355 500 произведений, 25 200 авторов.

Электронная библиотека книг » авторов Коллектив » Высокой мысли пламень (Часть третья) » Текст книги (страница 30)
Высокой мысли пламень (Часть третья)
  • Текст добавлен: 12 октября 2016, 02:24

Текст книги "Высокой мысли пламень (Часть третья)"


Автор книги: авторов Коллектив



сообщить о нарушении

Текущая страница: 30 (всего у книги 37 страниц)

О гибридах

В данной главе речь пойдёт о не совсем обычных автомобилях. В них имеется и традиционный двигатель внутреннего сгорания, но самое главное – они приводятся в движение электрической тягой!

Такую смесь традиционного автомобиля с электромобилем и принято называть автомобилями с гибридными силовыми установками, или попросту гибридами.

Появление их вызвано тем, что эра автомобилей, оснащённых двигателями внутреннего сгорания, явно подходит к концу.

Слишком уж опасными для человека оказались выхлопные газы подобных транспортных средств.

В. Кашканов, конструктор.

Прежде чем начать рассказ о наших разработках, придётся углубиться немного в историю.

XX век был отмечен бурным развитием автомобилестроения. Однако автомобиль, поначалу казавшийся великим благом, принёс с собой и огромную опасность для человечества.

В результате эксплуатации возникли две серьёзные угрозы: развитие парникового эффекта с последующим необратимым изменением климата и массовое поражение здоровья людей.

Всё это обусловлено наличием токсических веществ, которые в сравнительно больших количествах содержатся в отработавших газах двигателей внутреннего сгорания ( ДВС).

Именно автомобильный транспорт в больших городах по экологическому ущербу лидирует во всех видах негативных воздействий на окружающую среду: загрязнение атмосферного воздуха – 71%, воздействие на климат – 68%.

По оценкам экспертов, с влиянием отрицательных факторов окружающей среды связано 36% случаев всех заболеваний. Именно экологические условия сокращают продолжительность жизни обитателей больших городов на 6 – 7 лет.

Поэтому возникла жизненная необходимость снижения уровня токсичности отработавших газов автомобилей в такой мере, чтобы изменить тенденцию к общему нарастанию заражения атмосферы земли – в первую очередь окисью (СО) и двуокисью (СО2) углерода – и добиться начала его снижения.

И это при условии, что объём производства автомобилей на земле будет неизменно нарастать, с этим ничего не поделаешь.

Первое, что было сделано в этом направлении – это совершенствование конструкции ДВС, в результате чего удалось заметно снизить удельный расход топлива и содержание токсических веществ в отработавших газах.

Однако достигнутый уровень обоих названных показателей нельзя признать удовлетворительным, особенно в свете быстрого увеличения мирового парка автомобилей.

Нынешнее состояние дел не позволяет ожидать в дальнейшем существенного улучшения характеристик ДВС.

Основные возможности уже почти исчерпаны, и вкладываемые в исследовательские и конструкторские работы средства будут приносить всё более ограниченные по значимости практические результаты.

Поэтому наиболее эффективным направлением на ближайшие десятилетия является создание гибридных энергоустановок ( ГЭУ) на основе комбинации из ДВСи электрической машины.

Основная идея гибридизации достаточна проста и заключается в том, чтобы, образно выражаясь, облегчить жизнь ДВСза счёт электрической машины.

Это можно сделать, исключив режимы работы со средним и высоким удельным расходом топлива.

Кроме того, можно устанавливать ДВСменьшей мощности без ухудшения динамических свойств автомобиля, так как дополнительная мощность формируется электродвигателем. Всё это позволит снизить расход топлива и, как следствие, уменьшить выбросы вредных веществ, в том числе и окислов углерода.

Теперь о типах ГЭУ. Любая такая установка содержит три основных элемента: ДВС, электрическая машина с блоком управления и буферный накопитель энергии.

