355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Даглас Хофштадтер » ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда » Текст книги (страница 49)
ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда
  • Текст добавлен: 6 октября 2016, 04:15

Текст книги "ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда"


Автор книги: Даглас Хофштадтер


Жанры:

   

Философия

,

сообщить о нарушении

Текущая страница: 49 (всего у книги 64 страниц)

Теорема Тарского

Теперь давайте рассмотрим результат Тарского. Тарский хотел выяснить, существует ли способ выразить в ТТЧ понятие теоретико-численной истины. То, что теоремность можно выразить (но не представить), мы уже видели; Тарский задался аналогичным вопросом в приложении к понятию истины. Точнее, он хотел определить, есть ли формула ТТЧ с единственной свободной переменной а, которая может быть интерпретирована как:

«Формула, чей Гёделев номер – а, выражает истину.»

Предположим, вместе с Тарским, что такая формула существует. Для краткости назовем ее ISTIN{a}. Теперь используем метод диагонализации и построем высказывание, утверждающее о себе самом, что оно ложно. Для этого мы точно повторим метод Гёделя, начиная с «дяди»:

Ea:<~ISTIN{a}ΛARITHMOQUINE{a'',a}>

Предположим, что Гёделев номер этого дяди – t. Арифмоквайнируем теперь самого дядю и получим формулу Тарского Т:

Ea:<~ISTIN{a}ΛARITHMOQUINE{SSS...SSS/a'',a}>

.                                          |______|  S повторяется t раз

В интерпретации эта формула читается как:

«Арифмоквайнификацией t является ложное утверждение.»

Но, поскольку арифмоквайнификация t – это собственный Гёделев номер Т, формула Тарского Т в точности воспроизводит парадокс Эпименида внутри ТТЧ, говоря о себе «Я – ложь». Разумеется, это ведет к заключению, что это высказывание одновременно является и истинным и ложным (либо ни тем, ни другим). Возникает интересный вопрос: что плохого в воспроизведении парадокса Эпименида? Какие от этого могут быть последствия? В конце концов, этот парадокс уже существует в русском языке, и русский язык пока от этого не погиб.

Магиификраб невозможен

Ответ заключается в том, что здесь имеются два уровня значения. Один из них мы только что использовали; другой уровень – это утверждение теории чисел. Если бы формула Т Тарского действительно существовала, то она являлась бы высказыванием о натуральных числах, которое одновременно и истинно и ложно! Именно в этом вся загвоздка. В то время как мы можем отмахнуться от парадокса Эпименида в русском языке, сказав, что его тема (его собственная истинность) – это нечто абстрактное, дело меняется, когда речь идет о конкретных высказываниях о числах! Если мы решим, что такая путаница не должна существовать, то нам придется отказаться от предположения о существовании формулы ISTIN{a}. Следовательно, в ТТЧ невозможно выразить понятие истинности. Заметьте, что это делает истину еще более неуловимым понятием, чем теоремность, поскольку та, по крайней мере, выразима. Те же самые аргументы приводят нас к заключению, что:

крабий ум не способен распознавать истину, точно так же как он не способен распознавать теоремность ТТЧ.

Первое противоречило бы Теореме Тарского-Чёрча-Тюринга («Не существует разрешающей процедуры для арифметических истин»), а второе – Теореме Чёрча.

Два вида формы

Интересно подумать о значении слова «форма» в приложении к построению сложных фигур. Например, что заставляет нас признать картину красивой? «Форма» линий и точек на нашей сетчатке? По-видимому, так и должно быть, поскольку именно в этой форме картина передается анализирующим механизмам у нас в голове; однако сложность обработки этих данных вызывает у нас чувство, что мы смотрим на что-то большее, чем простая двухмерная поверхность, – мы отвечаем на некое внутреннее значение картины, ее многомерный аспект, заключенный внутри этих двух измерений. Здесь важно слово «значение». Наш разум оснащен переводчиками, производящими на основе двухмерных схем многомерные значения, такие сложные, что мы не можем их описать сознательно. То же самое можно сказать и о нашей реакции на музыку.

