Текст книги "ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда"
Автор книги: Даглас Хофштадтер
Жанры:
Философия
,сообщить о нарушении
Текущая страница: 50 (всего у книги 64 страниц)
ГЛАВА XVIII: Искусственный интеллект: взгляд в прошлое
Тюринг
В 1950 ГОДУ АЛАН ТЮРИНГ написал дерзкую и пророческую статью об искусственном интеллекте. Она называлась «Вычислительные машины и интеллект» и была опубликована в журнале «Mind».[60]60
Alan M. Turing «Computing Machinery and Intelligence», Mind, т LIX, номер 236 A950) Перепечатано в сборнике A. R. Anderson ed , «Minds and Machines».
[Закрыть] Прежде чем говорить об этой статье, я хочу рассказать кое-что о самом Тюринге.
Рис. 113. Алан Матисон Тюринг.
Алан Матисон Тюринг родился в Лондоне в 1912 году. Он рос любопытным и веселым ребенком. У него оказались незаурядные способности к математике, и позже Алан поступил в Кембриджский университет, где его интересы в области техники и математической логики скрестились. Результатом этого плодотворного скрещивания была его знаменитая статья о «вычислимых числах» в которой он изобрел теорию машин Тюринга и показал неразрешимость проблемы остановки. Эта статья была опубликована в 1937 году. В 1940-х годах интересы Тюринга перешли от теории вычислительных машин к созданию настоящих компьютеров. Он был одним из пионеров компьютерной техники в Англии и стал ярым защитником искусственного интеллекта, когда тот впервые подвергся нападкам. Среди его единомышленников и ближайших друзей был Дэвид Чемперноун (который позже стал работать над созданием музыкальных композиций при помощи компьютеров). Друзья были страстными шахматистами и придумали новый вариант этой игры, под названием «шахматы вокруг дома»: сделав ход, игрок должен обежать вокруг дома; если он вернется обратно до того, как его противник сделает ответный ход, он получает право пойти еще раз. В более серьезном плане, Тюринг и Чемперноун изобрели первую шахматную программу под названием «Тюрочем». Тюринг умер молодым, в возрасте 41 года – по-видимому, из-за несчастного случая с химикатами (есть мнение, что он покончил самоубийством). Его мать, Сара Тюринг, написала его биографию. Из приводимых ею отзывов о Тюринге складывается впечатление, что он был личностью весьма нестандартной и не умел вести себя в обществе; при этом он был честен, порядочен и легко уязвим. Он любил игры, шахматы, детей; катался на велосипеде и был хорошим бегуном на дальние дистанции. Во время учебы в Кембридже он купил себе подержанную скрипку и научился на ней играть. Хотя Алан не был особенно музыкален, он получал от игры большое удовольствие. Он был несколько эксцентричен и часто страстно увлекался самыми неожиданными вещами. Одним из его интересов являлся морфогенез в биологии. Согласно его матери, Тюринг «очень любил „Записки Пиквикского клуба“», но «поэзия, за исключением Шекспира, оставляла его совершенно равнодушным». Алан Тюринг был одним из основоположников компьютерного дела.