Все ГЭУможно разделить на три основных типа: последовательные, параллельные и последовательно-параллельные. Назовём их для краткости соответственно ПоГЭУ, ПаГЭУи ППГЭУ(или комбинированные) – несколько неуклюже, но для наших целей популярного изложения сойдёт.

В ПоГЭУ( Series HEV) вся механическая энергия, вырабатываемая ДВС, переводится генератором в электрическую энергию, а затем с помощью тягового электродвигателя снова переводится в механическую энергию привода ведущих колёс автомобиля.

То есть, налицо последовательное (двойное) преобразование энергии. К достоинствам ПоГЭУотносится предельно простая трансмиссия, включающая одноступенчатый редуктор и дифференциал, а также то, что ДВСможет всегда работать в оптимальном – с энергетической и экологической точек зрения – режиме.

Общим существенным недостатком установок этого типа является большая суммарная мощность входящего в её состав электрооборудования. Ведь кроме тягового электродвигателя с контроллером, рассчитанным на полную максимальную мощность установки, требуется ещё и генератор со своим контроллером (тоже на полную мощность).

Всё это ведёт к существенному увеличению массы, объёма и стоимости устанавливаемого электрооборудования. Кроме того, кпд ПоГЭУпо определению ниже из-за необходимости двойного преобразования всей вырабатываемой ДВСэнергии.

Частным случаем последовательной концепции являются так называемые электромобили с расширенным пробегом ( Range Extender), отличающиеся от обычных электромобилей наличием мотор-генераторной установки небольшой мощности для возможности подзаряда тяговой аккумуляторной батареи во время движения с малой нагрузкой или при отсутствии электрической сети (к примеру, в полевых условиях).

Избыток этой энергии запасается в буферном накопителе, в качестве которого используется аккумуляторная батарея достаточно большой ёмкости. А вот совмещённый с генератором ДВС, как правило, делается на пониженную мощность или даже совсем крохотным.

К примеру, у Citroen Saxo Dynavoltмасса ДВСсоставляет всего 8 кг, а батареи – около 300 кг. Применён двухтактный впрысковой двигатель мощностью 10 кВт с генератором 6,5 кВт; они расположены вместе с топливным баком под задним сиденьем.

При этом пробег в сравнении с чисто электромобильным вариантом Saxo Dynavoltувеличивается с 80 до 340 км, а средний расход топлива составляет всего 2,4 л на 100 км.

Общий выброс окислов углерода, в сравнении с серийным Citroen Saxoс четырёхтактным впрысковым двигателем, сокращается на треть.

В ПаГЭУ( Parallel HEV), в зависимости от режима движения автомобиля, привод ведущих колёс осуществляется или только от электродвигателя, или только от ДВС, или от того и другого одновременно.

У этого типа ГЭУимеются три основных направления, получивших названия Микро гибрид (Micro-Hybrid), Средний гибрид (Midi-Hybrid)и Полный гибрид (Full-Hybrid). Назовём их соответственно МГ, СГи ПГ.

В конструкции МГиспользуются мотор-генераторы мощностью до 4 кВт при напряжении от 14 до 42 V и реализующие, как правило, только так называемый режим старт-стоп, т. е. остановку и мгновенный запуск ДВСна светофорах.

МГ(их ещё называют стартёр-генераторами) требуют минимальных изменений в конструкции базового автомобиля, позволяя, тем не менее, экономить до 10% топлива.

Функционально они обеспечивают режим автоматического останова и пуска двигателя (быстрый повторный пуск ДВСменее чем за 0,3 секунды и до 600 об/мин в процессе пуска), а также выработку дополнительной электроэнергии (режим генератора) с увеличением общего кпдсистемы до 85 %.

Наличие дополнительной электроэнергии позволяет освоить и другие потенциалы, например, электрифицировать энергоёмкие системы – такие как кондиционер, гидроусилитель рулевого управления, электротормоза и т.п.

Частным случаем параллельной концепции служат автомобили со вспомогательным электроприводом ( Power Assist), использующие электропривод сравнительно небольшой мощности, – не более 25% от мощности ДВС.