Субъективно может показаться, что механизм, извлекающий внутреннее значение, совершенно отличен от механизма, проверяющего наличие или отсутствие некоего определенного качества, такого, например, как правильно-сформированность строчек. Возможно, это потому, что внутреннее значение – это что-то, что проявляется со временем.

Из этого следует, что в схемах, которые мы анализируем, можно говорить о двух видах формы. Прежде всего, там существуют такие качества, как правильно-сформированность, наличие которой можно определить с помощью предсказуемо конечных тестов, как в программах Блупа. Я предлагаю называть это синтаксическими характеристиками формы. Интуитивно можно сказать, что синтаксические аспекты формы лежат близко к поверхности и, таким образом, не создают многомерных познавательных структур.

С другой стороны, семантические характеристики формы не могут быть проверены с помощью предсказуемо конечных тестов; для них требуются открытые тесты. Примером такого аспекта, как мы видели, является теоремность строчек ТТЧ. Мы не можем, использовав некий стандартный тест, установить, является ли данная строчка теоремой ТТЧ. Почему-то тот факт, что здесь идет речь о значении, важным образом соотносится с трудностью определения теоремности ТТЧ. Акт извлечения значения из строчки означает, по сути, установление всех связей данной строчки с остальными строчками, и это, в свою очередь, выводит нас на бесконечную дорогу. Таким образом, «семантические» характеристики соотносятся с открытым поиском, поскольку – и это очень важно – значение объекта не заключается внутри самого объекта. Это не означает, что никакой объект вообще никогда невозможно понять, поскольку со временем его значение становится все яснее. Однако некоторые аспекты значения останутся скрыты очень надолго.

Значение вытекает из отношения к познавательным структурам

Давайте перейдем от строчек ТТЧ к музыкальным произведениям. Если вам так больше нравится, можете продолжать употреблять слово «строчка» в применении к музыкальным пьесам. Это обсуждение весьма общее, но мне кажется, что его смысл легче передать на примере музыки. Значение музыкального произведения странным образом дуалистично: с одной стороны оно тесно соотносится с огромным количеством других вещей в мире, а с другой стороны, оно явно выводится из самой музыки, то есть, оно должно быть расположено где-то внутри музыкального произведения.

Решение этой дилеммы включает понятие интерпретатора – механизма, извлекающего значение. (Под «интерпретатором» в этом контексте я подразумеваю не музыканта-исполнителя, а механизм в мозгу у слушателя, извлекающий значение из пьесы, которую тот слышит.) Интерпретатор может заметить многие важные аспекты значения пьесы, слушая ее в первый раз; это, по-видимому, подтверждает гипотезу о том, что значение находится в самой пьесе и просто извлекается из нее. Но это только полдела. Музыкальный интерпретатор действует, создавая многомерную мысленную структуру – внутреннее представление о пьесе, – которую он пытается соотнести с ранее известной информацией, находя связи с другими многомерными мысленными структурами, в которых закодирован предыдущий опыт. По мере того, как происходит этот процесс, полное значение пьесы постепенно выходит на поверхность. В действительности, могут пройти годы прежде чем мы почувствуем, что наконец-то поняли сокровенное значение определенной пьесы. Это, как кажется, поддерживает гипотезу о том, что значение музыкального произведения также находится и вне его и что роль интерпретатора – постепенно собрать это значение воедино.

Без сомнения, истина лежит где-то посередине значения – как музыкальное, так и лингвистическое – до какой-то степени локализованы только отчасти. Используя терминологию главы VI, мы можем сказать, что музыкальные произведения и куски текста отчасти являются триггерами, и отчасти – носителями явного значения. Яркая иллюстрация этого дуализма – табличка со старинной надписью значение здесь частично хранится в библиотеках и мозгах ученых всего мира, и в то же время явно содержится в самой табличке.