Тест Тюринга
Статья Тюринга начинается с фразы: «Рассмотрим вопрос: „Может ли машина думать?“» Поскольку, как он указывает, эти термины слишком многозначны, очевидно, что мы должны искать практическое решение проблемы. Для этого Тюринг предлагает игру, которую он называет «игрой в имитацию»; сегодня она известна под названием «тест Тюринга». Тюринг объясняет ее так:
Играют три человека: мужчина (А), женщина (Б) и ведущий (В), который может быть любого пола. Ведущий закрывается в отдельной комнате. Он должен, задавая вопросы, определить по ответам, кто из двух игроков – мужчина и кто – женщина. Он знает игроков только под именами X и Y; в конце игры он должен сказать либо «X – это A, a Y – это Б», либо «X – это Б, a Y – это А». Ведущий может задавать любые вопросы, например: В: X, скажите мне, пожалуйста, какой длины ваши волосы? Предположим, что под псевдонимом X скрывается А; тогда А должен отвечать. Его цель – стараться сбить ведущего с толку, чтобы тот дал неправильное определение. Поэтому он может ответить, например, так: «Мои волосы пострижены ступеньками, и самые длинные прядки – около 25 сантиметров.» Чтобы голос не выдал отвечающих, их ответы должны быть написаны или, еще лучше, напечатаны. Идеальным было бы установить сообщение между комнатами при помощи телепринтера. Вместо этого для передачи вопросов и ответов можно также использовать посредника. Цель игрока Б – помогать ведущему; лучшей стратегией для этого, возможно, являются правдивые ответы. Она может добавлять замечания вроде: «Женщина – это я; не слушайте его!» – но они мало чем помогут, поскольку мужчина может сказать тоже самое. Теперь мы спросим: «А что, если вместо А в этой игре будет участвовать машина?» Будет ли ведущий ошибаться так же часто, как и в игре, где участниками были мужчина и женщина? Эти вопросы заменяют наш первоначальный вопрос: «Могут ли машины думать?»[61]61
Turing в сб. Anderson, стр. 5.
[Закрыть]
Разъяснив, в чем состоит его тест, Тюринг приводит по его поводу несколько замечаний, для того времени весьма тонких. Сначала он дает пример короткого диалога между спрашивающим и отвечающим:[62]62
Там же, стр. 6.
[Закрыть]
С: Напишите мне, пожалуйста, сонет, на тему «мост в Форте» (через залив Ферт-оф-Форт в Шотландии).
О: В этом на меня не рассчитывайте я никогда не был силен в поэзии.
С: Сложите 34 957 и 70 764.
О (После примерно полминутной паузы): 105 621.
С: Вы играете в шахматы?
О: Да.
С: Мой король стоит на e1, других фигур у меня нет. Ваш король – на еЗ и ладья – на а8. Как вы пойдете?
О: (Помедлив 15 секунд) Поставлю вам мат в один ход Ла1Х.
Мало кто из читателей замечает, что в арифметической задаче не только время раздумья слишком длинно, но и сам ответ ошибочен! Это было бы легко объяснить, если бы отвечающий был человеком – человеку свойственно ошибаться. Если же отвечала машина, то этому возможны разные объяснения, например:
(1) ошибка на уровне аппаратуры во время прогона программы (случайная и невоспроизводимая осечка),
(2) непреднамеренная ошибка на уровне аппаратуры или программы, результатом которой являются воспроизводимые арифметические ошибки,
(3) уловка, специально введенная в программу машины ее создателем для того, чтобы машина иногда ошибалась и, таким образом, могла бы одурачить спрашивающего,
(4) неожиданный эпифеномен – программа испытывает трудности с абстрактным мышлением и просто ошиблась, в следующий раз она, возможно, посчитает то же самое правильно,
(5) шутка самой машины, которая таким образом старается сбить спрашивающего с толку.
Размышления о том, что мог здесь иметь в виду сам Тюринг, затрагивают почти все основные философские проблемы искусственного интеллекта. Тюринг продолжает, указывая, что:
Эта новая проблема имеет то преимущество, что она проводит довольно четкую границу между физическими и интеллектуальными способностями человека. Мы не хотим наказывать ни машину за то, что она не способна отличиться на конкурсе красоты, ни человека за то, что он не способен соревноваться в скорости с аэропланом.[63]63
Там же, стр. 6.
