Текст книги "ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда"
Автор книги: Даглас Хофштадтер
Жанры:
Философия
,сообщить о нарушении
Текущая страница: 45 (всего у книги 64 страниц)
Уровни структуры и значения в белках и в музыке
Как вы помните, мы сравнивали рибосому с магнитофоном, мРНК – с пленкой, а белок – с музыкой. Это может показаться надуманным сравнением, однако на самом деле здесь есть некоторые красивые параллели. Музыка – это не просто линейная последовательность нот. Наш разум воспринимает музыку на гораздо более высоком уровне. Мы воспринимаем последовательности нот как музыкальные фразы, фразы – как мелодии, мелодии – как части произведения, а части – как единое целое. Таким же образом, белки работают только как блочные единицы. Хотя вся информация, необходимая для создания третичной структуры, содержится в первичной структуре, она ощущается чем-то меньшим, поскольку ее потенциал реализуется полностью только тогда, когда третичная структура создана физически.
Мы говорим только о первичной и третичной структуре, и читатель может удивиться, куда же подевалась вторичная структура. Она действительно существует так же как и «четвертичная структура». Укладка белка происходит на нескольких уровнях. В некоторых точках цепочки может возникать что-то вроде спирали, называемой альфа спиралью (не спутайте ее с двойной спиралью ДНК). Этот спиральный изгиб белка происходит на уровне низшем, чем его третичная структура. Этот уровень виден на рис. 95. Четвертичную структуру можно сравнить с построением музыкального произведения из отдельных, независимых частей, поскольку она включает соединение нескольких различных полипептидов, во всей красе их третичной структуры, в единую большую структуру. Эти независимые цепочки обычно соединяются друг с другом с помощью не ковалентных, а водородных связей, что опять сравнимо с частями музыкальных произведений, связи которых между собой гораздо слабее их внутренних связей, но которые, тем не менее, составляют органическое целое.
Четыре уровня структуры белка можно также сравнить с четырьмя уровнями картинки МУ (рис. 60) в «Прелюдии» и «Муравьиной фуге».
Глобальная структура – состоящая из букв «М» и «У» – это четвертичная структура рисунка, каждая из этих частей имеет свою третичную структуру, составленную из слов «ХОЛИЗМ» или «РЕДУКЦИОНИЗМ», на вторичном уровне мы находим антонимы этих слов и наконец на первичном уровне мы опять видим слово «МУ», повторяющееся снова и снова.
Полирибосомы и двухтретичные каноны
Мы подошли к другой интересной параллели между магнитофонами, переводящими пленки в музыку, и рибосомами, переводящими мРНК в белки. Представьте себе несколько магнитофонов, поставленных в ряд на одинаковых расстояниях друг от друга. Назовем это расположение «полимагнитофоном». Теперь представьте, что одна и та же пленка проходит по очереди через проигрывающую головку каждого из магнитофонов. Если на пленке записана одна-единственная длинная мелодия, то результатом, разумеется, будет многоголосный канон, где голоса отстают на то время, которое требуется пленке, чтобы попасть с одного магнитофона на следующий. В клетках действительно существуют такие «молекулярные каноны», где множество рибосом расположены в ряд, образуя так называемые полирибосомы – каждая из них «проигрывает» одну и ту же цепочку мРНК, результатом чего являются одинаковые белки в разной степени готовности (см. рис. 97).
Рис. 97. Полирибосома. Цепочка мРНК проходит через одну рибосому за другой, вроде пленки, проигрывающейся последовательно на нескольких расположенных в ряд магнитофонах. Результатом этого являются несколько белков на разных стадиях готовности; это аналогично музыкальному канону, получающемуся, если включать одну и ту же музыку на нескольких магнитофонах по очереди. (Из книги Ленингера «Биохимия».)