Однако влияние этой помощи на снижение расхода топлива по различным оценкам не превышает 20%, да и то лишь в городских режимах движения.

Бóльшую часть времени ДВСработает в далеко не оптимальной области, а значительная часть энергии при торможениях уходит в нагрев тормозных колодок из-за недостаточной мощности электропривода, неспособного в полной мере рекуперировать энергию торможения.

Типичным представителем этого класса автомобилей является Honda Insight, имеющий ДВС51 кВт и электродвигатель 9,2 кВт, расположенный между ДВСи КП и фактически представляющий собой стартёр-генераторную установку повышенной мощности.

Сравнительно высокие показатели по экономичности и токсичности этого гибрида объясняются в основном лёгким кузовом и суперсовременным ДВС.

Под СГпонимаются ГЭУ, в которых мощность мотор-генератора достигает 15 кВт.

В дополнение к функциям МГв данном случае обеспечивается создание дополнительного ускорения при разгоне и рекуперация электроэнергии при торможении.

Кпдсистемы, достигающий в режиме генератора 88%, несколько превышает уровень МГ. Такое решение требует использования компактной электрической машины в трансмиссии, размещённой, как правило, на коленчатом валу ДВС. Экономия топлива, в зависимости от реализованных функций, может составлять от 15 до 20%.

Под ПГпонимаются ГЭУ, в которых мощность мотор-генератора достигает 75 кВт. В дополнение к функциям СГв данном случае обеспечивается режим езды только на одном электроприводе, без помощи ДВС.

Разработка глубоко затрагивает весь автомобиль, поскольку ПГтребует второго (со стороны электродвигателя) сцепления, а также тяговой аккумуляторной батареи с соответствующим запасом энергии.

Заметное увеличение мощности требует существенного увеличения уровня напряжения тяговой батареи. Существующая бортовая сеть на 14V при этом может быть сохранена, но дополняется промежуточным конвертором, обеспечивающим связь между этими двумя сетями.

Электродвигатель как правило устанавливается между ДВСи коробкой на месте маховика. Имеется также буферный накопитель, но в данном случае он уже небольшой, а вот ДВС– почти полноразмерный.

К примеру, у серийного гибридного автомобиля HondaCivicбуферная аккумуляторная батарея весит всего 20 кг и расположена под полом багажника. Последовательное соединение 120 цилиндрических элементов по 1,2 V обеспечивает общее напряжение 144 V, но при этом ёмкость батареи – всего 6,5 А-ч.

ДВС– 1 л, 62,6 кВт, общий момент 157 Нм при 2 500 об/мин. Рекламируемый расход топлива 5,1 литра на 100 км, снаряжённая масса 1 200 кг.

Все силовые установки, которые не вписываются ни в одну из перечисленных концепций, относятся к комбинированному типу ( Dual HEV).

Общим для всех ГЭУкомбинированного типа при всём их конструктивном разнообразии является наличие не менее двух электрических машин и достаточно сложная трансмиссия, в результате чего они могут работать как в последовательном, так и в параллельном режиме.

Компенсацией усложнению трансмиссии по сравнению с установками последовательного типа служит возможность работы в параллельном режиме, что снижает требования к пиковым мощностям узлов электропривода и тем самым снижает размеры, массу и стоимость установки.

Однако из-за необходимости второй электрической машины, выполняющей различные функции, ГЭУкомбинированного типа проигрывают по тем же показателям параллельной концепции.

В качестве примера комбинированной энергоустановки служит конструкция силового агрегата, получившего широкую известность, – первого серийного гибридного автомобиля Toyota Prius.

Его силовой агрегат называют ещё последовательно-параллельным. В нём привод ведущих колёс осуществляется, как и в параллельной схеме, и от электродвигателя, и от ДВС.

А преобразование механической энергии ДВСосуществляется и с помощью генератора, как в последовательной схеме, и с помощью механического делителя мощности, распределяющего её между генератором и приводом ведущих колёс.