Таким образом, еще один способ охарактеризовать различие между «синтаксическими» и «семантическими» свойствами (в только что описанном смысле) заключается в том, что синтаксические свойства безусловно находятся внутри самого объекта, в то время как семантические свойства зависят от отношений этого объекта с потенциально бесконечным множеством других объектов и, следовательно, не являются полностью локализуемыми В синтаксических свойствах в принципе нет ничего спрятанного и загадочного, в то время как спрятанность – суть семантических свойств. Именно поэтому я предложил различать между «синтаксическим» и «семантическим» аспектами зрительных образов.

Красота, Истина и Форма

А как насчет красоты? Согласно вышеизложенным идеям, это, безусловно, не синтаксическое свойство Семантическое ли это свойство? Свойство ли это, скажем, отдельной картины? Давайте рассмотрим этот вопрос в применении к единственному зрителю С каждым из нас бывало, что то, что когда-то казалось красивым, некоторое время спустя выглядит серым и скучным, а в промежутках, возможно, кажется нейтральным Значит ли это, что красота – свойство преходящее? Можно повернуть ту же ситуацию другим концом и сказать, что изменился зритель. Но, имея в виду определенного зрителя, определенную картину и определенный момент времени, можно ли утверждать, что красота – качество, которое либо присутствует, либо нет? Или же красота неопределима и неуловима?

Возможно, что в каждом человеке в зависимости от обстоятельств могут действовать различные уровни интерпретаторов. Эти разные интерпретаторы выдают разные значения, устанавливают разные связи и обычно оценивают все глубокие аспекты по-разному. Из-за этого понятие красоты кажется почти неопределимым. Именно по этой причине я решил связать красоту в Диалоге «Магнификраб» с истиной, которая, как мы видели, является одним из самых неуловимых понятий математики.

Нейронный субстрат парадокса Эпименида

В заключение этой главы я хочу привести некоторые идеи, касающиеся основной проблемы истины, парадокса Эпименида. Мне кажется, что воспроизведение Тарским этого парадокса в ТТЧ позволяет глубже понять его природу в русском языке. Тарский нашел, что в его версии парадокса есть два разных уровня. На одном уровне это суждение о себе самом, которое было бы истинно, если бы оно было ложно и ложно, если бы оно было истинно. На другом уровне – который я буду называть арифметическим субстратом – это суждение о целых числах, истинное тогда и только тогда, когда оно ложно.

Почему-то это последнее раздражает нас гораздо больше первого. Некоторые люди просто отмахиваются от первого уровня, как от «бессмыслицы», из-за его автореферентности. Но отмахнуться от парадоксального суждения о целых числах невозможно. Суждения о целых числах просто не могут быть одновременно и истинными, и ложными.

Мне кажется, что превращение Тарским парадокса Эпименида учит нас искать субстрат также в языковой версии парадокса. В арифметической версии высший уровень значения опирается на низший арифметический уровень. Аналогично, автореферентное суждение, которое мы воспринимаем («Это высказывание ложно») может являться только высшим уровнем некой конструкции с двумя уровнями. Что же тогда играет здесь роль низшего уровня? Какой механизм порождает язык? Мозг. Значит, необходимо искать нейронный субстрат парадокса Эпименида – низший уровень противоречащих друг другу физических событий, то есть событий, которые не могут произойти одновременно. Если такой физический субстрат существует, то тогда понятно, почему нам не удается разрешить парадокс Эпименида, – наш мозг пытается сделать нечто невозможное.

Что же это за конфликтующие физические события? Предположительно, когда вы слышите парадокс Эпименида, ваш мозг «кодирует» это предложение как внутреннюю конструкцию взаимодействующих символов. После этого он пытается классифицировать предложение как «истинное» или «ложное». В процессе этого определения некоторые символы обязательно должны взаимодействовать. (Предположительно это происходит при обработке любого предложения.) Если при этом физически прерывается процесс кодификации предложения – нечто, чего обычно не происходит, – тогда начинаются неприятности, поскольку это все равно что пытаться заставить патефон проигрывать собственную разбивальную музыку. Мы описали происходящий конфликт в физических терминах, а не в терминах нейронов. Если наш анализ правилен, то мы сможем продолжить обсуждение, когда нам станет известно, как участвуют нейроны и схемы их возбуждения в построении символов в мозгу и каким образом там «кодируются» предложения.