[Закрыть]
Интересно заметить, как глубоко Тюринг развивает каждую мысль, при этом на определенном этапе его рассуждений обычно появляется кажущееся противоречие, которое он впоследствии разрешает на более глубоком уровне анализа, уточняя свои понятия. Именно из-за этого проникновения в суть вопросов его статья все еще актуальна, даже по прошествии тридцати лет громадного прогресса в области компьютерной техники и искусственного интеллекта. На примере следующего отрывка читатель может увидеть, насколько глубок и разносторонен анализ Тюринга:
Эту игру возможно раскритиковать на том основании, что она несправедлива по отношению к машине, которой здесь дается очень мало возможностей. Если бы человеку пришлось притворяться машиной, ясно, что он не смог бы выполнить эту задачу удовлетворительно. Его тут же выдала бы медлительность и ошибки в арифметических подсчетах. Могут ли машины делать нечто, что может быть названо мышлением, но что, тем не менее весьма отличается от того, что делает человек? Это очень веское возражение, но, по крайней мере, мы можем сказать, что если бы удалось создать машину, удовлетворительно играющую в эту имитационную игру, то нам не пришлось бы волноваться по этому поводу.
Можно сказать, что лучшей стратегией машины в «имитационной игре» было бы нечто иное, чем подражание человеческому поведению. Возможно; но это кажется мне маловероятным. Так или иначе, я не собираюсь здесь анализировать теорию этой игры; я предполагаю, что лучшая стратегия – это давать ответы, которые обычно дал бы человек.[64]64
Там же стр. 6.
[Закрыть]
Предложив и описав свой тест, Тюринг замечает:
Я считаю, что первоначальный вопрос – могут ли машины думать – бессмысленный и не заслуживает обсуждения. Тем не менее я верю, что к концу столетия использование слов и общий настрой умов настолько изменятся, что станет возможно говорить о мышлении машин, не ожидая немедленных возражений.[65]65
Там же, стр. 13-14.
[Закрыть]
Тюринг предвидит возражения
Предвидя, что его статья вызовет бурю протестов, Тюринг начинает один за другим точно и иронично парировать возможные возражения на идею о том, что машина способна мыслить. Ниже я привожу девять типов возражений в собственной формулировке Тюринга, на которые он затем отвечает.[66]66
Там же, стр. 14-24.
[Закрыть] К сожалению, у нас нет возможности воспроизвести здесь остроумные и изобретательные ответы Тюринга. Читатель может позабавиться, обдумав эти возражения и попытавшись дать на них свои собственные ответы.
(1) Теологическое возражение. Мышление – функция бессмертной души человека. Бог вложил бессмертную душу во всех мужчин и женщин, но не в других животных и не в машины. Следовательно, животные и машины не способны мыслить.
(2) Возражение «Голова в песке». Последствия машинного мышления были бы слишком ужасны. Давайте же надеяться и считать, что машины на это не способны.
(3) Математическое возражение. (Это, в основном, аргумент Лукаса).
(4) Возражение с точки зрения сознания. До тех пор, пока машина не напишет сонета или концерта, основываясь на эмоциях, а не на случайном расположении символов, мы не согласимся с тем, что она может равняться мозгу. При этом машина должна не только быть способной написать эти произведения, но и осознать тот факт, что она их написала. «Ни одна машина не может на самом деле чувствовать (а не только искусственно указывать на соответствующее чувство, чего легко добиться) радости от ее успехов, печали, когда ее электронные лампы перегорают; она не может испытывать удовольствия от лести, расстраиваться из-за своих ошибок, чувствовать сексуальное влечение, сердиться или впадать в депрессию, когда не может получить желаемого.» (Цитата из работы некоего профессора Джефферсона.)
Тюринг озабочен тем, чтобы ответить на эти серьезные возражения возможно подробнее. Поэтому он уделяет этому довольно много места; частью его ответа является следующий гипотетический диалог:[67]67
Там же, стр. 17.
[Закрыть]
Спрашивающий: В первой строке вашего сонета «Сравню ли с летним днем твои черты», не лучше ли было бы написать «с весенним днем»?
Собеседник: Это не укладывается в размер.
Спрашивающий: Тогда как насчет «зимнего дня»? С размером здесь все в порядке.
Собеседник: Да, но кому нравится, чтобы его сравнивали с зимним днем!
Спрашивающий: Скажите, м-р Пиквик не напоминает вам о рождестве?
Собеседник: В каком-то смысле.
