355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Даглас Хофштадтер » ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда » Текст книги (страница 3)
ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда
  • Текст добавлен: 6 октября 2016, 04:15

Текст книги "ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда"


Автор книги: Даглас Хофштадтер


Жанры:

   

Философия

,

сообщить о нарушении

Текущая страница: 3 (всего у книги 64 страниц)

Список иллюстраций

Суперобложка. Триплеты «ГЭБ» и «ЭГБ», подвешенные в пространстве, отбрасывают символические тени на три плоскости, встречающиеся в углу комнаты. (Триплетом я называю блок, сделанный таким образом, что его тени, отброшенные под прямым углом, являются тремя разными буквами. Эта идея родилась у меня внезапно, когда как-то вечером я ломал голову над тем, как лучше символизировать единство Геделя, Эшера и Баха, слив их имена неожиданным образом. Два триплета, показанные на суперобложке, сделаны мной самим. Я выпилил их из красного дерева ручной пилой, используя для отверстий торцевую фрезу; стороны каждого триплета около 10 см длиной.

Перед «Благодарностью»: начало «Книги Бытия» на древнееврейском. XXX

Часть I Триплет «GEB», отбрасывающий три тени под прямым углом.

1. Элиас Готтлиб Гауссманн. «Портрет Иоганна Себастиана Баха».

2. Адольф фон Мензель. «Концерт флейтистов в Сансуси».

3. Королевская Тема.

4. Акростих Баха «РИЧЕРКАР».

4а. Канон «Добрый король Венсеслас».

5. М. К. Эшер. «Водопад».

6. М. К. Эшер. «Подъем и спуск».

7. М. К. Эшер. «Рука с зеркальным шаром».

8. М. К. Эшер. «Метаморфоза II».

9. Курт Гедель.

10. М. К. Эшер. «Лист Мёбиуса I».

11. «Дерево» всех теорем системы MIU.

12. М. К. Эшер. «Воздушный замок».

13. М. К. Эшер. «Освобождение».

14. М К. Эшер «Мозаика II».

15. «РИСУНОК»

16. М. К. Эшер. «Деление пространства при помощи птиц».

17. Скотт Е. Ким Рисунок «РИСУНОК-РИСУНОК».

18. Диаграмма отношений между разными классами строчек ТТЧ.

19. Последняя страница «Искусства фуги» И. С. Баха.

20. Наглядное объяснение принципа, лежащего в основе Теоремы Геделя.

21. М. К. Эшер. «Вавилонская башня»

22. М. К. Эшер. «Относительность».

23. М. К. Эшер. «Выпуклое и вогнутое».

24. М. К Эшер. «Рептилии».

25. Критский лабиринт.

26. Структура Диалога «Маленький гармонический лабиринт».

27. Схема рекурсивных переходов для УКРАШЕННОГО СУЩЕСТВИТЕЛЬНОГО и СВЕРХУКРАШЕННОГО СУЩЕСТВИТЕЛЬНОГО.

28. СРП для СВЕРХУКРАШЕННОГО СУЩЕСТВИТЕЛЬНОГО с одним рекурсивно расширенным узлом.

29. Диаграмма G и Н, расширенная и нерасширенная.

30. Диаграмма G, расширенная далее.

31. СРП для чисел Фибоначчи.

32. График функции INT (х).

33. Скелеты INT и График G.

34. Рекурсивный График G.

35. Сложная диаграмма Фейнмана.

36. М. К. Эшер «Рыбы и чешуйки».

37. М. К. Эшер «Бабочки».

38. Дерево игры в «крестики нолики».

39. Камень Розетты.

40. Коллаж из письменностей.

41. Последовательность оснований хромосомы бактериофага 0X174.

42. М. К. Эшер «Крабий канон».

43. Фрагмент одного из крабьих генов.

44. «Крабий канон» из «Музыкального приношения» И С Баха.

45. М. К. Эшер «Мечеть».

46. М. К. Эшер «Три мира».

47. М. К. Эшер «Капля росы».

48. М. К. Эшер «Другой мир».

49. М. К. Эшер «День и ночь».

50. М. К. Эшер «Кожура».

51. М. К. Эшер «Лужа».

52. М. К. Эшер «Рябь на воде».

53. М. К. Эшер «Три сферы II».