Рис. 98. Вот еще более сложная схема. Полирибосомы действуют не на одну, а на несколько цепочек мРНК, параллельно возникающих путем транскрипции ДНК. Результатом является двухтретичный молекулярный канон (Hanawalt & Haynes, «The Chemical Basis of Life», cтp. 271)
Это еще не все, природа идет дальше. Вспомните, что мРНК получена путем транскрипции ДНК, энзимы, отвечающие за этот процесс, называются полимеразами (суффикс «аза» всегда обозначает энзимы). Несколько полимераз РНК часто работают параллельно над одной и той же цепочкой ДНК, в результате чего получается множество отдельных (но одинаковых) цепочек мРНК, отстающих друг от друга на то время, которое необходимо ДНК, чтобы добраться от одной полимеразы РНК до следующей. В то же время, несколько рибосом могут работать над каждой из параллельно выходящих цепочек мРНК. Таким образом, получается нечто вроде двухпалубного или двухтретичного «молекулярного канона» (Рис. 98.). Соответствующий образ в музыке был бы причудливой и забавной сценой: несколько человек, переводящих одновременно одну и ту же рукопись с ключа, который флейтисты не могут прочесть, в тот, который им доступен. Каждый переводчик, заканчивая страницу, передает ее следующему переводчику, а сам начинает работать над новой страницей. Каждая страница прошедшая таким образом через всех переводчиков, попадает к флейтистам, которые играют написанную там мелодию, при этом все флейтисты играют разные места в нотах. Это довольно странная картина дает некоторое представление о том, какие сложные процессы происходят в каждой клетке вашего тела, каждую секунду каждого дня.
Что было в начале – рибосома или белок?
Мы говорили об этих удивительных созданиях по имени рибосомы, но из чего состоят они сами? Как они сделаны? Рибосомы состоят из двух компонентов (1) разные типы белков и (2) другой тип РНК, называемый рибосомной РНК (рРНК). Таким образом, чтобы построить рибосому, необходимо присутствие определенных белков и рРНК. Однако, чтобы у нас были белки, нужны рибосомы, чтобы их сделать! Так как же разорвать этот порочный круг? Что было в начале – рибосома или белок? Кто из них порождает другого? Разумеется прямого ответа на этот вопрос дать нельзя, так как мы всегда можем отступить во времени к членам того же класса, точно так же как в ситуации с курицей и яйцом, пока все не растает в дымке прошлого. Так или иначе, рибосомы состоят из двух частей, большой и маленькой, каждая из которых содержит набор рРНК и белков. По размеру рибосомы похожи на большие белки; они намного меньше цепочек мРНК, которые они используют как входные данные и вдоль которых продвигаются.
Функция белка
Мы уже говорили кое-что о структуре белка – а именно, об энзимах – но еще не сказали ни какое задание они выполняют в клетке, ни как они это делают. Все энзимы являются катализаторами, это значит, что, в некотором смысле, они всего лишь выборочно ускоряют химические процессы в клетке; они не начинают процессы, которые без них не произошли бы. Энзим идет по нескольким из мириадов возможных химических путей. Таким образом, энзимы определяют, какие процессы произойдут, а какие нет – хотя теоретически возможно, что все эти процессы могут произойти и сами собой, без катализатора.
Как действуют энзимы на молекулы клетки? Как мы уже сказали, энзимы – это свернутые полипептидные цепи. В каждом энзиме имеется определенное место, где он присоединяется к другому типу молекул. Это место называется активным центром, и любая молекула, которая к нему присоединяется, называется субстратом. Энзимы могут иметь несколько активных центров и несколько субстратов. Как и в типогенетике, энзимы довольно привередливы в выборе того, над чем они будут работать. Обычно активный центр позволяет присоединиться к энзиму только определенному типу молекулы, хотя иногда молекулы-«самозванцы», одурачив энзим, прицепляются к активному центру и «засоряют» его, отчего энзим теряет свою способность действовать.
