотонных конструкций. Разрабатывая новую конструкцию, конструкторы–стыковщики выжали все, что могли, из старого механизма, сохранив все основные размеры и многократно проверенные элементы. Дополнительно пришлось лишь немного удлинить штангу и усилить боковые амортизаторы. Здесь помогла теория и концепция, разработанная в конце 70–х годов. Стыковочный механизм стал умнее, он научился приспосабливаться к более тяжелым условиям, он стал адаптивным.

Этот стыковочный механизм тоже стал конструкцией следующего поколения.

Первый такой модифицированный механизм стыковал модуль «Квант» в апреле 1987 года. Стыковка оказалась далеко не обычной, но об этом событии – тоже в отдельном рассказе.

Выполняя программы ОС «Салют-6» и «Салют-7», мы накопили большой опыт по технике дозаправки. Однако для ОС «Мир» требовалась более сложная система, содержавшая развитую систему трубопроводов для перекачки топлива, а гидроразъемы, которые соединялись при стыковке, нуждались в модернизации. Дело в том, что компоненты топлива – это чрезвычайно агрессивные жидкости, в них стоят далеко не все даже лучшие материалы. В гидроразъемах требовалось уплотнение, которое обычно делается из резины. Однако самые лучше резины не выдерживали нескольких стыковок, распадаясь под действием этих компонентов – амила и гептила. Пришлось конструкторам поломать голову, а затем экспериментаторам провести сотни испытаний, пока не удалось добиться стойкости гидроразъемов. Они получились действительно замечательными.

В дополнение к традиционным задачам стыковки и многочисленным электромеханическим приводам и датчикам в рамках проекта ОС «Мир» нам пришлось решить несколько других уникальных задач. Двум из них: манипуляторной системе перестыковки и так называемой многоразовой солнечной батарее (МСБ) – будут посвящены отдельные рассказы. Сейчас – коротко о двух других работах, двух системах слежения, одну из них мы разрабатывали самостоятельно, вторую – в кооперации, причем – кооперации международной.

Перед несколькими отделами НПО «Энергия» поставили задачу разработать систему связи с орбитальной станцией через спутник–ретранслятор. Спутниковая связь позволяла значительно расширить возможности, увеличить периоды, зоны связи с Центром управления. Прокрустово ложе наземных НИПов, расположенных на территории Советского Союза, несмотря на огромную протяженность страны и дополнительные плавучие средства, специальные морские корабли, сильно суживали возможности программы, ограничивали объем информации, затрудняли управление и мониторинг орбитального комплекса. Требовалась глобальная связь через космос, подобная той, которую нам продемонстрировали американцы во время полета КК «Союз» и «Аполлон».

Чтобы увеличить информативность будущего радиоканала, после длительных проработок, оценок и дебатов выбрали сантиметровый диапазон радиоволн. Этот радиодиапазон определял размер радиолуча с узкой диаграммой направленности, как его называют в радиотехнике, это, в свою очередь, определяло необходимость его наведения с большой точностью. Моему отделению поручили разработать электромеханическую систему наведения этой остронаправленной антенны (ОНА) на спутник–ретранслятор (СР).

Антенну, которая сама стала сложной системой и весила более 100 килограммов, установили на 2–метровой штанге так, чтобы она могла осматривать небосвод, находить там СР и следить за ним. Система автоматического управления приводами (САУП ОНА – в нашей аббревиатуре) в общей сложности включала 6 прецизионных приводов. Два высокоточных привода слежения наводили антенну на спутник, управлял этими приводами бортовой компьютер, посылая электрические импульсы на шаговые двигатели. Привода не только отрабатывали командные импульсы, но и посылали обратный сигнал–информацию о положении системы обратно в компьютер. Вращение и обратная связь выполнялись с высокой точностью: ошибки не превышали 1–2 угловых минут. Точность определялась рядом факторов: параметрами отдельных компонентов, характеристиками подвижных и неподвижных конструкцией. Пришлось как следует потрудиться всем участникам этой разработки, начиная от наших смежников, традиционных для нас машиноаппаратчиков, специалистов из КБ «Радиоприбор» (головного разработчика космической радиоаппаратуры), кончая конструкторами нашего ГКБ, технологами и рабочими ЗЭМа.


    Ваша оценка произведения:

Популярные книги за неделю