355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Даглас Хофштадтер » ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда » Текст книги (страница 47)
ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда
  • Текст добавлен: 6 октября 2016, 04:15

Текст книги "ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда"


Автор книги: Даглас Хофштадтер


Жанры:

   

Философия

,

сообщить о нарушении

Текущая страница: 47 (всего у книги 64 страниц)

Ахилл: Почему такие похожие пьесы, как ваша, с 13 S, и моя, с 14 S, кажутся вам настолько разными? По-моему, в остальном они идентичны!

Краб: О, небо! Между ними – огромная разница. Это как раз тот случай, когда словами невозможно передать всего того, что чувствует душа. Осмелюсь сказать, что таких правил, которые определяли бы, красива ли какая-либо пьеса, не существует, да и не может существовать. Чувство Красоты принадлежит исключительно царству разума; разума, которому жизненный опыт сообщил глубину, превосходящую любые объяснения, основанные на наборе правил.

Ахилл: Я навсегда запомню эти идеи о природе Красоты. Наверное, нечто похожее можно сказать и об Истине?

Краб: Без сомнения. Истина и Красота соотносятся, как… как…

Ахилл: Как математика и музыка?

Краб: Вы читаете мои мысли! Откуда вы знаете, что я как раз об этом думал?

Черепаха: Ахилл очень непрост, м-р Краб. Вы его недооцениваете.

Ахилл: Вы думаете, что может существовать связь между истинностью или ложностью определенного математического утверждения и красотой (или отсутствием таковой) соответствующей музыкальной пьесы? Или же это лишь моя фантазия?

Краб: Мне кажется, вы заходите слишком далеко. Говоря о связи музыки и математики, я выражался символически, понимаете? Что касается прямой связи между музыкальной пьесой и математическим утверждением, я питаю на этот счет глубочайшие сомнения. Позвольте мне дать вам скромный совет: не тратьте время на подобные пустые выдумки.

Ахилл: Вы, без сомнения, правы. Это было бы совершенно бесполезно. Лучше я сосредоточусь на оттачивании моего музыкального вкуса, придумав еще несколько пьес. Согласитесь ли вы быть моим наставником, м-р Краб?

Краб: Буду счастлив послужить проводником на вашем пути к пониманию музыки.

(Ахилл берет карандаш и погрузившись, казалось бы, в состояние глубочайшего сосредоточения, пишет:

Λ00aA'V~ΛΛ:b+cS(EE=0Λэ((~d)V

(У Краба от удивления лезут глаза на лоб.)

Вы действительно хотите, чтобы я сыграл это… это… чем бы это ни было?

Ахилл: О, пожалуйста, прошу вас!

(Краб начинает с трудом играть.)

Черепаха: Браво! Браво! Скажите, Ахилл, ваш любимый композитор, случайно, не Джон Кейдж?

Ахилл: Сказать по правде, он мой любимый анти-композитор. Так или иначе, я рад, что вам понравилась МОЯ музыка.

Краб: Может быть, прослушивание подобной какофонии кажется вам забавным, но я уверяю вас, что для чувствительного уха композитора эти чудовищные, режущие диссонансы и бессмысленные ритмы – настоящее мучение. Я-то думал, Ахилл, что у вас есть музыкальный вкус. Неужели ваши предыдущие пьесы получились хорошо по чистой случайности?

Ахилл: О, простите меня пожалуйста, м-р Краб. Я просто решил исследовать возможности вашей музыкальной нотации. Я хотел услышать, какие звуки получаются, когда я пишу некую последовательность символов, а заодно узнать, как вы оцениваете пьесы, написанные в разных стилях.

Краб (ворчливо): Я вам, знаете, не автоматическая музыкальная машина и не мусорное ведро для музыкальных отбросов.

Ахилл: Умоляю, простите. Но я все же чувствую, что сочинение этой пьески меня многому научило и я уверен, что теперь смогу писать гораздо лучшую музыку. И если вы согласитесь сыграть еще одно мое сочинение, ваше мнение о моих композиторских способностях непременно изменится в лучшую сторону.

Краб: Хорошо. Давайте попытаемся.