Часть II Триплет «EGB» отбрасывающий три тени под прямым углом.

54. М. К. Эшер «Лист Мебиуса II».

55. Пьер де Ферма.

56. М. К. Эшер «Куб с магическими лентами».

57. Идея разделения на блоки.

58. Ассемблеры компиляторы и уровни компьютерных языков.

59. Разум строится уровень за уровнем.

60. Картина «МУ».

61. М. К. Эшер «Муравьиная фуга».

62. «Скрещение» двух знаменитых имен.

63. Фотография муравьиного моста.

64. «Спираль» ХОЛИЗМ РЕДУКЦИОНИЗМ.

65. Схематическое изображение нейрона.

66. Человеческий мозг вид сбоку.

67. Ответы разных типов нейронов на различные стимулы.

68. Пересекающиеся нейронные пути.

69. Строительство моста термитами рабочими.

70. Небольшой фрагмент «семантической сети» автора.

71. М. К. Эшер «Порядок и хаос».

72. Структура безвызовной программы Блупа.

73. Георг Кантор.

74. М. К. Эшер «Сверху и снизу».

75. «Разветвление» ТТЧ.

76. М. К. Эшер «Дракон».

77. Рене Магритт «Тени».

78. Рене Магритт «Грация».

79. Вирус табачной мозаики.

80. Рене Магритт «Прекрасный пленник».

81. Самопоглощающие экраны телевизора.

82. Рене Магритт «Воздух и песня».

83. Эпименид приводящий в исполнение собственный смертный приговор.

84. Айсберг парадокса Эпименида.

85. Квайново предложение в виде куска мыла.

86. Самовоспроизводящаяся песня.

87. Типогенетический Код.

88. Третичная структура типоэнзима.

89. Таблица «прикрепительных вкусов» типоэнзимов.

90. Центральная Догма типогенетики.

91. Четыре основания, составляющих ДНК.

92. Лестничная структура ДНК.

93. Молекулярная модель двойной спирали ДНК.

94. Генетический Код.

95. Вторичная и третичная структуры миоглобина.

96. Кусок мРНК, проходящий сквозь рибосому.

97. Полирибосома.

98. Двухтретичный молекулярный канон.

99. Центральная схема.

100. Код Гёделя.

101. Бактериальный вирус Т4.

102. Заражение бактерии вирусом.

103. Морфогенетический путь вируса Т4.

104. М. К. Эшер. «Кастровалва».

105. Шриниваса Рамануян и одна из его странных индийских мелодий.

106. Изоморфизмы между натуральными числами, калькуляторами и человеческими мозгами.

107. Нейронная и символическая деятельность мозга.

108. «Выделение» высшего уровня мозга.

109. Конфликт между высокими и низкими уровнями мозга.

110. Начальная сцена Диалога с ШРДЛУ.

111. Еще один момент Диалога с ШРДЛУ.

112. Последняя сцена Диалога с ШРДЛУ.

113. Алан Матисон Тюринг.

114. Доказательство «Ослиного мостика».

115. Бесконечное дерево целей Зенона.

116. Осмысленный рассказ на арабском языке.

117. Рене Магритт. «Мысленная арифметика».

118. Процедурное представление «красного куба, на котором стоит пирамида».

119. Задача Бонгарда #51.

120. Задача Бонгарда #47.

121. Задача Бонгарда #91.

122. Задача Бонгарда #49.

123. Небольшой фрагмент сети понятий для задач Бонгарда.

124. Задача Бонгарда #33.

125. Задачи Бонгарда #85-87.

126. Задача Бонгарда #55.

127. Задача Боигарда #22.

128. Задача Бонгарда #58.

129. Задача Бонгарда #61.

130. Задача Бонгарда #70-71.

131. Схематическая диаграмма Диалога «Крабий канон».

132. Две гомологичные хромосомы, соединенные в центре центомерой.

133. «Канон Ленивца» из «Музыкального приношения» И. С. Баха.

134. Авторский треугольник.

135. М К. Эшер. «Рисующие руки».

136. Абстрактная схема «Рисующих рук» Эшера.

137. Рене Магритт. «Здравый смысл».

138. Рене Магритт. «Две тайны».

139. «Дымовой сигнал». Рисунок автора.

140. «Сон о трубке». Рисунок автора.

141. Рене Магритт. «Человеческое состояние I».