Спрашивающий: А ведь рождество – это зимний день; однако я не думаю, что м-р Пиквик обиделся бы на такое сравнение.
Собеседник: Не может быть, чтобы вы говорили серьезно. Под зимним днем обычно подразумевается типичный зимний день, а не какой-то особый день вроде рождества.
После этого диалога Тюринг спрашивает: «Что сказал бы профессор Джефферсон, если бы машина, пишущая сонеты, была бы способна отвечать ему таким образом in viva voce?»
Другие возражения:
(5) Аргументы различных неспособностей. Эти аргументы имеют следующую форму: «Предположим, что вы можете заставить машины проделывать все то, о чем вы говорите – но ни одна машина никогда не сможет сделать X». В этой связи предлагались самые разные X, как например: быть доброй, изобретательной, красивой, дружелюбной, инициативной, иметь чувство юмора, отличать хорошее от плохого, делать ошибки, влюбляться, получать удовольствие от клубники со сливками, влюбить в себя кого-нибудь, учиться на опыте, правильно использовать слова, заниматься самоанализом, вести себя так же разнообразно, как люди, сделать нечто действительно новое.
(6) Возражение леди Лавлэйс. Полнее всего об аналитической машине Баббиджа мы знаем из мемуаров леди Лавлэйс. Она пишет: «Аналитическая машина не претендует на создание чего-либо нового. Она может делать только то, что мы умеем ей приказать.».
(7) Аргумент непрерывности нервной системы. Нервная система, безусловно, не является машиной, работающей с перерывами. Небольшая ошибка в информации о размере нервного импульса, воздействующего на нейрон, может означать огромную разницу в размере выходящего импульса. Можно сказать, что такое положение вещей делает невозможным имитацию поведения нервной системы при помощи дискретной системы.
(8) Аргумент неформального поведения. «Если бы каждый человек руководствовался в своей жизни набором неких установленных правил, он был бы не лучше машины. Но поскольку таких правил не существует, люди не могут быть машинами.»
(9) Аргумент экстрасенсорного восприятия. Давайте представим себе имитационную игру, в которой участвуют человек, обладающий телепатическими способностями, и компьютер. Ведущий может задавать такие вопросы как «Какой масти карта в моей правой руке?». Человек, используя телепатию или ясновидение, дает 130 верных ответов из 400. Машина может только гадать и, скорее всего, даст около 104 правильных ответов, так что ведущий сможет без труда определить, кто есть кто.
Как видите, многие возражения связаны друг с другом и частично совпадают. В этой книге я попытался так или иначе ответить на каждое из них, хотя и менее четко, чем это сделал Тюринг. Возражение (9) кажется мне удивительным. Я видел эту статью Тюринга, перепечатанную в книге – но там возражение (9) опущено, что мне кажется не менее удивительным. Лично я, в отличие от Тюринга, считаю, что экстрасенсорных способностей (ЭСС) не существует. Тюрингу пришлось согласиться с идеей ЭСС, поскольку его выдающаяся научная честность заставила его принять последствия того, что казалось ему мощной статистической очевидностью в пользу этой идеи. Я с этим не согласен, но, тем не менее, считаю это необыкновенно интересным и сложным вопросом.
«Парри встречается с Доктором»
В предыдущем Диалоге вы прочли запись подлинной беседы между компьютерной программой и человеком. Существует множество программ с меньшей, чем у ШРДЛУ, способностью к «беседе». Две довольно известные программы такого рода – это «Доктор» (создание Иосифа Вайценбаума) и «Парри» (детище Кеннета Колби). Первая была призвана имитировать психиатра, используя «недирективную» терапию, в то время как вторая должна была изображать типичного параноика. Однажды по компьютерной сети была устроена забавная встреча этих двух программ; ниже приводится отрывок из их «беседы»:[68]68
Vinton Cerf «Parry Encounters the Doctor» стр. 63.
[Закрыть]
Парри: Я не понимаю ваших мотивов.
Доктор: Почему вы не понимаете моих мотивов?