Этот набросок нейронного субстрата парадокса Эпименида наводит (по-крайней мере, меня) на мысль о том, что решение языковой версии парадокса Эпименида может быть подобно решению версии Тарского – то есть, что нам придется отказаться от мысли, что мозг может когда-либо с точностью представить понятие истины. Новым здесь является предположение, что полное воспроизводство истины невозможно по физическим причинам, поскольку оно включало бы физически несовместимые мозговые процессы.

ШРДЛУ

Однажды Ета Ойн заходит в лабораторию искусственного интеллекта Массачусетского Института Технологии, где она встречается с блестящей молодой программой по имени ШРДЛУ. Оказывается, что ШРДЛУ сгорает от желания найти кого нибудь кто согласился бы опробовать недавно созданное человеческое существо под названием «д-р Тире-Рвинога». ШРДЛУ объясняет, что д-р Тире-Рвинога довольно сообразителен в ограниченной области анализа бесед об игрушечной мире – мире, состоящем из кубиков разных размеров, форм и цветов. Эти кубики лежат на столе, и их можно брать и перекладывать с места на место. Ета Ойн, заинтересовавшись, начинает печатать команды для ШРДЛУ, в то время как д-р Тире-Рвинога, стоя за ее спиной, комментирует происходящее, как и было обещано.[59]59
  Этот Диалог взят из статьи Terry Winograd. «A Procedural Model of Language Understanding» в сборнике R Schank and К Colby, eds «Computer Models of Thought and Language», стр. 155-66. Изменены только имена собеседников.


[Закрыть]

1. Ета Ойн: Возьми большой красный кубик (См. рис. 110)

ШРДЛУ: ХОРОШО

Д-р Тире-Рвинога: ШРДЛУ отвечает «хорошо», когда она выполняет команду. Чтобы взять красный кубик, ей пришлось его освободить, найдя место для зеленого кубика и положив его туда.

2. Ета Ойн: Возьми эту пирамиду.

ШРДЛУ: Я НЕ ПОНИМАЮ, КОТОРУЮ ПИРАМИДУ ВЫ ИМЕЕТЕ В ВИДУ.

Д-р Тире-Рвинога: На столе стоят три пирамиды, а ШРДЛУ знает, что предложения со словом «этот» относятся к определенному предмету, который говорящий имеет в виду.


Рис. 110. «Возьми большой красный кубик» (Terri Winograd «Understanding Natural Language», cтp. 8)

3. Eтa Ойн: найди кубик выше, чем тот, что ты держишь, и положи его в коробку. (См. рис. 111.)

Д-р Тире-Рвинога: ШРДЛУ должна сообразить, к чему относятся слова «тот» и «его», а также путем умозаключений вывести, какой именно кубик она держит.

ШРДЛУ: ПОД «ЕГО» ВЫ, ВЕРОЯТНО, ИМЕЕТЕ В ВИДУ КУБИК, КОТОРЫЙ ВЫШЕ, ЧЕМ ТОТ, ЧТО Я ДЕРЖУ.

Д-р Тире-Рвинога: «Его» могло относиться к одному из двух кубиков: к выбранному кубику или же к кубику, который держит ШРДЛУ. В ШРДЛУ запрограммированны методы для выбора между ними.

ШРДЛУ: ХОРОШО.

Д-р Тире-Рвинога: ШРДЛУ приходится положить красный кубик, чтобы взять более высокий голубой кубик.


Рис. 111. «Найди кубик выше, чем тот, что ты держишь, и положи его в коробку». (Terri Winograd, «Understanding Natural Language», стр. 9)

4. Ета Ойн: Что находится в коробке?

ШРДЛУ: ГОЛУБАЯ ПИРАМИДА И ГОЛУБОЙ КУБ.

5. Ета Ойн: На что опирается эта пирамида?

Д-р Тире-Рвинога: Раньше ШРДЛУ ответила на слова «эта пирамида», сказав «Я НЕ ПОНИМАЮ, КОТОРУЮ ПИРАМИДУ ВЫ ИМЕЕТЕ В ВИДУ.» Теперь она подразумевает, что вы имеете в виду только что упомянутую пирамиду.