142. М. К. Эшер. «Картинная галерея».

143. Абстрактная схема «Картинной галереи» Эшера.

144. Сокращенный вариант предыдущей схемы.

145. Еще более сокращенный вариант рис. 143.

146. Еще один способ сократить рис. 143.

147. Баховский «Естественно растущий канон», играемый в тональной системе Шепарда, образует Странную Петлю.

148. Два полных цикла тональной гаммы Шепарда, в записи для фортепиано.

149. М. К. Эшер. «Вербум».

150. Чарлз Баббадж.

151. Крабья Тема.

152. Последняя страница «Шестиголосного ричеркара» из оригинала «Музыкального приношения» И. С. Баха.


Благодарность

Эта книга зрела у меня в голове около двадцати лет – с тех пор, как в тринадцать лет я задумался над тем, как я думаю по-английски и по-французски. Даже раньше по некоторым признакам уже можно было понять, в какой области лежат мои основные интересы. Помню, что когда я был совсем ребенком, для меня не было ничего интереснее, чем идея трех 3: операция, проводимая над тройкой с помощью ее самой! Я был убежден, что это тонкое наблюдение не могло прийти в голову никому другому; но однажды я все же осмелился спросить мать, что из этого получится, и она ответила: «Девять». Однако я не был уверен, что она поняла, что я имел в виду. Позже мой отец посвятил меня в тайны квадратных корней и мнимой единицы.

Я обязан моим родителям больше, чем любому другому. Они были для меня столпами, на которые я мог опереться в любое время. Они направляли, вдохновляли, поощряли и поддерживали меня. Более того, родители всегда в меня верили. Им посвящена эта книга.

Особая благодарность двум моим старым друзьям – Роберту Бёнингеру и Питеру Джонсу; они помогли сформировать мое мышление. Их влиянием и идеями проникнута вся книга.

Я многим обязан Чарльзу Бреннеру, научившему меня программированию, когда мы оба были молоды; благодарю его за постоянное подталкивание и стимулирование, которое на самом деле равнялось завуалированной похвале – а также за иногда случавшуюся критику.

Рад отдать должное Эрнесту Нагелю, моему многолетнему другу и учителю, оказавшему на меня огромное влияние. «Доказательство теоремы Гёделя» Нагеля и Ньюмана – одна из моих любимых книг, и я многое вынес из наших бесед много лет назад в Вермонте и не так давно в Нью-Йорке.

Ховард Делонг своей книгой пробудил давно дремавший во мне интерес к темам этой книги. Я поистине многим ему обязан.

Давид Джонатан Джастман научил меня, что значит быть Черепахой – изобретательным, настойчивым и ироничным существом, любительницей парадоксов и противоречий. Надеюсь, что он прочтет эту книгу, которой я ему во многом обязан, и что она его развлечет.

Скотт Ким оказал на меня огромное влияние. С тех пор как мы с ним встретились около двух с половиной лет тому назад, между нами всегда был невероятный резонанс. Его идеи о музыке и изобразительном искусстве, его юмор и аналогии, его добровольная бескорыстная помощь в критические минуты внесли значительный вклад в книгу; кроме того, Скотту я обязан новой перспективой, благодаря чему мой взгляд на стоявшую передо мной задачу менялся по мере того, как книга продвигалась вперед. Если кто-то и понимает эту книгу, то это Скотт.

За крупномасштабными и мелкомасштабными советами я неоднократно обращался к Дону Бирду, знающему эту книгу вдоль и поперек. Он безошибочно чувствует ее структуру и цель и много раз подавал мне отличные идеи, которые я с удовольствием включал в книгу. Я сожалею только о том, что уже не смогу включить будущие идеи Дона, когда книга выйдет из печати. И не дайте мне забыть поблагодарить Дона за чудесную гибкость-в-негибкости его нотной программы СМУТ. Многих длинных дней и трудных ночей стоило ему уговорить СМУТ исполнить необходимые причудливые трюки. Некоторые из его результатов включены в иллюстрации книги; однако его влияние, к моему вящему удовольствию, распространено в ней повсюду.

Я не смог бы написать эту книгу без помощи технического оборудования Института математических исследований в общественных науках Стэнфордского университета. Пат Суппс, директор Института и мой давний друг, был очень великодушен, поселив меня в Вентура Холле, дав мне допуск к превосходной компьютерной программе и обеспечив мне великолепную рабочую обстановку в течение двух лет.