(Ахилл пишет:

Aa:Ab:<(a*a)=(SS0*(b*b))эa=0>

и Краб играет.)

Вы были правы, Ахилл. Кажется, ваши музыкальные способности к вам вернулись. Эта пьеса – настоящая драгоценность! Как вам удалось ее написать? Я никогда не слыхал ничего подобного. Она следует всем законам гармонии, и, тем не менее, в ней есть некая – как бы это сказать – иррациональная привлекательность. Я не могу определить этого точнее, но именно это меня в ней притягивает.

Ахилл: Я так и думал, что вам это понравится.

Черепаха: Как называется ваше сочинение, Ахилл? Мне кажется, что ему подошло бы название «Песнь Пифагора». Вы наверное, помните, что Пифагор был одним из первых, кто стал изучать музыкальные звуки.

Ахилл: Верно. Это очень хорошее название.

Краб: Кроме того не Пифагор ли открыл, что отношение двух квадратов никогда не равняется двум?

Черепаха: Думаю что вы правы. В свое время это считалась еретическим открытием, поскольку никто раньше не догадывался о существовании чисел – таких как квадратный корень из двух – которые нельзя представить, как отношение двух целых чисел. Это открытие было ужасно и для самого Пифагора. Он решил что в абстрактном мире чисел обнаружился неожиданный и кошмарный дефект, могу себе представить, в какое отчаяние пришел бедняга.

Ахилл: Простите вы кажется сказали что-то о чае? Кстати – где же та знаменитая чайная? Долго нам еще карабкаться?

Черепаха: Не волнуйтесь мы будем на месте через пару минут.

Ахилл: Гм-м. Я как раз успею просвистеть вам мотивчик, который сегодня утром услышал по радио.

Краб: Погодите минутку, достану бумагу. Я хочу записать эту мелодию. (Копается в папке и вытаскивает чистый лист ) Готово.

(Ахилл начинает свистеть, мелодия оказывается довольно длинной. Краб быстро записывает, стараясь не отстать.)

Можете ли вы повторить несколько последних тактов?

Ахилл: Конечно.

(После нескольких повторений Краб, наконец, заканчивает и с гордостью показывает свою запись

<((SSSSS0*SSSSS0)+(SSSSS0*SSSSS0))=(SSSSSSS0*SSSSSSS0)+(S0*S0))

Λ~Eb:

<~Λ>>>

Затем он берет флейту и играет записанную им мелодию)

Черепаха: Интересно это похоже на индийскую мелодию.

Краб: Нет, мне кажется для индийской мелодии она слишком проста. Впрочем, я не специалист.

Черепаха: Вот мы и пришли! Где мы сядем, на веранде?

Краб: Если вы не возражаете, лучше сесть внутри, я уже и так слишком долго был на солнце.

(Они входят в чайную, полную народа, садятся за единственный свободный столик и заказывают чай с пирожными. Не проходит и получаса, как им приносят поднос с аппетитными сладостями, каждый выбирает свое любимое пирожное.)

Ахилл: Знаете, м р К, мне бы хотелось услышать ваше мнение о мелодии, которую я только что сочинил.

Краб: Покажите, можете записать ее на этой салфетке.

(Ахилл пишет

Aa:Eb:Ec:<~Ed:Ee:<(SSd*SSe)=bV(SSd*SSe)=c>Λ(a+a)=(b+c)>

Краб и Черепаха с интересом изучают его запись)

Черепаха: Как вы думаете, м-р К, это красивая пьеса?

Краб: Гм-м… Я считаю… Мне кажется… (В явном замешательстве ерзает на стуле.)

Ахилл: В чем дело? Достоинства этой пьесы оказалось определить труднее, чем достоинства других моих сочинений?

Краб: Э-э-э… Нет, нет, это совсем не то. Как бы это сказать… дело в том, что мне надо УСЛЫШАТЬ пьесу, чтобы иметь возможность о ней судить.

Ахилл: Так за чем же дело стало? Прошу вас, сыграйте мою пьеску и скажите нам, находите ли вы ее красивой.