Парри: Не должен ли я быть таким?
Доктор: Почему вы сейчас это сказали?
Парри: Это именно так и есть.
Доктор: А вы представьте себе, что это именно не так.
Парри. Ну и что?
Доктор. Я не уверен, что вполне вас понимаю.
Парри: Вы слишком привязываетесь к одним тем же вопросам.
Доктор: О чем говорит вам это сходство?
Парри: Я вас не понимаю.
Доктор: Вы хотели бы понимать я?
Парри: Хорошо бы, чтобы вы начали проявлять интерес к моим чувствам.
Доктор: Что? Я начал проявлять интерес к вашим чувствам?
Разумеется, эти программы были созданы для разговоров с людьми; поэтому, разговаривая друг с другом, они показывают себя не с лучшей стороны. В основном они опираются на ловкие догадки в отношении вводных данных (анализируя их довольно поверхностно) и выдают готовые ответы, тщательно выбранные из обширного репертуара. Ответ может быть готовым только частично: например, может использоваться некая схема, в которой заполняются пробелы. При этом имеется в виду, что собеседник-человек будет придавать ответам гораздо больше смысла, чем в них есть на самом деле. В действительности, согласно тому, что Вайнценбаум утверждает в своей книге «Мощь компьютеров и человеческий разум» (Weizenbaum, «Computer Power and Human Reason»), именно так и происходит. Он пишет:
ЭЛИЗА (программа, на основе которой был разработан Доктор) создавала удивительную иллюзию проникновения в мысли многих людей, которые с ней разговаривали… Они часто просили позволения побеседовать с системой наедине, после чего говорили, несмотря на мои объяснения, что машина их по-настоящему поняла.[69]69
Joseph Weizenbaum «Computer Power and Human Reason», стр. 189.
[Закрыть]
После прочтения предыдущего «разговора» читатель может подумать, что это невероятно. Может быть – но это чистая правда! Вайценбаум объясняет:
Большинство людей совершенно ничего не понимают в компьютерах. Поэтому, если только они не способны на значительную долю скептицизма (того скептицизма с которым мы наблюдаем за действиями фокусника), они могут объяснить интеллектуальные достижения компьютера только путем единственной доступной им аналогии – то есть модели их собственного мышления. Таким образом не удивительно, что они преувеличивают почти невозможно вообразить человека, который мог бы имитировать ЭЛИЗУ, но для которого при этом ее языковые способности являлись бы пределом.[70]70
Там же, стр. 9-10.
[Закрыть]
Это равносильно признанию того, что подобные программы являются остроумной смесью бравады и блефа и их успех основан на людской доверчивости.
В свете странного «эффекта ЭЛИЗЫ» многие предлагали пересмотреть тест Тюринга, поскольку, по-видимому людей легко одурачить простенькими уловками. Было предложено, чтобы ведущим был лауреат Нобелевской премии. Возможно, было бы целесообразнее перевернуть тест с ног на голову и сделать так, чтобы вопросы задавал компьютер. Или может быть, вопросы должны задавать двое – человек и компьютер, а отвечать – кто-то один, и спрашивающие должны догадаться компьютер это или человек.
Говоря серьезно, я считаю, что тест Тюринга в его первоначальной форме вполне приемлем. Что касается людей которые, по словам Вайзенбаума были одурачены ЭЛИЗОЙ, то их никто не предупреждал быть более скептическими, стараясь угадать, является ли «персона» печатающая ответы, человеком. Мне кажется что Тюринг верно понимал ситуацию и его тест выживет в практически неизмененной форме.
Краткая история ИИ
На следующих страницах я хочу представить, возможно, с несколько неортодоксальной точки зрения историю усилий, направленных на открытие алгоритмов разума, в этой истории были и будут провалы и неудачи. Тем не менее, мы узнаем очень многое и переживаем захватывающий период в развитии ИИ.