Это приводит меня к Пентти Канерва, автору программы-редактора, которой эта книга обязана своим существованием. Я многим говорил, что написание этой книги отняло бы у меня вдвое больше времени, если бы не «TV-Edit», удобная и настолько простая по духу программа, что только Пентти мог написать подобное. Благодаря ему я сумел сделать то, что удается мало кому из авторов, – сверстать свою собственную книгу. Пентти был главной двигающей силой исследований по компьютерной верстке в упомянутом выше Институте. Очень важным для меня было также редкое качество Пентти – его чувство стиля. Если эта книга выглядит хорошо, это во многом заслуга Пентти Канерва.

Эта книга родилась в типографии Стэнфордского университета. Мне хотелось бы высказать сердечную благодарность директору типографии, Беверли Хендрикс, и ее сотрудникам за помощь в минуты особой нужды и за их ровное хорошее настроение несмотря на многие неудачи. Я хотел бы также поблагодарить Сесиль Тэйлор и Барбару Ладдага, проделавших большую часть печатания гранок.

За многие годы моя сестра Лаура Хофштадтер во многом способствовала формированию моих взглядов. Ее влияние присутствует как в форме, так и в содержании этой книги.

Я признателен моим новым и старым друзьям Мари Антони, Сидни Арковиц, Бенгту Олле Бенгтссону, Феликсу Блоху, Франсуа Вануччи, Терри Винограду, Бобу Вольфу, Эрику Гамбургу, Майклу Голдхаберу, Пранабу Гошу, Авриль Гринберг, Дэйву Дженнигсу, Перси Диаконису, Най-Хуа Дуан, Уилфреду Зигу, Дианне Канерва, Лори Канерва, Инге Карлингер, Джонатану и Эллен Кинг, Франциско Кларо, Гэйл Ландт, Биллу Льюису, Джиму Макдональду, Джону Маккарти, Джое Марлоу, Луису Менделовицу, Майку Мюллеру, Розмари Нельсон, Стиву Омохундро, Полю Оппенгеймеру, Питеру Е. Парксу, Давиду Поликански, Питу Римбею, Кэти Россер, Гаю Стилу, Ларри Теслеру, Филу Уадлеру, Робину Фрееману, Дану Фридману, Роберту Херману, Рэю Химану и Джону Эллису за их «резонанс» со мной в критические минуты моей жизни; каждый по-своему, они помогли мне написать эту книгу.

Я написал эту книгу дважды. Закончив ее в первый раз, я начал сначала и все переделал. Первый вариант был закончен, когда я был аспирантом-физиком в Орегонском университете; четверо из профессоров отнеслись чрезвычайно снисходительно к моим странностям: Майк Моравчик, Грегори Ванниер, Руди Хва и Пауль Чонка. Я ценю их понимающее отношение. К тому же, Пауль Чонка прочел всю первую версию и сделал множество ценных замечаний.

Спасибо Е. О. Вильсону за прочтение и комментарии по поводу раннего варианта «Прелюдии» и «Муравьиной фуги».

Спасибо Марше Мередит за то, что она была мета-автором забавного коана.

Спасибо Марвину Мински за памятную беседу у него дома как-то мартовским днем; часть ее читатель найдет в этой книге.

Спасибо Биллу Кауфману за советы по издательской части, а также Джереми Бернштейну и Алексу Джорджу за их поддержку в нужные минуты.

Горячая благодарность Мартину Кесслеру, Морин Бишоф, Винсенту Торре, Леону Дорину и другим работникам издательства «Бэйсик Букс» за то, что они взялись за эту издательскую задачу, во многом необычную.

Спасибо Фиби Хосс за отличное редактирование и Ларри Бриду за корректирование в последнюю минуту.

Спасибо многим соседям по «Imlac», которые столько раз за эти годы записывали для меня телефонные сообщения, а также работникам Пайн Холла, создавшим аппаратуру и программы, от которых зависело существование этой книги.

Спасибо Деннису Дэвису из Стэнфордского института телевизионных сетей за его помощь в установке «самопоглощающих экранов», которые я фотографировал в течение нескольких часов.