Краб: Конечно, конечно… Я был бы чрезвычайно рад сыграть вашу пьесу; вот только…

Ахилл: Что случилось? Вы не можете сыграть эту пьесу? Почему вы колеблетесь?

Черепаха: Неужели вы не понимаете, Ахилл, что исполнить вашу просьбу было бы невежливо и неделикатно по отношению к посетителям и работникам этой замечательной чайной?

Краб (с внезапным облегчением): Верно! Мы не имеем права навязывать другим свою музыку.

Ахилл (подавленно): О, какая жалость… А я-то ТАК надеялся узнать ваше мнение об этой мелодии!

Краб: Ух ты! Чуть не вляпался!

Ахилл: Как? Что значит это замечание?

Краб: Да так, ничего. Просто тот господин чуть не наступил на пирожные, рассыпанные официантом минуту назад. Сегодня здесь вообще необычайное оживление, яблоку негде упасть.

Черепаха: Дело в том, что сегодня будет известно, кто станет счастливым обладателем приза ежегодной лотереи. Раньше в этой лотерее участвовала и я, но уже давно отчаялась. Приз простой – самовар и набор индийского чая, – но получить его хочется многим, поэтому сегодня здесь столько народу.

Ахилл: Вы хотите сказать, что сегодня – день розыгрыша?

Краб: Вот именно, Ахилл.

Ахилл: А-а, понятно, я это запомню.

Краб: Что ж, пожалуй, мне пора ползти домой. Эта суета вокруг розыгрыша меня порядком утомила, а мне еще предстоит утомительный спуск по крутому склону.

Ахилл: До встречи; и спасибо за урок композиции!

Краб: Я и сам получил большое удовольствие; надеюсь, что когда-нибудь мы продолжим наш обмен сочинениями.

Ахилл: Буду ждать этого дня с нетерпением. До свидания!

Черепаха: До свидания, м-р Краб.

(И краб уползает вниз по холму.)

Ахилл: Что за создание! Это ползет маг и волшебник музыки, блестящий флейтист и композитор. Мне кажется, что он в четыре раза умнее любого из своих собратьев. Или даже в пять —

Черепаха: Как вы уже сказали в начале – и, кажется, собираетесь продолжать говорить во веки веков!

ГЛАВА XVII: Чёрч, Тюринг, Тарский и другие
Формальные и неформальные системы 

 НАСТАЛ МОМЕНТ, когда мы уже можем сформулировать один из основных тезисов этой книги любой аспект мышления можно рассматривать как описание на высшем уровне некой системы, которая на низшем уровне управляется простыми и даже формальными правилами. Под «системой» здесь, разумеется, имеется в виду мозг – если не упоминать мыслительные процессы, протекающие в другой среде, такой, скажем, как электрические цепи компьютера. Это создает образ формальной системы, лежащей в основе «неформальной системы» – такой, которая сочиняет каламбуры, находит численные закономерности, забывает имена, «зевает» фигуры в шахматной партии и так далее. То, что мы видим снаружи, – это ее неформальный, явный уровень, уровень программ. С другой стороны, в системе есть также формальный, скрытый уровень (или «субстрат»), уровень аппаратуры – удивительно сложный механизм, переходящий от одного состояния к другому по определенным, физически встроенным в него правилам, согласно поступающим извне сигналам (входным данным).

Нет нужды говорить, что такой взгляд на мозг имеет множество философских и других следствий. Некоторые из них я попытаюсь описать в этой главе. Среди прочего, из этого взгляда, как кажется, следует то, что в своей основе мозг является неким «математическим» объектом. На самом деле, это, в лучшем случае, довольно неуклюжая модель мозга. Дело в том, что даже если в техническом и абстрактном смысле мозг и представляет собой некий тип формальной системы, математики работают с системами простыми и элегантными, в которых все четко определено. Мозгу же, с его десятью миллиардами частично независимых нейронов, соединенных почти случайным образом, далеко до такой ясности, так что он никогда не станет объектом изучения математиков. Если определить «математику» как нечто, чем математикам нравится заниматься, то приходится признать, что свойства мозга – не математические.