Это наиболее сложный в реализации вариант гибридной энергоустановки, но, тем не менее, Toyota Priusсерийно выпускается уже десятый год. Он неоднократно признавался лучшим автомобилем года.

Однако заявленные характеристики по расходу топлива 3,6 л/100 км в городском режиме практически не были подтверждены испытаниями.

Это, видимо, произошло из-за того, что они соответствуют японскому стандартному циклу езды 10/15, характеризующемуся низкой скоростью движения в городе и даже на открытой дороге, что является типичным для Японии. Реально получено 4,5 л/100 км.

Надо сказать, что на сегодняшний момент не выработано однозначной позиции, какой тип ГЭУпредпочтительнее. Citroen, например, имеет и последовательную, и параллельную схемы.

Проанализировав все эти варианты, мы остановили свой выбор на параллельном типе ГЭУ, как на наиболее просто реализуемом, так как при этом используется стандартный силовой агрегат, в который между ДВСи КП устанавливается электрический мотор-генератор.

Есть и ещё один довод в пользу параллельного типа энергоустановки. Он заключается в том, что конструкция силового агрегата практически одинакова, что для параллельного гибрида, что для СГУ. Различие заключается только в мощности электрической машины и в алгоритме её функционирования.

Если в СГУэлектрическая машина должна разгонять только двигатель до оборотов х.х., то в параллельном гибриде она должна разгонять весь автомобиль, т.е. для гибридного варианта требуемая мощность всегда явно больше.

Учитывая, что предельно допустимые диаметры электрической машины и в том и в другом случае одинаковы (определяются конструкцией силового агрегата), то разница будет лишь в аксиальной длине.

В одном случае это будет проставка между ДВСи КП толщиной, к примеру, 40 мм, а в другом – 60 мм, что, естественно, несущественно.

Лишь бы всё это поместилось под капотом автомобиля.

Исходя из этого, совместно с Новосибирским государственным техническим университетом ( НГТУ) была разработана конструкторская документация для двух автомобилей: 2110и 1118.

В первом случае из-за ограниченности ширины подкапотного пространства удалось реализовать только вариант со стартёр-генераторным устройством на пиковую мощность 4 кВт и напряжением 42 V.

Во втором случае был реализован гибридный вариант типа Power Assist, являющийся полным аналогом серийно выпускаемых гибридных автомобилей Honda Insightи HondaCivic.

Если сравнить характеристики автомобилей 1118в гибридном исполнении с автомобилем HondaCivic, то видно, что последний, выигрывая у гибридной Калиныпо расходу топлива 28%, имеет почти вдвое большую стоимость.

Последнее обстоятельство может быть решающим для реализации автомобилей ВАЗв гибридном исполнении на зарубежных рынках.

В настоящее время разработана КД на все элементы полноразмерной гибридной энергоустановки параллельного типа, проведены предварительные расчёты расхода топлива при движении по европейскому циклу для четырёх алгоритмов управления.

Собран автомобиль с мотор-генератором 4 кВт на напряжение 42 V. Реализован старт-стопный режим, над остальными режимами предстоит ещё поработать.

Следует отметить, что этот автомобиль сделан без всякого финансирования, на чистом энтузиазме ВАЗаи двух новосибирских предприятий – НГТУи Института ядерной физики ( ИЯФ).

Для создания полноразмерного гибрида с мощностью на 15 кВт требуется заключение договоров с предприятиями-соисполнителями примерно на 3,5 – 4 млн. руб.

В своё время, в сентябре 2003 года, мы выходили с таким предложением к вице-губернатору Самарской области В. Казакову и вроде бы даже получили положительную резолюцию, но до практического выделения средств дело так и не дошло.

Схема гибридной энергоустановки.


Статор и ротор ГЭУ.


Статор ГЭУ, установленный на двигатель.


Статор и ротор ГЭУна двигателе.


Установка сцепления на роторе ГЭУ.


ГЭУв сборе с коробкой передач (вид сбоку).


