355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Даглас Хофштадтер » ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда » Текст книги (страница 8)
ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда
  • Текст добавлен: 6 октября 2016, 04:15

Текст книги "ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда"


Автор книги: Даглас Хофштадтер


Жанры:

   

Философия

,

сообщить о нарушении

Текущая страница: 8 (всего у книги 64 страниц)

Математика и манипуляция символами

Вместо того, чтобы иметь дело с такой огромной картиной, возьмем в качестве нашей «действительности» математику. Тут мы сталкиваемся с серьезным вопросом: можем ли мы быть уверены в точности нашей формальной системы, моделирующей какую-либо область математики, в особенности, если мы еще не изучили данную часть математики вдоль и поперек? Предположим, что цель формальных систем – дать нам новые знания по данной дисциплине. Каким образом мы узнаем, что интерпретация каждой теоремы истинна? Для этого пришлось бы доказать, что между формальной системой и данной частью математики существует полный изоморфизм. С другой стороны, подобное доказательство возможно только в том случае, если нам с самого начала уже известны все истинные утверждения данной дисциплины!

Представьте себе, что в каких-то раскопках мы обнаружили некую таинственную формальную систему. Вероятно, мы опробовали бы несколько интерпретаций, пока не наткнулись бы на такую, в которой каждая теорема была бы истинной и каждая не-теорема – ложной. Однако мы можем проверить это лишь на ограниченном количестве случаев, в то время как теорем, скорее всего, бесконечное множество. Можно ли утверждать, что все теоремы выражают истину в данной интерпретации, если нам еще не известно все и о формальной системе, и об области ее интерпретации?

В таком же положении мы оказываемся, когда пытаемся при помощи типографских символов формальной системы описать фрагмент действительности, представленный натуральными числами (то-есть, неотрицательными целыми числами: 0, 1, 2,…), . Попробуем понять отношение между тем, что мы называем «истиной» в теории чисел, и тем, к чему мы можем придти путем манипуляции символами.

Для начала посмотрим, какие основания у нас существуют для того, чтобы называть одни утверждения теории чисел истинными, а другие – ложными? Сколько будет 12 умножить на 12? Любой знает, что 144. Однако многие ли из тех, кто уверенно дает этот ответ, когда-либо рисовали прямоугольник размером 12 x 12 и подсчитывали составляющие его квадратики? Большинство людей считают, что эта процедура совсем не нужна. Вместо нее в доказательство своей правоты они предлагают несколько значков на бумаге, вроде тех, что показаны ниже:

Это и будет «доказательством». Почти все верят, что если посчитать квадратики, получится 144; мало кто когда-либо усомнился в этом результате. Конфликт между двумя точками зрения становится еще заметнее, когда мы рассматриваем такую проблему, как нахождение произведения 987654321 × 123456789. Прежде всего, практически невозможно построить прямоугольник нужного размера; но хуже всего то, что, даже если бы нам и удалось таковой построить и армии людей потратили бы столетия на подсчет квадратиков, все равно конечному результату поверил бы разве что особенно доверчивый человек. Слишком велика вероятность того, что кто-нибудь обязательно что-то напутал. Возможно ли, в таком случае, узнать ответ? Да, если вы доверяете символическому процессу манипуляции числами при помощи некоторых простых законов. Этот процесс объясняют детям как способ нахождения верного ответа; при этом мало кто из них видит, какой смысл скрывается за этим арифметическим трюком. Правила, маневрирующие цифрами при умножении, основаны на нескольких основных свойствах сложения и умножения, которые считаются верными для всех чисел.

Основные законы арифметики

Свойства, которые я имею в виду, можно пояснить на следующем примере. Представьте, что вы выкладываете несколько палочек:

/ // // // / /

и начинаете их считать. В то же время кто-то подсчитывает эти же палочки, начиная с другого конца. Читателю, вероятно, понятно, что результат получится одинаковый. Результат подсчета не зависит от того, как этот подсчет делается. Было бы бессмысленно пытаться доказать это предположение о свойствах сложения, настолько оно первично: либо вы его понимаете, либо нет – но в последнем случае вам не поможет никакое доказательство. Из этого предположения вытекают свойства коммутативности и ассоциативности сложения (первое заключается в том, что b + с = с + b во всех случаях; второе – в том, что b + (с + d) = (b + с) + d во всех случаях). То же предположение приводит нас к свойствам коммутативности и ассоциативности в умножении; достаточно представить множество кубиков, собранных вместе таким образом, что они составляют большое прямоугольное твердое тело. Коммутативность и ассоциативность умножения означают, что как бы вы ни поворачивали это тело, количество кубиков в нем не изменится. Эти предположения невозможно проверить во всех случаях, так как количество комбинаций бесконечно. Мы принимаем их как данное и верим в них (если мы вообще когда-нибудь о них задумываемся) так глубоко, как только можно во что-либо верить. Количество монет у нас в кармане не меняется оттого, что при ходьбе они перемещаются и бренчат; количество наших книг не изменится, если мы упакуем их в коробку, бросим коробку в багажник машины, отъедем на 100 километров, распакуем коробку и поставим книги на новую полку. Все это – часть того, что мы понимаем под словом число.

Встречаются люди, которые, столкнувшись с формулировкой какого-либо очевидного факта, находят удовольствие в том, что тут же пытаются доказать обратное. Я сам такой Фома Неверующий: записав свои примеры с палочками, деньгами и книгами, я сразу выдумал ситуации, в которых эти примеры перестают быть правильными. Вы, возможно, сделали то же самое. Все это я говорю к тому, чтобы показать, что числа как математическая абстракция весьма отличны от чисел, которые мы употребляем в повседневной жизни.

Все мы любим изобретать поговорки, которые, нарушая основные законы арифметики, иллюстрируют некие более глубокие «истины»: «1 да 1 равно 1» (любовники) или «1 плюс 1 плюс 1 равно 1» (святая Троица). Можно легко найти изъяны в подобных «формулах» – скажем, показав, что употребление знака «плюс» в них неверно. Так или иначе, подобных высказываний множество. По забрызганному дождем оконному стеклу сползают две капли; у самой рамы они сливаются в одну. Значит ли это, что 1 + 1 = 1? Из одного облака рождаются два; не доказательство ли это той же идеи? Отличить случаи, в которых мы можем говорить о сложении, от тех, где нам нужно какое-то другое понятие, не так-то просто. Размышляя об этом, мы, возможно, додумаемся до таких критериев, как разделение объектов в пространстве и их четкое отличие друг от друга. Но как подсчитать идеи? Или количество газов в атмосфере? Во многих источниках можно встретить высказывания типа: «В Индии 17 языков и 462 диалекта». В точных утверждениях такого рода есть нечто странное, так как сами понятия «язык» и «диалект» довольно расплывчаты.

Идеальные числа

В повседневном мире числа часто ведут себя плохо. Однако у людей имеется врожденное, пришедшее из древности чувство, что этого быть не должно. В абстрактном понятии числа, взятого вне связи с подсчетом бусинок, диалектов или облаков, есть нечто чистое и точное; должен существовать способ говорить о числах, не примешивая к ним глупую повседневность. Твердые правила, управляющие идеальными числами, являются основой арифметики, в то время как их следствия лежат в основе теории чисел. При переходе от чисел как объектов повседневной жизни к числам как объектам формальной системы возникает следующий важный вопрос: возможно ли заключить всю теорию чисел в рамки одной формальной системы? Действительно ли числа так чисты, ясны и регулярны, что их природа может быть полностью описана правилами какой-либо формальной системы? Картина «Освобождение», одно из самых прекрасных произведений Эшера, иллюстрирует этот удивительный контраст между формальным и неформальным и поразительную зону перехода между ними. Действительно ли числа свободны, как птицы? Страдают ли они, уловленные в тесную клетку формальной системы? Существует ли магическая зона перехода между числами, используемыми в повседневной жизни, и числами, написанными на бумаге?

Говоря о свойствах натуральных чисел, я имею в виду не только такие свойства, как, скажем, сумма определенной пары чисел. Ее легко можно подсчитать; никто из нас, выросших в двадцатом веке, не сомневается в возможности механизации таких процессов, как подсчет, сложение, умножение, и т. д. Я имею в виду такие свойства чисел, исследованием которых занимаются математики и для познания которых не достаточно, даже теоретически, никакого подсчета. Рассмотрим классический пример: утверждение «существует бесконечно много простых чисел». Прежде всего, не существует такого метода подсчета, который мог бы доказать или опровергнуть это утверждение. Лучшее, что мы можем сделать, – это затратить некоторое время на подсчет простых чисел и заключить, что их действительно имеется «целая куча». Однако никакой подсчет не скажет нам того, конечно или бесконечно количество простых чисел; любой подсчет всегда останется неполным. Это утверждение, называющееся «Теорема Эвклида» (обратите внимание на заглавную «Т»), совсем не очевидно. Однако со времен Эвклида все математики считают его истинным. В чем же дело?