Единственный способ понять такую сложную систему как мозг – это использовать блочную картину на все более высоких уровнях, при этом, разумеется, при каждом следующем шаге приходится жертвовать точностью. На высшем уровне мы получаем «неформальную систему», подчиняющуюся такому количеству сложных правил, что у нас пока не хватает слов для ее описания. Именно это – объект поисков специалистов по Искусственному Интеллекту, поисков, которые весьма отличны от математических изысканий. Однако между ними существует некоторая связь – эксперты по ИИ часто имеют математическое образование, а математики часто интересуются работой собственного мозга. Следующий отрывок из автобиографической книги Станислава Улама «Приключения математика» (Stamslaw Ulam, «Adventures of a Mathematician») иллюстрирует этот факт:

Мне кажется, что можно лучше выявить … природу ассоциаций, используя для экспериментов компьютеры. Такое исследование включало бы подразделение на понятия, символы, классы символов, классы классов и так далее, так же, как это делается при исследовании сложных математических или физических систем.

В нашем мышлении должен быть некий метод, некая рекурсивная формула. Группа нейронов начинает работать автоматически, иногда даже без внешнего импульса. Результатом этого повторяющегося процесса является растущая область возбужденных нейронов, которая передвигается по мозгу в зависимости от памяти или чего-то подобного.[48]48
  Stamslaw Ulam, «Adventures of a Mathematician», стр. 13


[Закрыть]

Интуиция и Магическая Мистификация Краба

Искусственный интеллект для краткости часто называют ИИ. Мне кажется, что сокращение ИИ могло бы также обозначать Искусственную Интуицию. Цель ИИ – понять, что происходит, когда в мозгу из мириад возможностей делается бесшумный и невидимый выбор той единственной, которая кажется наиболее подходящей в данной сложной ситуации. Во многих жизненных ситуациях дедуктивные рассуждения не годятся – не потому, что они привели бы к неправильным ответам, но потому, что существует огромное множество истинных, но неважных для данной ситуации суждений; приходится принимать в расчет слишком много факторов, и потому логические рассуждения оказываются неэффективными. Взгляните на этот мини-диалог:

– На днях я прочитал в газете, что…

– О, вы прочитали? Из этого следует, что у вас есть глаза. Или, по крайней мере, один глаз. Или, скорее, что у вас в тот момент был по крайней мере один глаз.

Здесь необходимо понимание того, что важно и что неважно; с этим связано чувство простоты и красоты. Откуда берутся эти интуитивные понятия? Каким образом они могут родиться из формальной системы мозга? В Диалоге «Магнификраб» мы встречаемся с некими необычными свойствами Крабьего мозга. По его словам, он просто слушает музыку и отличает красивые мелодии от некрасивых. (По-видимому, для него существует четкая граница.) Ахилл, однако, находит другой способ описания Крабьих способностей: Краб подразделяет суждения теории чисел на истинные и ложные. Но Краб утверждает, что если он это и делает, то только случайно, поскольку он в математике профан. Ахилл более всего удивлен тем, что Краб, как кажется, прямо нарушает знаменитую теорему метаматематики:

ТЕОРЕМА ЧЁРЧА: Не существует универсального метода, позволяющего отличать теоремы ТТЧ от не-теорем.

Это утверждение было доказано в 1936 году американским логиком Алонзо Чёрчем, оно находится в тесной связи с тем, что я называю:

ТЕОРЕМОЙ ТАРСКОГО-ЧЁРЧА-ТЮРИНГА: Не существует универсального метода, позволяющего отличать истинные суждения теории чисел от ложных.

Тезис Чёрча-Тюринга

Чтобы лучше понять Теорему Чёрча и Теорему Тарского-Чёрча-Тюринга, рассмотрим сначала одну из идей, на которых они основаны, – Тезис Чёрча-Тюринга (часто называемый «Тезисом Черча») Это, безусловно, одно из важнейших понятий в философии математики, мозга и мышления.

Этот Тезис напоминает чай тем, что его можно сделать разных степеней крепости. Я изложу здесь различные версии и мы увидим, что из них вытекает.