Со времен Паскаля и Лейбница люди мечтали о машинах, способных выполнять интеллектуальные задания. В девятнадцатом веке Буль и Де Морган разработали «законы мысли», по существу являвшиеся Исчислением Высказываний и, таким образом, сделали первый шаг по пути создания программ ИИ, тогда же Чарльз Баббидж сконструировал первую «вычисляющую машину» – предшественницу компьютерной аппаратуры и, следовательно, ИИ. Можно сказать, что ИИ зарождается в тот момент, когда машины начинают выполнять задания ранее доступные только человеческому уму. Трудно вообразить чувства людей впервые увидевших, как зубчатые колеса складывают и перемножают многозначные числа. Возможно, они испытали благоговейный трепет, увидев реальное физическое воплощение течения «мысли». Так или иначе мы знаем, что почти сто лет спустя, когда были построены первые электронно-вычислительные машины, их создатели почувствовали почти мистическое благоговение в присутствии иного типа «мыслящего существа». До какой степени эти машины действительно мыслили, было неясно даже теперь, несколько десятилетий спустя этот вопрос продолжает широко обсуждаться.
Интересно то, что на сегодняшний день практически никто уже не испытывает никакого благоговения перед компьютерами, даже тогда, когда они выполняют неизмеримо более сложные операции чем те которые когда-то заставляли зрителей трепетать от восторга. Когда-то волнующая фраза «Блестящие Электронные Головы» теперь звучит устаревшим клише, смешным отголоском эпохи знаменитых героев фантастических повестей, Флаша Гордона и Бака Роджерса. Немного печально, что мы так быстро теряем способность удивляться.
По этому поводу существует «Теорема» о прогрессе в области ИИ: как только какая-нибудь функция мышления оказывается запрограммирована, люди тут же перестают считать ее ингредиентом «настоящего мышления». Неизбежный центр интеллекта всегда оказывается в том, что еще не запрограммировано. Я впервые услышал эту «Теорему» от Ларри Теслера, поэтому я называю ее Теоремой Теслера: «ИИ – это то, что еще не сделано.»
Ниже приводится выборочный обзор ИИ. Он показывает несколько областей, на которых было сконцентрировано внимание; каждая из них по-своему применяет квинтэссенцию интеллекта. Некоторые из этих областей подразделены в соответствии с используемыми методами или более специфическими сферами исследования.
машинный перевод
прямой (обращение к словарю плюс некоторая перестановка слов), косвенный (с помощью некоего внутреннего языка-посредника)
игры
шахматы
механический просчет всех вариантов, выборочный просчет вариантов, без просчета вариантов.
шашки, го, калах, бридж (ставки и игра), покер, варианты крестиков-ноликов и т. д.
доказательство теорем в разных областях математики
символическая логика, доказательство теорем путем «разложения», элементарная геометрия.
символическая манипуляция математическими выражениями
символическое интегрирование, алгебраическое упрощение, сложение бесконечных рядов.
зрение
печатные тексты
узнавание отдельных написанных от руки печатных символов определенного класса (например, чисел), прочтение одного и того же текста, напечатанного разными шрифтами, прочтение рукописных текстов, прочтение китайских или японских иероглифов, прочтение китайских или японских иероглифов, написанных от руки.
картины
нахождение определенных объектов на фотографиях, разложение сцен на отдельные объекты, определение отдельных объектов на картине, узнавание сделанных людьми набросков предметов, узнавание человеческих лиц.
слух
понимание со слуха ограниченного количества слов (например, названии цифр), понимание потока речи (на определенную тему), нахождение границ между фонемами, узнавание фонем, нахождение границ между морфемами, узнавание морфем, составление слов и предложений.
понимание естественных языков
ответ на вопросы в определенных областях, анализ сложных предложений, перифраз длинных отрывков текста, использование знаний о мире для понимания текстов, понимание неоднозначных выражений.
активное использование естественных языков
абстрактная поэзия (например, хайку), отдельные предложения, абзацы, или более длинные отрывки текста, производство выхода на основе внутреннего отображения знаний.