Спасибо Джерри Прайку, Бобу Парксу, Теду Брадшоу и Винни Авени из лаборатории физики высоких энергий в Стэнфорде за их помощь в изготовлении триплетов

Спасибо моим дяде и тете, Джимми и Бетти Гиван, за рождественский подарок; они не подозревали, какое удовольствие я от него получил! Это был «черный ящик», единственная функция которого состояла в самовыключении.

Наконец, я хочу выразить особую благодарность моему профессору английской литературы, Бренту Гарольду, который открыл для меня дзен-буддизм, когда я был первокурсником; Кесу Гужелоту, давным-давно, в грустный ноябрьский день, подарившему мне пластинку с «Музыкальным приношением», а также Отто Фришу, в чьем кабинете я впервые познакомился с магией Эшера.

Особая благодарность автора издателю Михаилу Бахраху и специалисту по компьютерной верстке Павлу Иванникову за понимание и подлинный профессионализм в работе над русским изданием книги.

Я попытался вспомнить всех людей, имевших отношение к созданию этой книги, но список, несомненно, оказался неполон.

В каком-то смысле эта книга – символ моей веры. Я надеюсь, что мои читатели это поймут и что мой энтузиазм и поклонение перед определенными идеями проникнут в чье-нибудь сердце и разум. Это большее, на что я могу надеяться.

****

Переводчик выражает глубокую благодарность автору за его ценные советы: Ариадне Соловьевой за бескорыстное редактирование русского варианта книги; Дэвиду Риду за советы в области математической логики; Мику Армбрустеру за любезно предоставленный персональный компьютер и Наталье Эскиной за редактирование Диалогов и за прекрасный перевод Баховского стихотворения.

ЧАСТЬ I

Рис. I. Иоганн Себастиан Бах в 1748. С портрета кисти Элиаса Готтлиба Хауссманна.

Интродукция: музыко-логическое приношение

Автор:

КОРОЛЬ ПРУССИИ Фридрих Великий пришел к власти в 1740 году. Исторические трактаты упоминают о нем в основном как о проницательном и умелом полководце – однако, кроме военной деятельности, Фридрих Великий в немалой степени посвящал себя жизни умственной и духовной. Его двор в Потсдаме был центром интеллектуальной деятельности Европы восемнадцатого столетия. Прославленный математик Леонард Эйлер провел там двадцать пять лет. Многие математики, ученые и философы посетили в то время Потсдам; Вольтер и Ламеттри написали там некоторые из своих важнейших сочинений.

Но настоящей любовью короля была музыка. Сам он был страстным флейтистом и композитором; некоторые его сочинения исполняются иногда по сей день. Фридрих Великий был одним из первых покровителей искусств, признавших замечательные качества только что изобретенного фортепиано («тихогрома», как когда-то пытались окрестить этот инструмент в России). Фортепиано было изобретено в первой половине восемнадцатого века; оно представляло из себя не что иное, как модификацию клавесина. Дело в том, что на клавесине невозможно было варьировать громкость; все звуки получались одинаковыми. Тихогром, как показывает само название, был выходом из положения.

Зародившись в Италии, где Бартоломео Кристофори изготовил первое фортепиано, идея тихогрома распространилась широко. Готтфрид Зильберман, лучший мастер того времени по изготовлению органов, получил заказ на изготовление «совершенного» фортепиано. Фридрих Великий, без сомнения, явился самым большим энтузиастом этого начинания; говорят, что он приобрел целых пятнадцать инструментов, сделанных Зильберманом!

Бах

Король был горячим поклонником не только фортепиано; его вниманием пользовался также органист и композитор по имени И. С. Бах. Баховские композиции были довольно интересны; некоторые считали их напыщенными и запутанными, в то время как другие ценители восхищались ими как несравненными шедеврами. Однако никто не оспаривал способности Баха исполнять импровизации на органе. В то время умение импровизировать, наравне с исполнительским мастерством, считалось необходимым качеством органиста, а Бах имел славу превосходного импровизатора. (Прелестные рассказы о Баховских импровизациях читатель может найти в книге Дэвида и Менделя «Баховская хрестоматия» (David & Mendel, «The Bach Reader».))