Первая версия звучит весьма невинно и, пожалуй, даже бессмысленно:

ТЕЗИС ЧЁРЧА-ТЮРИНГА, ТАВТОЛОГИЧЕСКАЯ ВЕРСИЯ: Математические задачи можно решать только математическими методами.

Разумеется, смысл этого утверждения может быть выведен из смысла составляющих его частей. Под «математической задачей» я имею в виду определение того, обладает ли данное число неким арифметическим свойством. Оказывается, что при помощи Геделевой нумерации и родственных ей приемов кодификации, почти любую проблему в любой области математики можно представить в этой форме, таким образом, выражение «математическая задача» сохраняет свое обычное значение. А как насчет «математических методов»? Пытаясь решить, обладает ли некое число определенными свойствами, мы используем лишь ограниченное число операций, комбинирующихся друг с другом сложение, умножение определение равенства или неравенства. Кажется, что циклы, состоящие из этих операций, – единственный инструмент, позволяющий нам заглянуть в мир чисел. Заметьте, что я сказал «кажется». Это слово – основное в Тезисе Черча-Тюринга. Ниже – другая версия этого Тезиса:

ТЕЗИС ЧЁРЧА-ТЮРИНГА, СТАНДАРТНАЯ ВЕРСИЯ: Предположим, что существует метод при помощи которого разумное существо может разделять числа на два класса. Предположим также, что этот метод всегда приводит к ответу за конечный отрезок времени, и что этот ответ – всегда один и тот же для одного и того же числа. В таком случае существует некая конечная программа на Флупе (то есть, некая общерекурсивная функция), которая будет давать точно такие же ответы, как и разумное существо.

Основная идея здесь состоит в том, что любой мыслительный процесс, делящий числа на две категории, может быть описан в форме программы на Флупе. Интуиция утверждает, что других методов, чем имеющиеся во Флупе, не существует, и что невозможно использовать эти методы иначе, чем путем бесчисленных повторений (которые Флуп допускает). Тезис Черча-Тюринга невозможно доказать как Теорему математики – это всего лишь гипотеза о процессах протекающих в человеческом мозгу.

Версия Коллективных Процессов

Некоторые люди могут подумать, что предыдущая версия утверждает слишком много. Такие люди могли бы сформулировать свои возражения следующим образом: «Может существовать некто, подобный Крабу, – некто с почти мистической математической интуицией, кто при этом не умеет объяснить своих удивительных способностей. Возможно, что в мозгу такого человека происходят процессы, непредставимые на Флупе.» Идея заключается в том, что, возможно в нас заложен подсознательный потенциал для совершения вещей, превосходящих сознательные процессы – и это невозможно выразить с помощью элементарных операций Флупа. Для тех, кто выдвигает подобные возражения, мы сформулируем более слабую версию Тезиса, различающую индивидуальные и коллективные мыслительные процессы:

ТЕЗИС ЧЁРЧА-ТЮРИНГА, ВЕРСИЯ КОЛЛЕКТИВНЫХ ПРОЦЕССОВ: Предположим, что существует метод, при помощи которого разумное существо может разделять числа на два класса. Предположим также, что этот метод всегда приводит к ответу за конечный отрезок времени и что этот ответ – всегда один и тот же для одного и того же числа. Если этот метод может быть эффективно сообщен одним разумным существом другому при помощи языка, то в таком случае существует некая конечная программа на Флупе (то есть, некая общерекурсивная функция), которая будет давать точно такие же ответы, как и разумное существо.

Эта версия утверждает, что коллективные методы подвержены «Флупификации», но обходит молчанием индивидуальные методы. Она не говорит, что их невозможно «Флупифицировать», но, по крайней мере, оставляет эту возможность открытой.

Шриниваса Рамануян

Как доказательство против более сильных версий Тезиса Чёрча-Тюринга давайте рассмотрим случай знаменитого индийского математика первой четверти двадцатого века, Шринивасы Рамануяна 1887-1920). Рамануян (рис. 105) родился на юге Индии, в Тамилнаду; он немного изучал математику в старших классах школы. Однажды кто-то, заметив способности мальчика к математике, подарил ему слегка устаревший учебник по математическому анализу, который Шриниваса немедленно проглотил (разумеется, не в буквальном смысле!). После этого Рамануян начал собственные исследования в этой области, и к тому времени, когда ему исполнилось двадцать три года, у него на счету было несколько открытий, которые казались ему важными. Он не знал, к кому обратиться, но однажды он услышал о некоем профессоре математики по имени Г. X. Харди, живущем в далекой Англии. Рамануян записал свои лучшие результаты и послал эту пачку листков ничего не подозревавшему Харди вместе с письмом, которое друзья помогли ему написать по-английски.