ШРДЛУ: НА КОРОБКУ.

6. Ета Ойн: Сколько кубиков находится не в коробке?

Д-р Тире-Рвинога: ШРДЛУ понимает стандартные отрицания, такие как «нет» и «не», в каком бы контексте они не появлялись.

ШРДЛУ: ЧЕТЫРЕ.

7. Ета Ойн: Правда ли, что по крайней мере один из них уже, чем тот, который я попросила тебя взять?

Д-р Тире-Рвинога: Выражение «по крайней мере один из них» должно быть проанализировано по отношению к предыдущему вопросу; «тот, который» должно также относиться к кубикам. Группы существительных могут иметь сложное число, как например «по крайней мере, один», «больше трех», «ровно семь» и так далее. Память о прошлых событиях используется, чтобы понять выражение «тот, который я попросила тебя взять». Обратите внимание на сложную синтаксическую структуру, в которой слово «тот» является дополнением придаточного предложения, находящегося двумя уровнями глубже. Программа синтаксического анализа ШРДЛУ включает грамматику, обобщенно решающую такие проблемы.

ШРДЛУ: ДА. КРАСНЫЙ КУБ.

8. Ета Ойн: Он на что-то опирается?

ШРДЛУ: ДА. НА СТОЛ.

Д-р Тире-Рвинога: ШРДЛУ умеет определять, какая информация важна для собеседника, даже если тот не спрашивает об этом прямо.

9. Ета Ойн: Может ли стол брать кубики?

ШРДЛУ: НЕТ.

Д-р Тире-Рвинога: Семантические правила ШРДЛУ включают знания о том, что «брать» что-либо может только некто одушевленный, и что стол – предмет неодушевленный.

10. Ета Ойн: Может ли пирамида стоять на кубике?

ШРДЛУ: ДА.

Д-р Тире-Рвинога: Дедуктивная система ШРДЛУ находит пример подобного положения, так что она знает, что это возможно.

11. Ета Ойн: Может ли пирамида стоять на пирамиде?

ШРДЛУ: Я НЕ ЗНАЮ.

Д-р Тире-Рвинога: Этот вопрос имеет смысл, но такого примера перед ШРДЛУ нет. Она не может рассмотреть детали своих программ, несмотря на то, что от них в конечном счете зависят ее возможности.

12. Ета Ойн: Положи одну пирамиду на другую.

ШРДЛУ: Я НЕ МОГУ.

Д-р Тире-Рвинога: ШРДЛУ попыталась это сделать, но у нее ничего не получилось.

13. Ета Ойн: Голубая пирамида моя.

ШРДЛУ: Я ПОНИМАЮ.

Д-р Тире-Рвинога: ШРДЛУ заранее известна вся информация о цвете, форме, размере и расположении этих объектов. О принадлежности этих предметов ей надо сообщать. Она сохраняет эту информацию в своей базе данных.

14. Ета Ойн: Мне принадлежат все не красные кубики, но мне не принадлежит ничего, что поддерживало бы пирамиду.

ШРДЛУ: Я ПОНИМАЮ.

Д-р Тире-Рвинога: Результатом понимания этих предложений является создание новых процедур в ШРДЛУ, которые выясняют, что вам принадлежит.

15. Ета Ойн: Принадлежит ли мне эта коробка?

ШРДЛУ: НЕТ.

Д-р Тире-Рвинога: На коробку опирается все, что в ней находится, включая пирамиду.

16. Ета Ойн: Принадлежит ли мне что-нибудь из находящегося в коробке?

ШРДЛУ: ДА. ДВЕ ВЕЩИ: ГОЛУБОЙ КУБИК И ГОЛУБАЯ ПИРАМИДА.

17. Ета Ойн: He поставишь ли ты друг на друга оба красных кубика и зеленый куб или пирамиду? (См. рис. 112)

ШРДЛУ: ХОРОШО.