создание оригинальных мыслей или произведений искусства
написание стихоторений (хайку), написание прозы, написание картин, музыкальная композиция, атональная, тональная.
аналогическое мышление
геометрические формы («интеллектуальные тесты»), нахождение доказательств в какой-либо области математики, основанных на доказательствах в родственной области.
обучение
регулирование параметров, формирование понятий.
Машинный перевод
Многие из этих сфер исследования не будут затронуты в нашем обсуждении, но без них список был бы неполным. Несколько первых тем приводятся в хронологическом порядке. Ни в одной из этих областей ранние усилия не привели к желаемым результатам. Так, неудачи в машинном переводе явились неожиданностью для тех, кто считал, что машинный перевод – простая задача, и что, хотя совершенствование машинного перевода может потребовать немалого труда, принципиальное решение этого вопроса несложно. Однако оказалось, что перевод – это нечто гораздо более сложное, чем простое использование словаря и перестановка слов. Незнание идиоматических выражений также не является основной трудностью. Дело в том, что перевод подразумевает наличие мысленной модели обсуждаемого мира и манипуляцию символами этой модели. Программа, которая не имеет подобной модели, вскоре безнадежно запутается в неточностях и многозначных выражениях текста. Даже люди, имеющие огромное преимущество перед компьютерами, поскольку они уже «оснащены» пониманием мира, находят почти невозможным перевести с помощью словаря кусок текста с неизвестного им языка на их родной язык. Таким образом – и это не удивительно – первая же проблема ИИ немедленно приводит к вопросам, затрагивающим самую суть ИИ.
Компьютерные шахматы
Компьютерные шахматы оказались также намного труднее, чем интуитивно предполагалось в начале. Оказывается, шахматная ситуация в голове у людей представлена гораздо сложнее, чем просто расположение отдельных фигур на определенных клетках доски и знание правил игры. Это представление включает восприятие групп взаимодействующих фигур как одно целое, а также знание эвристики, или эмпирических правил, принадлежащих к подобным блокам высшего уровня. Хотя эвристические правила не являются строгими в том смысле как официальные правила игры, они, в отличие от последних, позволяют быстро оценить то, что происходит на доске. Это было ясно с самого начала, но исследователи недооценили то, какую важную роль это интуитивное блочное восприятие шахматного мира играет в шахматных способностях людей. Считалось, что программа, оснащенная некой основной эвристикой, в сочетании с огромной скоростью и аккуратностью компьютера в просчете вариантов и анализе каждого возможного хода, будет легко выигрывать у игроков высшего класса. Однако этот прогноз все еще далек от исполнения даже после двадцати пяти лет интенсивной работы множества специалистов.
На сегодняшний день люди подходят к шахматной проблеме по-разному. Одна из новейших точек зрения включает гипотезу о том, что просчет вариантов – глупое занятие. Вместо этого предлагается оценить позицию, стоящую на доске в данный момент, и, пользуясь эвристикой, составить некий план – а затем найти ход, способствующий выполнению этого плана. Безусловно, правила для составления планов неизбежно будут включать эвристику, которая является чем-то вроде упрощенного просчета вариантов. Иными словами, опыт анализа вариантов многих сыгранных ранее партий здесь «сжат» в новую форму, при поверхностном рассмотрении не требующую подобного анализа. Кажется, что это не более, чем игра слов. Однако если такое «сокращенное» знание дает нам более эффективные ответы, чем действительный просчет вариантов (даже если при этом иногда случаются ошибки), то мы уже кое-что выигрываем. Именно этим превращением знаний в более эффективно используемые формы и отличается разум – так что меньше-анализирующие-варианты-шахматы, возможно, являются плодотворной идеей. Особенно интересно было бы создать программу, способную превращать знания, полученные путем анализа возможных вариантов, в «сокращенные» правила; но это – огромный труд.