Как только энзим и его субстрат оказываются соединены, равновесие электрических зарядов нарушается; электроны и протоны плавают вокруг сцепленных молекул, пока равновесие не восстановится. К тому времени, как это случается, в субстрате могут произойти значительные химические изменения. Примером таких изменений является «сварка», в результате которой небольшая стандартная молекула присоединяется к нуклеотиду, аминокислоте или другой обычной клеточной молекуле; цепочка ДНК может быть разрушена в определенном месте, какая-то часть молекулы может оказаться «отрезанной» и так далее. На самом деле, био-энзимы производят на молекулах операции, весьма похожие на типографские операции, производимые типо-энзимами. Однако большинство энзимов вместо последовательности заданий выполняют только какое-нибудь одно. Другая значительная разница между типоэнзимами и биоэнзимами заключается в том, что типоэнзимы действуют только на цепочки, в то время как биоэнзимы могут действовать на ДНК, РНК, другие белки, рибосомы, клеточные мембраны – короче, на все, что имеется в клетке. Иными словами, энзимы – это универсальные механизмы клеточных операций. Существуют энзимы соединяющие, энзимы разделяющие, энзимы изменяющие, энзимы активирующие и дезактивирующие, энзимы копирующие, чинящие, разрушающие…
Некоторые из самых сложных процессов в клетке включают каскады, в которых одна-единственная молекула запускает производство определенного типа энзима; этот процесс начинается, и энзимы, сходящие «с конвейера», открывают новую химическую дорогу, ведущую к производству второго типа энзима. Этот процесс может продолжаться на трех или четырех уровнях, каждый новый тип энзима, в свою очередь, запускает в действие процесс создания следующего типа энзима. В конце производится поток копий последнего типа энзима, после чего все копии принимаются за свои дела – отрезать «чужую» ДНК, помочь в строительстве какой-нибудь аминокислоты, в которой нуждается клетка, и так далее.
Нужда в достаточно сильной автономной системе
Постараемся описать то, как природа решила типогенетическую головоломку «Какая цепочка ДНК может заведовать собственным воспроизводством?» Безусловно, не каждая цепочка ДНК является авто-репом. Ключ к загадке – в том, что любая цепочка, желающая заняться самовоспроизводством, должна содержать инструкции для сборки именно тех энзимов, которые смогут выполнить эту задачу. Ожидать, что отдельная цепочка ДНК сможет оказаться авторепом, нереально, поскольку для «вытаскивания» этих потенциальных белков из ДНК необходимы не только рибосомы, но и полимеразы РНК, строящие мРНК, которые затем переносятся к рибосомам. Таким образом, мы должны предположить существование «минимальной системы автономии», достаточно сильной, чтобы обеспечить возможность транскрипции и трансляции. Эта минимальная система будет состоять из (1) нескольких белков, таких, например, как полимераза РНК, позволяющая сделать мРНК на основе ДНК, и (2) нескольких рибосом.
Как самовоспроизводится ДНК
Выражения «достаточно сильная система автономии» и «достаточно мощная формальная система» звучат очень похоже и это сходство далеко не случайно. Одно из этих выражений содержит условие для возможного авторепа, а другое – условие для возможного авто-рефа. На самом деле, мы видим здесь одно и то же явление, только в разных одеждах – вскоре мы объясним это подробнее. Но прежде давайте закончим описание того, как может самовоспроизвестись цепочка ДНК.
ДНК должна содержать код тех белков, которые будут ее воспроизводить. Существует очень эффективный и изящный способ воспроизвести двойную спираль ДНК, состоящую из двух комплементарных цепочек. Это происходит в два шага:
(1) отделить цепочки друг от друга,
(2) присоединить новую цепочку к каждой из получившихся отдельных цепочек.
Этот процесс создает две новые двойные цепочки ДНК, каждая из которых идентична первоначальной. Если мы будем пользоваться этой идеей в нашем решении, нам потребуется набор белков, закодированных в самой ДНК, которые смогут выполнить эти два шага.