В 1747 году слава 62-летнего Баха докатилась до Потсдама. Там же очутился и один из его сыновей, Карл Филипп Эмануэль Бах, ставший капельмейстером при дворе короля Фридриха. В течение нескольких лет король деликатно намекал Филиппу Эмануэлю, насколько приятен был бы Его Величеству визит в Потсдам Баха-старшего. В особенности Фридриху хотелось, чтобы Бах опробовал его новые рояли Зильбермана, которые, как он правильно предвидел, были началом больших перемен в музыке. Это королевское желание, однако, долго не исполнялось.

При дворе Фридриха Великого были обычаем вечерние концерты камерной музыки. В концертах для флейты часто солировал сам монарх. Я привожу здесь репродукцию картины немецкого художника Адольфа фон Менцеля, кто в 1800-х годах написал серию произведений из жизни Фридриха Великого. На клавесине играет К. Ф. Э. Бах; крайний справа – Иоахим Кванц, учивший короля игре на флейте и единственный, кому было даровано право исправлять ошибки в игре Его Величества. Однажды майским вечером 1747 года на королевский концерт явился неожиданный гость. Иоганн Николаус Форкель, один из первых биографов Баха, рассказывает эту историю так.

Однажды вечером, когда король уже достал свою флейту и все музыканты были готовы, вошел слуга со списком новоприбывших гостей. Не выпуская флейты из рук, король стал проглядывать список; вдруг он быстро повернулся к собравшимся музыкантам и взволнованно воскликнул: «Господа, приехал старый Бах!» Флейта была отложена, и Баха, остановившегося у сына, тут же пригласили во дворец. Вильгельм Фридеман Бах, сопровождавший своего отца, передал мне эту историю, и, должен признаться, я до сих пор вспоминаю его рассказ с удовольствием. В то время в моде были многословные и цветистые любезности. Первое появление Баха, даже не успевшего сменить дорожное платье, перед Его Величеством, разумеется, сопровождалось пышными и изысканными извинениями. Не буду останавливаться на них подробно; замечу лишь, что в устах Вильгельма Фридемана они представляли из себя настоящий формальный диалог между Королем и Приносящим Извинения.

Самым главным, однако, было то, что король отложил свой вечерний концерт и пригласил Баха, уже тогда известного как «старый Бах», опробовать Зильбермановские фортепиано, стоявшие в нескольких залах дворца. (Здесь Форкель делает сноску: «Фортепиано, изготовленные Зильберманом из Фрейбурга, так понравились королю, что он решил скупить их все. Его коллекция насчитывала пятнадцать инструментов. Говорят, что все они, ныне непригодные, еще хранятся по углам королевского дворца.»)

Бах был приглашен играть свои импровизации; музыканты сопровождали его из залы в залу. Спустя некоторое время он предложил королю предоставить ему тему для фуги, чтобы обработать ее тут же, без подготовки. Результат привел короля в восторг. Возможно, чтобы узнать, каковы пределы импровизаторского мастерства Баха, Фридрих Великий выразил желание услышать фугу с шестью облигатными голосами. Так как не всякая тема подходит к такой полной гармонии, Бах выбрал тему сам и тут же сыграл на нее фугу так же блистательно и легко, как и на королевскую тему, чем поразил всех присутствующих.

Его Величество захотел затем услышать игру Баха на органе; на следующий день Баху пришлось совершить турне по всем органам Потсдама, так же как накануне – по всем Зильбермановским фортепиано.

После своего возвращения в Лейпциг Бах обработал тему, данную ему королем, создав трехголосную и шестиголосную композиции. К ним он добавил несколько искусных проведений темы в форме строгого канона, назвал свое произведение «Музыкальным приношением» и посвятил его автору темы.[1]1
  H. D. David and A Mendel «The Bach Reader» стр. 305 6


[Закрыть]


Рис. 2. Адольф фон Мензель. «Концерт флейтистов в Сансуси».


Рис. 3. Королевская Тема.