Рис. 13. М. К. Эшер «Освобождение» (литография, 1955)

Доказательство Эвклида

Дело в том, что этот факт следует из неких рассуждений. Давайте проследим за этими рассуждениями. Рассмотрим вариант доказательства Эвклида, показывающий, что какое бы число мы ни взяли, всегда найдется большее простое число. Возьмем число N. Перемножим все положительные целые числа, начиная с 1 и кончая N; иными словами, найдем факториал N (он пишется «N!») Полученный результат делится на все числа, меньшие чем N. Если прибавить 1 к N!, то результат

не будет делиться на 2 (так как при делении на 2 получится 1 в остатке);

не будет делиться на 3 (так как при делении на 3 получится 1 в остатке);

не будет делиться на 4 (так как при делении на 4 получится 1 в остатке);

.

.

.

не будет делиться на N (так как при делении на N получится 1 в остатке);

Другими словами, если N!+1 и делимо на какое-то число, кроме самого себя и единицы, оно делимо только на числа, большие, чем N. Следовательно, либо N!+1 само простое число, либо его простые делители больше N. В любом случае, мы показали, что должно существовать простое число, большее N, и что, следовательно, количество простых чисел бесконечно.

Кстати, этот последний шаг называется обобщением; мы еще встретимся с этим понятием в более сложном контексте. Оно заключается в том, что, начав наши рассуждения с какого-либо числа N, мы указываем, что N может быть любым числом – следовательно, наше доказательство носит общий характер.

Эвклидово доказательство типично для так называемой «реальной математики». Оно просто, точно и изящно и иллюстрирует тот факт, что несколько коротких шагов могут увести нас весьма далеко от начального пункта. В нашем случае, таким начальным пунктом являлись основные идеи о свойствах умножения, деления, и так далее. Короткие шаги – это этапы рассуждения. Хотя каждый отдельный шаг кажется очевидным, конечный результат таковым не является. Нам никогда не удастся проверить, верно ли это утверждение Эвклида; однако мы верим в его истинность, поскольку мы верим в логические рассуждения. Если вы принимаете эти рассуждения, вам не остается выхода; раз вы согласились выслушать Эвклида, вам придется согласиться с его выводом. Этот отрадный факт означает, что математики всегда могут придти к согласию по поводу того, какие утверждения считать «истинными», а какие – «ложными».

Это доказательство – пример упорядоченного процесса мысли. Каждое утверждение соотносится с предыдущим неоспоримым образом; именно поэтому мы говорим скорее о «доказательстве», чем об «очевидном свидетельстве». Целью математики всегда являлось нахождение строгого доказательства какого-либо неочевидного утверждения. Сам факт строгого соотношения шагов доказательства указывает на то, что должна существовать определенная схема, связывающая эти утверждения в одно логическое целое. Об этой схеме лучше всего рассуждать при помощи специального нового лексикона, состоящего из символов, годных только для описания утверждений о числах. Таким образом, мы сможем рассмотреть версию доказательства в «переводе». Это будет набор утверждений, строго соотносящихся между собой; причем эти отношения всегда можно описать. Утверждения, поскольку они записаны компактными, стилизованными символами, выглядят как определенные структуры. Другими словами, при прочтении вслух мы видим, что эти утверждения говорят о числах и их свойствах; записанные же на бумаге, они выглядят как абстрактные структуры. Таким образом, последовательно, строка за строкой прочитанная схема доказательства начинает казаться постепенной трансформацией структур по определенным типографским правилам.