Ниже следуют некоторые отрывки, описывающие реакцию Харди, когда он получил эту «посылку»:

Вскоре мне стало ясно, что Рамануян знал гораздо более общие теоремы, но держал их в рукаве… [Некоторые формулы] меня совершенно поразили – я никогда не видел ничего подобного. Одного взгляда на них достаточно, чтобы понять, что они написаны математиком высшего класса. Они, скорее всего, истинны, поскольку никто не может обладать достаточным воображением, чтобы высосать из пальца нечто подобное. Наконец,… автор письма был, по-видимому, абсолютно честен, поскольку гениальные математики встречаются чаще, чем шарлатаны, обладающие таким невероятным талантом.[49]49
  James R. Newman «Srinivasa Ramanujan» В сборнике James R. Newman, ed «The World of Mathematics» (New York Simon and Schuster, 1956) Toм I, стр. 372-3


[Закрыть]

Результатом этой переписки был приезд Рамануяна в Англию в 1913 году по приглашению Харди и начало тесного сотрудничества между ними, которое было прервано преждевременной смертью Рамануяна от туберкулеза в возрасте тридцати трех лет.

Среди прочего, Рамануян отличался от большинства математиков тем, что его доказательствам не хватало строгости. Иногда он просто называл результат, полученный, по его словам, чисто интуитивно, без какого бы то ни было сознательного поиска. Часто Рамануян говорил, что богиня Намагири сообщила ему ответ во сне. Это повторялось снова и снова, и самое удивительное – даже мистическое – заключалось в том, что многие из его «интуитивных теорем» оказывались ложными! В связи с этим интересен парадокс, заключающийся в том, что иногда событие, которое, как кажется, должно было бы добавить доверчивым людям немного скептицизма, в действительности вызывает обратный эффект. Оно затрагивает эти доверчивые души, соблазняя их намеками на некие удивительные, иррациональные свойства человеческой природы. Именно это произошло с ошибками Рамануяна; многие образованные люди, жаждущие поверить в чудеса, увидели в интуитивных способностях Рамануяна доказательство его мистического прозрения и знания Истины – и его ошибки только усилили их веру.

Возможно, что этому способствовал тот факт, что Рамануян происходил из самой отсталой части Индии, где факиризм и подобные мистические индийские ритуалы практиковались тысячелетиями – и продолжали встречаться во времена Рамануяна, возможно, чаще, чем высшая математика. И его ошибки, вместо того, чтобы подтвердить, что он – всего лишь человек, парадоксальным образом породили веру в то, что заблуждения Рамануяна на самом деле являлись «правотой высшего порядка», некой «восточной истиной», недоступной западному уму. Какая замечательная, почти неотразимая мысль! Даже Харди, кто должен был бы первым опровергнуть идею о мистических способностях Рамануяна, однажды написал: «И все же я не уверен, что, каким-то образом, его промах не является более замечательным, чем любой из его успехов».

Другой выдающейся чертой Рамануяна была его «дружба с целыми числами», по выражению его коллеги Литтлвуда. Многие математики до какой-то степени разделяют эту черту, но у Рамануяна она была развита до крайности. Об этой его характеристике ходили легенды. Одна из них была рассказана Харди:

Однажды я пришел навестить его, когда он лежал больной в Путни. Я сказал ему, что приехал на такси с номерным знаком 1729 и заметил, что в этом номере нет ничего интересного и что как бы это не оказалось дурным предзнаменованием. «Напротив», – ответил он, – «это очень интересный номер: это наименьшее, число, которое можно выразить как сумму двух кубов двумя разными способами». Я, естественно, спросил его, знает ли он ответ на аналогичную задачу для четвертой степени, на что он после минутного раздумья ответил, что он точно не знает, но что ему кажется, что это будет очень большое число.[50]50
  Там же, стр. 375


[Закрыть]

Ответом на эту задачу оказывается:

635 318 657 = 1344 + 1334 = 1584 + 594

Читатель может попробовать решить аналогичную задачу для квадратов, что намного легче.