Посылая королю «Музыкальное приношение», Бах приложил к нему письмо-посвящение, интересное уже самим своим стилем, смиренным и льстивым. С нынешней точки зрения это кажется смешным. Письмо это также дает некоторое представление о стиле Баховских извинений перед королем за свой «непрезентабельный» вид во время их первой встречи.[2]2
  Там же стр. 179


[Закрыть]

ВСЕМИЛОСТИВЕЙШИЙ ГОСУДАРЬ,

В глубочайшем смирении я осмеливаюсь посвятить Вашему Величеству музыкальное приношение, наилучшая часть коего создана Августейшей рукой Вашего Величества. С благоговейным и счастливым трепетом я вспоминаю особую королевскую милость, когда, во время моего визита в Потсдам, Ваше Величество собственной персоной снизошли до того, чтобы сыграть на клавире тему для фуги, и тогда же всемилостивейше поручили мне развить эту тему в присутствии Вашего Августейшего Величества. Со смирением повиновался я тогда высочайшему повелению. Однако очень скоро я заметил, что за недостатком специальной подготовки я был не в состоянии выполнить это задание так, как того требовала сия превосходная тема Засим я решился и с готовностию посвятил себя работе над более полным развитием прекрасной Королевской темы с тем, чтобы сделать ее известной всему миру По мере своих сил я исполнил это решение, движимый желанием прославить, хотя бы в ничтожной степени, Монарха, чье величие и могущество, как в науках военных и мирных, так и в музыке, достойно восхищения и преклонения каждого. Осмелюсь смиренно просить Ваше Величество снизойти до принятия моего скромного труда и продолжить дарить Августейшую милость

Его покорнейшему и смиреннейшему слуге

АВТОРУ.

Лейпциг, 7 июля 1747

Спустя двадцать четыре года после смерти Баха (он умер в 1750 году) барон по имени Готфрид ван Свитен, кому, кстати, Форкель посвятил свою биографию Баха, а Бетховен – свою Первую симфонию, имел беседу с королем Фридрихом. Барон вспоминает об этом так:

Он (Фридрих) говорил со мной, среди прочего, о музыке и о великом органисте по имени Бах, проведшем некоторое время в Берлине. Речь шла о Вильгельме Фридемане Бахе Я сказал, что этот музыкант наделен талантом, по глубине понимания гармонии и по исполнительской мощи превосходящим все, о чем я слышал и что я могу себе вообразить; те же, кто знавал его отца, утверждают, что тот был еще более велик. Король согласился с этим мнением и в подтверждение спел мне хроматическую тему для фуги, которую он когда-то дал старому Баху; по его словам, Бах тогда же, не сходя с места, превратил эту тему в фугу, сначала для четырех, потом для пяти и, наконец, для восьми голосов.[3]3
  Там же стр. 260


[Закрыть]

Сейчас уже невозможно сказать, кто украсил случившееся фантастическими подробностями – Фридрих Великий или барон Ван Свитен. Однако этот случай показывает, что уже в то время Бах стал легендарной личностью. Представление о том, насколько удивительна шестиголосная фуга, дает тот факт, что среди 48 прелюдий и фуг «Хорошо темперированного клавира» встречаются только две пятиголосные фуги. Шестиголосных фуг там нет. Импровизацию такой фуги можно, пожалуй, сравнить с сеансом одновременной игрой в шахматы вслепую на шестидесяти досках, где мастер побеждает во всех партиях! Импровизация же восьмиголосной фуги находится за пределами человеческих возможностей.

В рукописи, которую Бах послал Фридриху Великому, на странице, предшествующей нотам, была следующая надпись:

Рис. 4. Акростих Баха «РИЧЕРКАР».

(«По повелению Короля мелодия и дополнение разрешены каноническим искусством».) Здесь Бах играет со словом «канонический», обозначающим не только «при помощи канонов», но также «наилучшим образом». Начальные буквы этой надписи составляют итальянское слово

RICERCAR

(РИЧЕРКАР), означающее «искать», «исследовать». Действительно, «Музыкальное приношение» представляет собой достойный объект для исследования! Оно состоит из трехголосной и шестиголосной фуг, десяти канонов и триосонаты. Музыковеды считают, что трехголосная фуга, скорее всего, та самая, которую Бах симпровизировал для короля. Шестиголосная фуга – одна из самых сложных Баховских композиций; она основана, конечно же, на Королевской теме. Читатель найдет эту знаменитую тему на рис. 3. Она очень сложна, ритмически причудлива и полна хроматизмов (то есть звуков в другой тональности). Для среднего музыканта было бы нелегко написать даже приличную двухголосную фугу, основанную на такой теме.