Шашечная программа Самуэля
Именно такой метод был разработан Артуром Самуэлем в его замечательной шашечной программе. Метод Самуэля состоял в одновременном использовании динамического (с заглядыванием вперед) и статического (без заглядывания вперед) способов оценки любой данной позиции. Статический метод основывался на простой математической функции нескольких величин, характеризующих любую позицию на доске; это вычислялось практически мгновенно. В свою очередь, динамический метод основывался на создании «дерева» возможных будущих ходов, ответов на них, ответов на ответы и так далее (как было показано на рис. 38). Некоторые параметры в функции статической оценки могли варьироваться, в результате чего получались разные версии этой функции. Стратегия Самуэля заключалась в том, чтобы путем естественного отбора находить все лучшие и лучшие значения этих параметров.
Это делалось следующим образом: каждый раз, когда программа оценивала позицию, она делала это одновременно статистически и динамически. Ответ, полученный путем анализа вариантов, – назовем его Д – использовался для нахождения следующего хода. Цель С – статистической оценки – была сложнее: после каждого хода переменные параметры немного исправлялись таким образом, чтобы С возможно больше приближалось к Д. В результате знание, полученное путем динамического анализа дерева, частично включалось в параметры статистической оценки. Короче, идея заключалась в том, чтобы постепенно превратить сложный динамический метод в гораздо более простую и эффективную функцию статической оценки.
Здесь возникает изящный рекурсивный эффект. Дело в том, что динамическая оценка любой данной позиции включает просчет вперед на конечное число ходов – скажем, семь. При этом промежуточные позиции, получающиеся после каждого возможного хода, также должны получить какую-то оценку. Но когда программа оценивает эти позиции, она, разумеется, уже не может просчитывать на семь ходов вперед – иначе ей пришлось бы анализировать четырнадцать возможных позиций, затем двадцать одну и так далее, и тому подобное – что породило бы бесконечный регресс. Вместо этого программа пользуется статическими оценками позиций, возникающих при анализе. Таким образом, схема Самуэля включает сложную обратную связь, в процессе которой программа непрерывно пытается превратить оценки, основанные на просчете вариантов, в более простой статический подход; этот подход в свою очередь играет ключевую роль в динамическом взгляде вперед. Таким образом, оба этих метода тесно связаны между собой, и каждый рекурсивным путем извлекает пользу из улучшений в другом методе.
Уровень игры шашечной программы Самуэля крайне высок и сравним с уровнем лучших человеческих игроков мира. Если это так, то почему бы не приложить ту же идею к шахматам? Международный комитет, собравшийся в 1961 году, чтобы обсудить возможность компьютерных шахмат, и включавший датского международного гроссмейстера и математика Макса Эйве, пришел к печальному заключению, что использование метода Самуэля в шахматах было бы примерно в миллион раз труднее, чем в шашках. По-видимому, это закрывает данный вопрос…
Удивительно высокого уровня игры шашечных программ недостаточно для того, чтобы утверждать, что искусственный интеллект уже создан; однако этого успеха также не следует преуменьшать. Это комбинация идей о том, что такое шашки и как их анализировать и программировать. Некоторые читатели могут подумать, что эта программа ничего, кроме шашечного мастерства самого Самуэля, не доказывает. Но это неверно по крайней мере по двум причинам. Во-первых, хорошие игроки выбирают ходы, руководствуясь мысленными процессами, которых они сами полностью не понимают – они пользуются интуицией. Однако до сих пор никому не известен способ стопроцентного использования собственной интуиции; лучшее, что мы можем сделать, это задним числом использовать наши «впечатления» или «мета-интуицию» (интуицию о собственной интуиции), чтобы с их помощью попытаться объяснить природу собственной интуиции. Но это было бы только грубым приближением к действительной сложности интуитивных методов. Поэтому практически невозможно, чтобы Самуэль скопировал в своей программе собственные методы игры. Есть и другая причина, по которой не следует путать игру Самуэлевой программы с игрой ее создателя – программа его регулярно обыгрывает! Это вовсе не парадокс – не более, чем тот факт, что компьютер, запрограммированный на вычисление π, может делать это гораздо быстрее самого программиста.