Интересно подумать, почему Харди сразу перешел к четвертой степени. В конце концов, существуют несколько других естественных обобщений уравнения:

u 3 + v 3 = x 3 + у 3

Например, можно подумать о том, как представить некое число в виде суммы двух кубов тремя различными способами:

r 3 + s 3 = u 3 + v 3 = x 3 + у 3

или использовать три различных куба:

u 3 + v 3 + w 3 = x 3 + у 3 + z 3

r 4 + s 4 + t 4 = u 4 + v 4 + w 4 = x 4 + у 4 + z 4

Однако в каком-то смысле задача Харди оказывается наиболее «математической». Возможно ли будет когда-либо запрограммировать это чувство математической эстетики?

Другой рассказ о Рамануяне взят из его биографии, написанной его соотечественником С. Р. Ранганатаном. Этот рассказ носит название «Прозрение Рамануяна» и принадлежит его товарищу по Кембриджскому университету, П. С. Махаланобису, также выходцу из Индии:

Однажды я пришел к нему в комнату, чтобы пообедать вместе. Дело было некоторое время спустя после начала Первой мировой войны. В руках у меня был экземпляр ежемесячника «Странд Магазин», в котором в то время печатались всяческие головоломки для читателей. Рамануян, стоя у плиты, размешивал что-то в кастрюльке. Я сидел у стола, листая журнал; вдруг меня заинтересовала задача об отношении двух чисел. Я забыл подробности и помню только тип задачи. Два британских офицера были расквартированы в Париже в двух различных домах на длинной улице; номера этих домов соотносились определенным образом, и задача заключалась в том, чтобы их найти. На вид проблема казалась нетрудной – пользуясь методом проб и ошибок, я нашел ответ за несколько минут.

МАХАЛАНОБИС (шутливо): Вот тут для вас задача.

РАМАНУЯН (не переставая мешать): Что за задача?

Я прочитал ему задачу.

РАМАНУЯН: Записывайте ответ (диктуя непрерывную дробь).

Первый член в дроби был равен моему ответу, остальные представляли собой следующие решения. При этом число домов на улице росло до бесконечности.

Я был поражен.

МАХАЛАНОБИС: Неужели вы решили это сразу?

РАМАНУЯН: Разумеется. Как только я услышал задачу, я сразу понял, что ответом должна быть непрерывная дробь; тогда я подумал: «Какая именно?» – и тут же увидел решение. Это было очень просто.[51]51
  S. R. Ranganathan «Ramanujan» стр. 81-2


[Закрыть]

После смерти Рамануяна Харди, как его ближайшего сотрудника, часто спрашивали, не было ли в стиле мышления Рамануяна каких-либо мистических и необычных элементов. Вот один из ответов Харди:

Меня часто спрашивают, не было ли у Рамануяна какого-нибудь особого секрета, не пользовался ли он методами иного типа, отличными от методов других математиков и было ли его мышление действительно необычным. Не могу ответить на эти вопросы с достаточной уверенностью, но лично я в это не верю. Я считаю, что все математики в основном думают примерно одинаково, и что Рамануян не являлся исключением.[52]52
  Newman, стр 375


[Закрыть]

Здесь Харди формулирует свою собственную версию Тезиса Чёрча-Тюринга. В перифразе она звучит так:

ТЕЗИС ЧЁРЧА-ТЮРИНГА, ВЕРСИЯ ХАРДИ: На низшем уровне все математики изоморфны.

Это не приравнивает математический потенциал математиков к потенциалу общерекурсивных функций; для этого надо лишь показать, что умственные способности какого-либо одного математика не более общие, чем рекурсивные функции. Тогда, если вы принимаете Версию Харди, то вы должны принять ее для всех математиков. Далее Харди сравнивает Рамануяна с людьми, обладающими удивительной способностью к вычислениям.