Минуя бесконечность

Хотя Эвклид доказывает, что каждое число обладает определенным свойством, он, тем не менее, не рассматривает в отдельности каждый из бесконечно многих случаев. Для этого он использует выражения типа «каким бы числом N ни было», или «неважно, какое N мы возьмем». Мы могли бы перефразировать доказательство, используя фразу «все N». Умело обращаясь с подобными выражениями, мы всегда можем избежать возни с бесконечным количеством утверждений. Вместо этого мы будем иметь дело лишь с двумя-тремя понятиями, например, такими, как слово «все». Сами по себе конечные, они воплощают в себе бесконечность и поэтому позволяют нам обойти такое препятствие, как необходимость доказывать бесконечное количество фактов.

Мы используем слово «все» по-разному, что определено нашим мыслительным процессом: существуют правила, которым подчиняется наш выбор. Возможно, что мы не сознаем этого и утверждаем, что руководствуемся значением слова; однако это лишь иносказание, выражающее все ту же идею; наше мышление подчиняется определенным негласным законам. Всю жизнь мы используем слова как часть определенных структур; но, вместо того, чтобы называть эти структуры «правилами», мы приписываем их возникновение и развитие «значениям» слов. Это открытие было решающим шагом на пути формализации теории чисел.

Рассмотрев доказательство Эвклида более внимательно, мы увидели бы, что оно складывается из многих крохотных, почти бесконечно малых шагов. Если бы мы записали их одно за другим, доказательство показалось бы невероятно сложным. Оно кажется нам легче, когда несколько шагов складываются на манер телескопа и составляют одно-единственное предложение. Если бы мы рассмотрели это доказательство, как в замедленной съемке, перед нами предстали бы отдельные «секции». Другими словами, деление может идти лишь до определенного предела, за которым мы сталкиваемся с «атомной» природой мыслительных процессов. Доказательство может быть разбито на серию крохотных, но отдельных этапов; рассмотренные «издалека», они сливаются в непрерывный поток. В главе VIII я приведу пример такой «атомизации» доказательства, и вы увидите, какое множество шагов в нем участвует. Возможно, что это вас не удивит. В мозгу у Эвклида, когда он изобретал свое доказательство, работали миллионы нейронов, многие из которых давали сотни импульсов в секунду. Чтобы произнести одно-единственное предложение, в мозгу задействованы сотни тысяч нейронов. Если мысли Эвклида были настолько сложны, логично ожидать, что его доказательство также состоит из огромного количества шагов! (Хотя, скорее всего, прямой связи между нейронной активностью мозга и доказательством в нашей формальной системе не существует, они, тем не менее, сравнимы по своей сложности – словно природа желает сохранить сложность доказательства бесконечного множества простых чисел, несмотря на то, что это доказательство представлено в таких различных системах.)

В последующих главах мы разработаем такую формальную систему, которая (1) включает стилизованный лексикон, способный выразить все высказывания о натуральных числах и (2) имеет правила, соответствующие всем необходимым типам рассуждений. При этом возникает вопрос, сравнима ли мощность подобных формальных правил (по крайней мере, в сфере теории чисел) с мощностью тех правил, которыми мы регулярно пользуемся в наших мыслительных процессах. Иными словами, существует ли теоретическая возможность, используя формальную систему, достичь уровня наших мыслительных способностей?

Соната для Ахилла соло

Звонит телефон – Ахилл берет трубку.

Ахилл: Алло, Ахилл слушает.

Ахилл: А, здравствуйте, г-жа Черепаха. Как дела?

Ахилл: Кривошея и чихиллит? Что такое чихи… – а, теперь понимаю. Будьте здоровы!… Что и говорить, неприятная комбинация. Как это вы ухитрились такое подцепить?

Ахилл: И долго вы ее так продержали?

Ахилл: Еще на самом сквозняке – не удивительно, что вам в шею надуло!

Ахилл: Что же вас заставило так долго там проторчать?

Ахилл: Многие из них удивительные? Какие, например?

Ахилл: Фантасмагорические чудища? Что вы имеете в виду?

Ахилл: И вам не страшно было в такой компании?

Ахилл: Гитара? Вот странно – откуда взялась гитара среди этих диковинных созданий. Кстати, вы играете на гитаре?

Ахилл: Ах, для меня это одно и то же.

Ахилл: Вы правы удивительно, как это я сам до сих пор не заметил, в чем разница между гитарой и скрипкой. Кстати о скрипках: не хотите ли вы  заглянуть ко мне и послушать сонату для скрипки соло вашего любимого композитора, И. С. Баха? Я только что купил отличную запись. Поразительно, как это Баху удалось, используя одну-единственную скрипку, создать такую интересную вещь.