ГЭУв сборе с КП (вид сзади).


Май 2001 года. Группа разработчиков гибридной энергоустановки: В. Бойко, А. Шевченко ( НГТУ, г. Новосибирск), В. Скребенков, Н. Сибатов, А. Беспалов, А. Медведко ( ИЯФ, г. Новосибирск), В. Кашканов.

Антэл

Автомобиль на топливных элементах – так расшифровывается это название (придуманное, кстати, Г. Мирзоевым).

Сами топливные элементы как таковые не являются чем-то новым. Первый такой элемент (вернее, его действующая модель) был собран ещё в 1839 году британским судьёй Уильямом Гроувом (William Grove), который всё свободное время отдавал изобретательству.

Он обнаружил, что знакомый всем нам ещё со школы процесс электролиза воды с разложением на водород и кислород является, как ни странно, обратимым.

При наличии соответствующего катализатора (у Гроува это была платина) водород и кислород могут соединяться в молекулы воды с выделением электрического тока. Каждая такая топливная ячейка выдаёт напряжение до 1V, однако их можно объединять в батареи, получая довольно большие мощности.

Процесс сопровождается образованием воды и выделением некоторого количества тепловой энергии.

Энергетический кпдводородных топливных элементов значительно выше, чем у традиционных энергоустановок, и может достигать 90%.

Килограмм водорода по калорийности эквивалентен примерно 4,5 литра бензина.

Почему же человечество почти два века не использовало столь заманчивый и практически бездонный источник энергии?

Дело в том, что топливные элементы (далее в тексте ТЭ) получались очень дорогими – прежде всего из-за стоимости катализаторов (это в основном платина и палладий).

Хотя это и не стало препятствием для создателей лунникови челноков– и советских, и американских. Здесь ТЭоказались незаменимыми и прошли первую технологическую и практическую доводку и обкатку.

Только как спустить их из космоса и приспособить для земных нужд?

И в конце XX века созданием реальных, предназначенных для продажи автомобилей, использующих энергию водородного цикла, занялись крупнейшие автопроизводители: GM, Ford, Volkswagen, BMW, Toyota, Hondaи другие.

Появилась ещё одна многообещающая альтернатива электромобилям, столь резво в своё время начавшим, но так и остающимся пока весьма ограниченными в применении.

А вот появлением ТЭна нашем заводе мы обязаны энергии и настойчивости Г. Мирзоева (главного конструктора с 1976 по 1998 год).

Ему и предоставим слово.

Г. Мирзоев.

Узнали мы, что ещё в доперестроечные времена несколько институтов АН СССР работали над проблемами водородной энергетики – в основном по оборонно-космической тематике.

Начались поиски путей доступа к этим ТЭ.

Где-то к маю 99-го года выяснилось, что нужные нам устройства применяются в Буране. Диапазон поисков сузился до ракетно-космической корпорации (РКК) Энергияимени Королёва.

Используя все свои связи, через третьи-пятые руки узнали фамилии и телефоны, созвонились:

– Мы с ВАЗа, хотели бы поговорить о совместной работе.

– А откуда вы о нас узнали?

В конце концов удалось получить согласие на встречу.

– Ладно, приезжайте.

– А куда приезжать?

Объяснили. Но предупредили:

– У нас режимное предприятие, провести вас внутрь мы не сможем. Давайте встретимся у проходной, а дальше что-нибудь придумаем.

Встретились у проходной.

– А теперь куда пойдём?

– Есть тут у нас берёзовая роща, в ней и погуляем, и поговорим, чтобы чужих ушей рядом не было.

Хорошо, пошли в рощу. Их трое, нас трое. Часа полтора бродили кругами, разговаривали. Любое слово, любой показатель из них приходилось клещами вытягивать.

Такой была первая встреча. Потом состоялась вторая, третья… Мы уже узнали, что в Королёве делали только саму энергоустановку, а батареи топливных элементов они получали с Уральского электрохимического комбината ( УЭХК, г. Новоуральск).