Д-р Тире-Рвинога: Логические связки такие как «и», «или» и так далее, понимаются как на уровне грамматики, так и на уровне семантики. Команда выполняется, даже если она выглядит как вопрос. Эта команда выполняется в несколько шагов. ШРДЛУ кладет зеленый куб на большой красный кубик (при этом она выбирает тот зеленый куб, на котором ничего не стоит), затем убирает маленькую пирамиду с маленького красного куба, чтобы иметь возможность использовать его для окончания постройки требуемой башни.


Рис. 112. «Не поставишь ли ты друг на друга оба красных кубика и зеленый куб или пирамиду?» (Terri Winograd, «Understanding Natural Language», стр. 12)

18. Ета Ойн: Какой куб лежит на столе?

ШРДЛУ: БОЛЬШОЙ ЗЕЛЕНЫЙ КУБ НА КОТОРОМ СТОИТ КРАСНАЯ ПИРАМИДА.

Д-р Тире-Рвинога: Обычно ШРДЛУ удовлетворилась бы фразой «БОЛЬШОЙ ЗЕЛЕНЫЙ КУБ», но поскольку вы спросили «какой куб», она должна быть более точной, называя его. В ней имеются также процедуры для опускания существительных или замены их место имениями, чтобы сделать ее речь более естественной.

19. Ета Ойн: Есть ли большой кубик за пирамидой?

ШРДЛУ: ДА. ТРИ ИЗ НИХ. БОЛЬШОЙ КРАСНЫЙ, БОЛЬШОЙ ЗЕЛЕНЫЙ и БОЛЬШОЙ ГОЛУБОЙ.

20. Ета Ойн: Положи маленький на зеленый кубик, на котором стоит пирамида.

Д-р Тире-Рвинога:«Маленький» должно соотноситься с вашей предыдущей фразой «большой кубик», так что это значит «маленький кубик».

ШРДЛУ: ХОРОШО.

21. Ета Ойн: Поставь на него наименьшую пирамиду.

Д-р Тире-Рвинога: Слова типа «наименьший» отсутствуют в словаре ШРДЛУ, но она выводит их значение из корней других слов, как, например, меньше. Чтобы исполнить эту команду, ШРДЛУ сравнивает размер всех пирамид.

ШРДЛУ: ХОРОШО.

22. Ета Ойн: Сколько вещей стоит на зеленых кубах?

ШРДЛУ: Я НЕ СОВСЕМ ПОНИМАЮ, ЧТО ВЫ ИМЕЕТЕ В ВИДУ ПОД «НА» ВО ФРАЗЕ «НА ЗЕЛЕНЫХ КУБАХ». ВЫ ХОТИТЕ СКАЗАТЬ:

1 – ПРЯМО НА ПОВЕРХНОСТИ,

2 – ГДЕ ЛИБО НА НИХ?

Д-р Тире-Рвинога: В предыдущем предложении это выражение было интерпретировано без проблем, так как его смысл был ясен из контекста. В этом случае эвристика для ликвидации двусмысленности не находит четкого решения и ШРДЛУ приходится просить у вас дополнительную информацию. При этом она использует перифразы словарных определений слова «на». Подобного разъяснения она может попросить также тогда, когда ей неясно значение местоимений, как, например, «это» или «они».

23. Eтa Ойн: Прикасалась ли ты к какой-нибудь еще пирамиде, прежде чем поставить зеленую на маленький куб?

ШРДЛУ: ДА, К ЗЕЛЕНОЙ.

Д-р Тире-Рвинога: ШРДЛУ «вспоминает», какое событие вы имеете в виду; она может соотносить события во времени. Для этого она анализирует глагольные времена и употребление наречий времени – специальные процедуры имеют дело с неправильными глаголами.

24. Ета Ойн: Когда ты ее брала?

ШРДЛУ: КОГДА Я СТРОИЛА БАШНЮ ИЗ КРАСНОГО КУБА И БОЛЬШИХ КУБИКОВ, КРАСНОГО И ЗЕЛЕНОГО.

Д-р Тире-Рвинога: Время здесь описано в терминах задачи, над которой ШРДЛУ работала в тот момент.