Ахилл: Головная боль тоже? Бедняжка… Пожалуй, вам лучше лечь в постель и постараться заснуть.

Ахилл: Понятно. Овец считать уже пробовали? Где-то у меня была целая картотека подобных трюков – говорят, они здорово помогают от бессоницы.

Ахилл: Ах, да. Я отлично понимаю, что вы имеете в виду – я это тоже пробовал. Может быть, если уж эта задачка так застряла у вас в голове, вы поделитесь ею со мной, чтоб и я мог попробовать свои силы?

Ахилл: Слово, внутри которого встречаются подряд буквы «Р», «Т», «О», «Т», «Е»… Г-м-м… Как насчет «ретотра»?

Ахилл: Ах, какой стыд… Конечно вы правы – я опять все перепутал. К тому же в слове «реторта» эти буквы все равно идут задом наперед.

Ахилл: Уже несколько часов? Хорошенькую вы мне задали задачку… Где вы откопали такую дьявольскую головоломку?

Ахилл: Вы имеете в виду, что он только делал вид, что размышляет над эзотерическими буддистскими проблемами, когда на самом деле он пытался придумать сложные словесные головоломки?

Ахилл: Ага! Улитка знала, чем он занимается. Как же вам удалось с ней переговорить?

Ахилл: Вы знаете, я как-то слышал похожую головоломку. Хотите, я вам ее задам? Или это еще хуже вас отвлечет?

Ахилл: Согласен – хуже уже вряд ли будет. Так вот: какое слово начинается с «КА» и кончается на «КА»?

Ахилл: Очень остроумно – но это нечестно. Я совершенно не это имел в виду!

Ахилл: Согласен, это слово выполняет условие; но все равно это какое-то дегенеративное решение.

Ахилл: Абсолютно верно! Как вам удалось так быстро найти ответ?

Ахилл: Это – еще один пример того, какой полезной может оказаться картотека трюков от бессоницы. Прекрасно! Но я все еще блуждаю в потемках с вашей задачкой о «PTOTE».

Ахилл: Поздравляю – теперь вам, может быть, удастся заснуть. Скажите же мне решение!

Ахилл: Вообще-то я не люблю подсказок, но на этот раз ладно, валяйте.

Ахилл: Не понимаю. Что вы имеете в виду под «рисунком» и «фоном»?

Ахилл: Разумеется, я знаком с «Мозаикой II». Я знаю ВСЕ работы Эшера. В конце концов, это мой любимый художник! Кстати, репродукция «Мозаики II» висит прямо у меня перед носом.

Ахилл: Всех черных зверей? Конечно, вижу!

Ахилл: Верно: их «негативное пространство» – то, что остается свободным – определяет белых зверей.

Ахилл: А, так вот что вы называете «рисунком» и «фоном»! Но какое отношение это имеет к головоломке о «Р-Т-О-Т-Е»?

Ахилл: Это для меня слишком сложно… Теперь и у меня начинает болеть голова; пойду, пожалуй, поищу мою спасительную картотеку, может быть она мне поможет забыться сном.

Ахилл: Вы хотите зайти сейчас? Но я думал…

Ахилл: Ну что ж, хорошо. А я пока постараюсь решить эту задачку с помощью вашей подсказки о рисунке и фоне и моей головоломки.

Ахилл: С удовольствием сыграю их для вас.

Ахилл: Вы изобрели о них теорию?

Ахилл: В сопровождении какого инструмента?

Ахилл: В таком случае, как странно, что он не записал также и партию клавесина, и не опубликовал их в таком виде.

Ахилл: А, понимаю – нам предоставляется выбор: слушать ее с аккомпанементом или без оного. Но откуда мы знаем, как он должен звучать?

Ахилл: Да, вы правы – наверное, лучше всего оставить эту работу воображению слушателя. Согласен – может быть, у Баха в мыслях вообще не было никакого аккомпанемента. Действительно, эти сонаты и так звучат замечательно.

Ахилл: Точно. Ну, до скорого.

Ахилл: Пока, г-жа Ч.


Рис. 14. М К. Эшер. «Мозаика II» (литография, 1957).


    Ваша оценка произведения:

Популярные книги за неделю