Пришлось пробиваться туда.

– Мы с ВАЗа, хотели бы сотрудничать.

Сначала знакомая осторожная задумчивость во взглядах: пускать – не пускать, разговаривать – не разговаривать? Тем не менее пустили, даже устроили встречу со своими ведущими специалистами. Собралось человек восемь.

– А вы знаете, что такое топливный элемент?

– Весьма приблизительно.

– А вы знаете, сколько это стоит?

– И сколько?

– Только разработка потребует 5 миллионов долларов ежегодно, в течение 15 лет.

– Тогда извините за беспокойство, вы нас не за тех принимаете. У нашего завода таких денег нет.

Словом, не нашли понимания. Через два часа нас в гостинице разыскивают:

– Давайте завтра ещё встретимся.

Короче, заключили договор. С первичной стоимостью для нашей стороны (не поверите!) 7 миллионов. И даже не долларов, а рублей!

За эти 7 миллионов мы сделали Антэл-1. И через несколько месяцев уже не мы за этими секретными учёными-разработчиками-изготовителями ходили и их упрашивали, а они нам о себе напоминали. Потому что мы вернули им любимую работу!

Знаете ведь, чем история с Бураномзакончилась? Его приспособили в аттракцион для московского парка культуры и отдыха.

Так уральцы готовы были, мне кажется, работать с нами даже бесплатно (признаюсь, ВАЗне по всем счетам ещё с ними расплатился).

Почему крупнейшие фирмы мира так активно занялись проблемами ТЭлишь сейчас?

Время поджимает. Потребление энергии, хотим мы или не хотим, экономим или нет, с каждым годом растёт. Основным её источником остаётся углеводородное, ископаемое сырьё, и оно, увы, не бесконечно.

А ТЭпозволяют в принципе снять многие проблемы, открыть поистине безграничный источник энергии.

Да, пока они очень дороги. Но вспомните, сколько средств вложено за минувшие сто с небольшим лет в двигатель внутреннего сгорания, как совершенствовался, удешевлялся углеводородный цикл.

В настоящее время стоимость 1 кВт мощности энергоустановки на топливных элементах достигает 3 тысяч долларов.

А для её экономической эффективности нужно опуститься на уровень 100 – 200 долларов.

Президент Буш поставил перед США цель: к 2020 году все автомобили должны быть переведены на новые двигатели. На эту задачу из бюджета выделяется около 3 миллиардов долларов, и ещё в 3-4 раза больше вкладывают частные инвесторы.

Мы показали Антэл-1на пятом Московском автосалоне в 2001 году.

По большому счёту, назвать это настоящим автомобилем было трудно. Это скорее ходовой макет, ХМ– есть у нас в автостроении такой специальный термин. По сути, смонтировали всё на машину, чтобы посмотреть: что – к чему – почём?

Окончательная сборка Антэл-1происходила не в Тольятти, а в подмосковном Королёве, в РКК Энергия. Мы привезли туда автомобиль 2131без силовой установки и стали его начинятьс помощью местных специалистов – ведь опыта работы с водородом у нас не было.

Не скрою, было страшновато. Баллоны с водородом, с кислородом, все трубки из особой нержавейки.

Одним из главных достижений было то, что основное водородное оборудование, снятое с Бурана(начиная с баллонов и кончая самой энергетической установкой), уместилось в багажнике длинной Нивы. У других фирм в начале это оборудование полсалона занимало.

Самый напряжённый момент – первый запуск. Сначала всех отогнали подальше. Произвели заправку и попытались поехать.

Первым место за рулём занял ведущий инженер проекта от ЭнергииВ. Никитин, следующим сел вазовец С. Ивлев.

И никаких сбоев! Ездили по внутреннему дворику примерно час, по очереди. Некоторые даже начали лихачить, так что пришлось этот спектакль прекратить.

На следующий день переехали на главную площадь ракетно-космического комплекса, там, где установлена их первая ракета, поднявшаяся в космос.