Его память и его способности к вычислениям были весьма необычны, но их нельзя было назвать «ненормальными». Если ему нужно было перемножить два больших числа, он делал это обычным способом – правда, с необычной скоростью и аккуратностью – но не быстрее и не аккуратнее, чем любой другой математик, кто от природы быстро соображает и имеет опыт в вычислениях.[53]53
  Там же, стр. 375


[Закрыть]

Харди описывает то, что казалось ему выдающимися чертами интеллекта Рамануяна:

Кроме памяти, терпения и способности к вычислениям, он обладал такой способностью к обобщениям и к быстрому изменению своих гипотез и таким чувством формы, что в то время ему не было равных в его области.[54]54
  Там же, стр. 375-6


[Закрыть]

Те места этого отрывка, которые я выделил курсивом, кажутся мне блестящей характеристикой некоторых наиболее тонких и неуловимых черт разума вообще. Харди заключает, с некоторой грустью:

(В его трудах) не было той простоты и неизбежности, которая отличает величайшие математические открытия; они были бы более великими, если бы они были менее странными. Но зато его работы имели нечто, чего не может отрицать никто – они были глубоко и непобедимо оригинальны. Возможно, что он был бы более великим математиком, если бы его «поймали» и «приручили» в юности; он открыл бы много нового и, без сомнения, более важного. С другой стороны, он был бы менее похож на Рамануяна и более – на европейского профессора, и потеря от этого могла быть больше, чем выигрыш.[55]55
  Там же, стр. 376


[Закрыть]

По тому, как романтично говорит Харди о Рамануяне, видно, какое уважение он питал к своему индийскому коллеге.

Рис. 105. Шриниваса Рамануян и одна из его странных индийских мелодий.



«Гениальные идиоты»

Существует еще один тип людей, чьи математические способности кажутся необъяснимыми с рациональной точки зрения – так называемые «гениальные идиоты», могущие производить сложные расчеты в уме (или где бы там ни было) с быстротой молнии. Иоганн Мартин Захарий Дэйз, живший с 1824 по 1861 и работавший для нескольких европейских правительств, был выдающимся примером. Он не только мог перемножить в уме два стозначных числа, но также имел удивительное чувство количества. Он мог сказать, не считая, сколько овец на поле, сколько слов в предложении и так далее, приблизительно до 30 – в отличие от большинства из нас, имеющих это чувство примерно до 6. При этом Дэйз вовсе не был идиотом…

Я не буду пересказывать здесь множество интересных историй о «людях-калькуляторах», поскольку моя цель иная. Но мне кажется важным опровергнуть мнение, что они совершают свои расчеты при помощи неких таинственных, не поддающихся анализу методов. Хотя часто вычислительные способности таких гениев намного превосходят их способности объяснять свои результаты, иногда среди них появляется человек, наделенный и другими талантами. Из наблюдений таких людей и из работ психологов можно сделать заключение, что в голове людей-калькуляторов не происходит ничего сверхъестественного – просто их мозг совершает промежуточные действия очень быстро и уверенно, подобно умелому атлету, быстро и грациозно делающему сложные упражнения. Свои ответы они получают не благодаря мгновенному озарению (хотя субъективно некоторым из них может казаться именно так), но, как и все мы, при помощи последовательных вычислений – то есть при помощи Флупо– или Блупоподобных действий.

Одним из наиболее очевидных подтверждений того, что не существует никакого мистического «прямого телефона к Богу», является тот факт, что, по мере того как числа становятся больше, ответы становятся медленнее. Если бы ответы исходили от Бога или некоего «оракула», этого бы не происходило. Было бы интересно составить некий график, соотносящий время раздумий «человека-калькулятора» с величиной данных ему чисел и количеством требуемых операций, и вычислить по нему алгоритмы этого процесса.

Изоморфная Версия Тезиса Чёрча-Тюринга

Это вплотную подводит нас к усиленной стандартной версии Тезиса Чёрча-Тюринга:


    Ваша оценка произведения:

Популярные книги за неделю