25. Ета Ойн: Почему?

Д-р Тире-Рвинога: Чтобы понять подобные вопросы, ШРДЛУ вспоминает предыдущие предложения.

ШРДЛУ: ЧТОБЫ ЕЕ УБРАТЬ.

Д-р Тире-Рвинога: Поскольку ШРДЛУ следит за первоначальным деревом подзадач, она в какой-то мере понимает мотивы собственных действий.

26. Ета Ойн: Почему тебе надо было это сделать?

ШРДЛУ: ЧТОБЫ ОСВОБОДИТЬ КРАСНЫЙ КУБ.

Д-р Тире-Рвинога: «Это» относится к действию, которое ШРДЛУ описывала в своем последнем ответе.

27. Ета Ойн: Зачем ты это освободила?

Д-р Тире-Рвинога: В данном случае «это» означает только что упомянутый куб.

ШРДЛУ: ЧТОБЫ ПОСТАВИТЬ ЕГО НА БОЛЬШОЙ ЗЕЛЕНЫЙ КУБ.

28. Ета Ойн: Зачем ты это сделала?

ШРДЛУ: ЧТОБЫ ПОСТАВИТЬ ДРУГ НА ДРУГА КРАСНЫЙ КУБ, БОЛЬШОЙ ЗЕЛЕНЫЙ КУБИК И БОЛЬШОЙ ЗЕЛЕНЫЙ КУБ.

29. Ета Ойн: Зачем ты это сделала?

ШРДЛУ: ПОТОМУ ЧТО ТЫ МЕНЯ ПОПРОСИЛА.

Д-р Тире-Рвинога: ШРДЛУ помнит, что она делала, и как была выражена команда.

30. Ета Ойн: Как ты это сделала?

Д-р Тире-Рвинога: «Это» относится к действию, упомянутому в последнем вопросе, а не к ответу на него.

ШРДЛУ: ПОЛОЖИВ БОЛЬШОЙ КРАСНЫЙ КУБИК НА СТОЛ; ЗАТЕМ ОТПУСТИВ ЕГО; ЗАТЕМ ПОЛОЖИВ НА НЕГО БОЛЬШОЙ ЗЕЛЕНЫЙ КУБ, ЗАТЕМ ОТПУСТИВ ЭТОТ КУБ, ЗАТЕМ ПОЛОЖИВ КРАСНЫЙ КУБ НА ЭТОТ КУБ; ЗАТЕМ ОТПУСТИВ ЭТОТ КУБ.

Д-р Тире-Рвинога: Это описание подзадач высшего уровня, использованных для достижения основной задачи.

31. Eтаa Ойн: К скольким предметам ты притронулась, пока это делала?

Д-р Тире-Рвинога: Отрезок времени может быть определен с помощью таких слов как «пока».

ШРДЛУ: К ЧЕТЫРЕМ.

32. Ета Ойн: Что стояло на красном кубе до того, как ты начала его освобождать?

ШРДЛУ: ЗЕЛЕНАЯ ПИРАМИДА.

Д-р Тире-Рвинога: Вспоминая, что она сделала, ШРДЛУ может делать выводы о предыдущей ситуации. Вы можете использовать сложные структуры с несколькими придаточными предложениями типа «до того, как ты начала его освобождать».

33. Ета Ойн: Слева от коробки находились тогда пять кубиков.

Д-р Тире-Рвинога: «Тогда» должно относиться ко времени, упомянутом в последней фразе.

ШРДЛУ: НЕТ, ТОЛЬКО ЧЕТЫРЕ КРАСНЫЙ КУБ, ДВА БОЛЬШИХ ЗЕЛЕНЫХ КУБА И БОЛЬШОЙ КРАСНЫЙ КУБИК.

Д-р Тире-Рвинога: Раньше в разговоре информация о «принадлежности» была принята за чистую монету. Но ШРДЛУ знает, что в ее распоряжении – полная информация об основных свойствах предметов. Она проверяет высказывания о предметах и может с ними не согласиться.