Явилось всё высшее начальство, во главе с генеральным директором ЭнергииЮ. Семёновым. Приехал В. Каданников. Пригласили космонавтов, представителей Главкосмоса. И все они поочерёдно катались по площади вокруг этой исторической ракеты.

А ещё через несколько дней (почему мы и торопились) машину отправили на Московский автосалон, где она сразу стала одной из изюминок. Это был 2001 год.

Шуму, интереса, расспросов было много. Специалисты, понимающие суть, спрашивали: «А где же вся установка? Салон же свободный!». – «Всё в багажнике!».

Японцы, те допытывались: «Это вы всё сами сделали?».

Вопрос мне тоже был понятен: японцы до самого последнего времени закупали водородные генераторы в Канаде, на фирме Ballard Power Systems, по миллиону, кстати, долларов за штучку. А уж дальше обвязку-привязку делали сами.


2001 год. Первый образец переднеприводного автомобиля 2131ТЭ Антэл-1н а топливных элементах. Электрохимический генератор (ЭХГ) размещён в багажном отсеке, плотно закрытом шторками от любопытных глаз. Силовая установка (электродвигатель с редуктором и главной передачей) размещены в моторном отсеке, пятиместный салон – свободный.


Принципиальная схема устройства Антэл-1.


Рентгеновский снимокавтомобиля Антэл-1.



Г. Мирзоев и ведущий конструктор проекта С. Ивлев (на нижнем снимке справа) демонстрируют электрохимический генератор Антэла-1генеральному директору ВАЗа А. Николаеву (вверху) и губернатору области К. Титову (2001 г.).



Образец 2111ТЭ Антэл-2, где вместо кислорода используется воздух. Всё оборудование удалось разместить под полом и в моторном отсеке. В результате, кроме свободного салона, имеется нормальное багажное отделение.


Принципиальная схема устройства Антэл-2.


Рентгеновский снимокавтомобиля Антэл-2.


Внешне Антел-2ничем, кроме надписей, не отличается от обычного 2111.


Зато под капотом – совершенно другая начинка.



Багажный отсек тоже вроде бы ничем не отличается (вверху). И только при снятой крышке лючка видны расположенные под полом водородные баллоны.


В целом размещение элементов оборудования на Антэл-2получилось гораздо компактнее, чем на Антэл-1.


Г. Мирзоев объясняет министру промышленности В. Христенко принцип действия электрохимического генератора. Сзади – К. Титов, В. Вильчик и Н. Головко.

После расспросов начиналась оценка, разбор по элементам, по характеристикам. И все удивлялись, что на первом образце мы достигли неплохих показателей.

После закрытия Московского автосалона я пригласил всех журналистов в Дмитров, на автополигон. Приехали многие – поближе познакомиться, что это за чудо-юдо. И всех желающих катали на Антэле.

На Московский автосалон 2003 года мы представили уже Антэл–2, который был значительно усовершенствован по сравнению со своим предшественником. Он был выполнен на базе универсала 2111.

Энергоустановка Антэл-1работала на водороде и кислороде, имела мощность 17 кВт и вырабатывала ток напряжением 120 V.

У Антэл-1ёмкость баллонов для водорода и кислорода составляла соответственно 90 и 36 л, давление газов – 250 атм.

Но с самого начала было понятно, что возить в непосредственной близости баллоны с водородом и кислородом опасно, к тому же они занимают много места и требуют заправки.

Задача перевести работу ЭХГс кислорода на воздух ни у кого не вызывала сомнений. Антэл-2был укомплектован первым отечественным щелочным водородно-воздушным генератором на топливных элементах напряжением 240 V и мощностью 25 кВт.

На Антэл-2вместо кислородного баллона был использован компрессор. Давление газа в баллонах Антэл-1составляло 250 атм; теперь же водород находится в баллоне под давлением 400 атм.

Зато пробег автомобиля на одной заправке увеличился с 200 до 350 км. Максимальная скорость также возросла с 80 до 100 км/ч.