Обе фуги носят у Баха название «ричеркар» – это слово было также старинным названием музыкальной формы, известной сейчас как фуга. Во времена Баха название «фуга» стало стандартным; термин же «ричеркар» приобрел новое значение. Теперь он обозначал изощренную, сложную фугу, возможно, слишком холодную и интеллектуальную для среднего слушателя. Подобное значение сохранилось и в других языках; французское (употребляющееся также и в английском) «recherche» означает что-то необычное и имеет смысловой оттенок эзотеричности и утонченной интеллектуальности.

Трио-соната – приятный отдых от холодной строгости фуг и канонов; она мелодична и радостна и местами звучит как танцевальная музыка. Однако и эта соната основана все на той же Королевской Теме! То, что Бах сумел использовать эту строгую по форме тему для такой приятной интерлюдии, похоже на чудо.

Десять канонов «Музыкального приношения» находятся в числе самых сложных канонов, написанных когда-либо Бахом. Любопытно, однако, что они не закончены. Это было сделано умышленно; каноны были своего рода головоломками, которые Бах задал королю. В те дни была популярна следующая музыкальная игра; давалась тема и вместе с ней – несколько «подсказок», в свою очередь довольно непростых. Играющие должны были «найти» канон, основанный на этой теме. Чтобы понять, как это возможно, читатель должен знать кое-что о канонах.

Каноны и фуги

Идея канона заключается в том, что одна и та же тема играется на фоне самой себя: «копии» темы повторяются в нескольких голосах. Существуют разные способы построения канонов; самые простые каноны – круговые, такие как «Дядя Ваня». Тема здесь начинается в первом голосе – спустя определенное время вступает второй голос, исполняя «копию» темы. Через то же время вступает третий голос, в свою очередь имитируя тему, и так далее. При этом все голоса исполняют тему в одной и той же тональности. Большинство мелодий не будут гармонировать сами с собой таким образом; для того, чтобы тема могла служить основой канона, каждая ее нота должна быть способной исполнять как минимум две роли: во-первых, быть частью мелодии и, во-вторых, быть частью гармонизации этой же мелодии. В трехголосном каноне, например, каждая нота темы должна к тому же участвовать в двух различных гармонизациях. Таким образом, каждая нота канона имеет несколько музыкальных значений; ухо и мозг слушателя автоматически выбирают нужное значение, исходя из контекста.

Разумеется, существуют и более сложные типы канонов. На следующей ступеньке находятся такие каноны, в которых копии темы отстоят друг от друга не только по времени, но и по тональности скажем, первый голос начинает с ноты до, а второй голос, накладываясь на первый, вступает на четыре ступени выше, с соль. Третий голос вступает опять на кварту выше, с ре, в свою очередь накладываясь на первый и второй голоса… Следующая ступень сложности – каноны, в которых голоса исполняют мелодию в разном темпе, второй голос, например, вдвое быстрее или вдвое медленнее первого. Этот прием называется, соответственно, уменьшением или увеличением, и дает эффект сокращения или растягивания мелодии.

Это еще не все! Еще более сложные каноны используют обращенную тему, «копия» мелодии обращает все восходящие ходы в нисходящие, сохраняя в них те же интервалы. Это довольно странное музыкальное преобразование; однако, привыкнув к звучанию обращенных тем, слушатель находит их вполне естественными. Бах особенно любил обращения и часто использовал их в своих композициях — «Музыкальное приношение» в этом смысле не составляет исключения. (Примером обращенного канона является «Good King Wenceslas» Скотта Кима, приведенный на рис. 4а.)

Рис. 4а. Канон «Добрый король Венсеслас».

Пожалуй, самая причудливая из всех «копий» – «пятящаяся», в которой тема играется «задом наперед», с конца к началу. Канон, использующий этот прием, известен во многих языках под ласковым прозвищем «ракоход» или «крабий канон», поскольку он запечатлевает в музыке особенности походки этих милых созданий. Нет нужды говорить, что в Баховском «Музыкальном приношении» есть ракоход (крабий канон). Обратите внимание на то, что каждый тип «копии» полностью сохраняет информацию, заложенную в первоначальной теме; это значит, что эта тема может быть легко восстановлена по любой своей копии. Такая сохраняющая информацию трансформация часто называется изоморфизмом; в этой книге мы еще не раз обратимся к изоморфизмам разного рода.


    Ваша оценка произведения:

Популярные книги за неделю