34. Ета Ойн: Расположи голубую пирамиду на кубике в коробке.

Д-р Тире-Рвинога: Это предложение синтаксически двусмысленно, но оно понято без труда, поскольку разделение, соответствующее значению «расположи голубую пирамиду, которая стоит на кубике, в коробке» здесь бессмысленно, в то время как «расположи голубую пирамиду на кубике, который стоит в коробке» имеет смысл.

ШРДЛУ: ХОРОШО.

35. Ета Ойн: Есть ли здесь что-нибудь что больше любой пирамиды, но не так широко, как то на чем оно стоит?

Д-р Тире-Рвинога: ШРДЛУ понимает такие слова как «каждый», «никакой», «что-нибудь» и так далее и выражения типа «больше, чем», «такой же широкий, как» и тому подобное. Здесь местоимение «оно» относится к группе существительных в том же предложении, но в программе синтаксического анализа оно находится двумя уровнями выше.

ШРДЛУ: ДА ГОЛУБОЙ КУБИК.

36. Ета Ойн: Расположена ли колокольня.

ШРДЛУ: ПРОСТИТЕ, Я НЕ ЗНАЮ СЛОВА «КОЛОКОЛЬНЯ».

Д-р Тире-Рвинога: ШРДЛУ немедленно перебивает, если она видит не знакомое слово.

37. Ета Ойн: «Колокольня» это башня, построенная из двух зеленых кубов и пирамиды.

Д-р Тире-Рвинога: Кавычки означают, что вы определяете новое слово. Определение добавляется к словарю ШРДЛУ в форме, совместимой с тем, что она уже знает.

ШРДЛУ: Я ПОНИМАЮ.

38. Ета Ойн: Есть ли сейчас здесь колокольни?

ШРДЛУ; НЕТ.

Д-р Тире-Рвинога: Новое определение используется как описание, чтобы отличать колокольни.

39. Ета Ойн: Построй ее.

ШРДЛУ: ХОРОШО.

Д-р Тире-Рвинога: Описания, данного в определении, достаточно для того, чтобы выработать план построения новых объектов, и для того, чтобы их узнавать. Слово «ее» означает «колокольню», и план приводится в исполнение. Сначала освобождается один из больших зеленых кубов – с него снимается красный куб и две пирамиды. Затем два зеленых куба и высокая красная пирамида ставятся друг на друга соответствующим описанию образом.

40. Ета Ойн: Называй наибольший кубик «суперкубиком».

ШРДЛУ: ХОРОШО.

Д-р Тире-Рвинога: Можно давать предметам имена.

41. Ета Ойн: Ты брала суперкубик с тех пор, как мы начали?

ШРДЛУ: ДА.

42. Ета Ойн: Почему ты его уронила?

ШРДЛУ: Я ЗАКЛЮЧАЮ, ЧТО ПОД «НИМ» ВЫ ИМЕЕТЕ В ВИДУ СУПЕРКУБИК. Я НЕ МОГУ ОБЪЯСНИТЬ НЕСЛУЧИВШЕЕСЯ СОБЫТИЕ.

Д-р Тире-Рвинога: В памяти ШРДЛУ нет записи об уроненном блоке. Рутинные процедуры ответа могут распознавать подобные «вопросы на засыпку», предполагающие ложную информацию.

43. Ета Ойн: Есть ли что-нибудь слева от красной пирамиды?

ШРДЛУ: ДА. ЧЕТЫРЕ ПРЕДМЕТА: КОРОБКА, КРАСНЫЙ КУБ, ГОЛУБАЯ ПИРАМИДА И БЛОК, НАЗЫВАЕМЫЙ СУПЕРКУБИКОМ.

Д-р Тире-Рвинога: Когда предмет получает название, оно затем используется в ответах для идентификации этого предмета.

44. Ета Ойн: Спасибо.

ШРДЛУ: ПОЖАЛУЙСТА!

Д-р Тире-Рвинога: Грамматика ШРДЛУ дает ей возможность распознавать идиоматические выражения.


    Ваша оценка произведения:

Популярные книги за неделю