Энергоустановка, система управления, тяговый двигатель – всё разместилось под капотом. По сравнению с базовой моделью 2111масса автомобиля увеличилась на 250 кг.

Появилось и ещё одно новшество. Раньше на то, чтобы закачать водородом 90-литровый баллон Антэл-1, уходило 2 часа. Но если не закачивать газ в баллон, а дать ему перетечь туда под определённым давлением, на всю процедуру уйдёт 5 – 10 минут. Именно такая технология и была внедрена на Антэл-2.

Работа с Антэл-1показала, что на достаточно быстрый разгон автомобилю не хватает мощности. Чтобы исключить эту проблему, решили в Антэл-2использовать буферную аккумуляторную батарею.

Была разработана никель-металлогидридная аккумуляторная батарея с высокой удельной энергоёмкостью (10 А/ч) и напряжением 240 V.

Она позволила кратковременно увеличивать мощность при разгонах почти в два раза и использовать энергию, принятую при торможении – эффект рекуперации.

Тормозная система тоже претерпела изменения. На Антэл-2установлен компактный электроусилитель тормозов, благодаря чему управлять автомобилем стало гораздо легче.

Антэл-2проезжает без подзарядки 350 км.

На его борту предусмотрена система хранения и подачи водорода, оснащённая тремя сверхлёгкими и прочными баллонами по 30 л. Водород в них находится под давлением 400 атм.

В Антэл-1очень много времени уходило на запуск установки. Чтобы автомобиль тронулся с места, нужно было ждать около полутора часов, пока генератор разогреется до 60 градусов (на полную мощность он выходит при 95 градусах).

Время запуска второй модели удалось сократить до 10-15 минут благодаря специальным нагревателям, установленным непосредственно в генераторе.

Ещё для Антэл-2был разработан новый тяговый электродвигатель переменного тока максимальной мощностью 60 кВт, напряжением до 300 V, с КПДболее 90% и массой 30 кг (электродвигатель Антэл-1имел показатели соответственно: 25 кВт, 120 V, 75% и 68 кг).

Остаётся отметить, что Антэл-2представляет собой 5-местный универсалс полноразмерным багажником (базовой моделью послужила Лада 111), а все узлы и системы энергоустановки разместились под полом и в подкапотном пространстве.

Единственно, что не изменилось, – на Антэл-2продолжает работать батарея топливных элементов с космического Бурана.

Мы, правда, уже переделали её до предела возможностей: повысили напряжение с 200 до 240 V, перевели её с кислорода на воздух, увеличив при этом мощность до 25 кВт и т.д. – то есть она по конфигурации осталась та же, но начинка там абсолютно новая.

Уральский электрохимкомбинат теперь в числе наших активных друзей-помощников, мы для них тоже новые перспективы открываем.

Были у нас задумки по Антэл-3и Антэл-4, где водород для топливных элементов получается либо из природного газа, либо из бензина прямо на борту автомобиля. Главное достоинство: автономность от систем дозаправки водородом.

К сожалению, осуществить эту заманчивую идею пока не удаётся.

Создание экологически чистых автомобилей является во всём мире государственной политикой и субсидируется в той или иной степени. Глядишь, и Россия до этого дойдёт.

Мы вплотную подходим к чистомуавтомобилю: никаких вредных выбросов – ни углекислого газа, ни тепловых загрязнений, не говоря уже о букете ядовитых углеводородов.

Конечно, вся работа в этом направлении ещё впереди. Автомобилей с двигателями внутреннего сгорания в мире ежегодно выпускается порядка 50 миллионов штук.

И в один день изменить это нельзя: необходимо создать мощности, перейти на выпуск автомобилей на топливных элементах, образовать всю инфраструктуру обслуживания.

Процесс будет длительным и постепенным. Но в любом случае никуда не уйдёшь от требований экологии, от всё более ужесточающегося дефицита углеводородного сырья.


    Ваша оценка произведения:

Популярные книги за неделю