Считается, что в клетке эти шаги осуществляются одновременно, это происходит координированно и требует присутствия трех основных энзимов эндонуклеазы ДНК, полимеразы ДНК и лигазы ДНК. Первый – «открывающий энзим», разделяющий цепочки, словно две части застежки «молнии». Потом вступают в действие два остальных энзима. Полимераза ДНК – это энзим копирования и передвижения; он медленно передвигается вдоль коротких цепочек ДНК, воспроизводя их дополнения методом, похожим на типогенетический. Для этого он пользуется материалом-сырцом – а именно, нуклеотидами, плавающими вокруг в цитоплазме. Поскольку это действие происходит «скачкообразно» (каждый скачок – это сначала растаскивание цепочек и затем их воспроизводство), возникают короткие «паузы», заполняемые при помощи лигазы ДНК. Этот процесс повторяется снова и снова. Этот отлаженный трехэнзимный аппарат передвигается аккуратно по всей длине молекулы ДНК, пока ее цепочки не окажутся полностью разделенными и скопированными. В результате получаются две копии первоначальной ДНК.
Сравнение метода самовоспроизводства ДНК с квайнированием
Обратите внимание, что для энзимного воздействия на цепочку ДНК совершенно неважно, что информация для этого процесса хранится в самой ДНК; энзимы просто выполняют свои задачи по передвижению символов, точно так же, как правила вывода в системе MIU. Им совершенно все равно то, что в какой-то момент они копируют те самые гены, в которых закодированы они сами. ДНК является для них эталоном, лишенным собственного значения и интереса.
Это можно сравнить с тем, как Квайново высказывание дает инструкции по самовоспроизводству. Там у нас тоже было что-то вроде «двойной цепочки» – две копии одной и той же информации, одна из которых действовала как команда, а другая – как эталон. Процесс в ДНК отдаленно напоминает эту ситуацию, поскольку три энзима (эндонуклеаза ДНК, полимераза ДНК и лигаза ДНК) закодированы только в одной из цепочек, которая, таким образом, действует как программа, в то время как другая цепочка – всего лишь эталон. Это сравнение приблизительно, поскольку в процессе копирования обе цепочки используются как эталоны. Все же эта аналогия очень интересна. Существует биохимическая аналогия дихотомии «использование – упоминание»: когда ДНК используется как последовательность символов для копирования, она похожа на упоминание о типографских символах; когда ДНК диктует, какие команды должны быть выполнены, она похожа на использование типографских символов.
Уровни значения в ДНК
Цепочка ДНК имеет несколько уровней значения; это зависит от того, насколько велик кусок цепочки, который вы рассматриваете, и насколько мощен ваш «аппарат для расшифровки». На низшем уровне каждая цепочка ДНК содержит код эквивалентной цепочки РНК, и необходимой расшифровкой является транскрипция. Разделив ДНК на триплеты и пользуясь «генетической расшифровкой», можно прочитать ДНК как последовательность аминокислот. Это – трансляция (уровнем выше, чем транскрипция). На следующем уровне иерархии ДНК читается как набор белков. Физическое извлечение белков из генов называется «экспрессией генов». В настоящий момент это является наиболее высоким из доступных нам уровней значения ДНК.
Однако в ДНК безусловно имеются и более высокие уровни значения, которые различить труднее. Например, у нас есть все основания полагать, что в ДНК человеческого существа закодированы такие его характеристики, как форма носа, музыкальные способности, быстрота рефлексов и так далее. Возможно ли, в принципе, научиться считывать такую информацию прямо с цепочек ДНК, минуя физический процесс эпигенезиса – извлечения фенотипа из генотипа? Теоретически такое возможно, так как можно вообразить мощнейшую компьютерную программу, симулирующую весь процесс, вплоть до отдельных клеток, отдельных белков, каждой мельчайшей детали, участвующей в воспроизводстве ДНК, клеток… и так далее, до конца лестницы. Результатом работы такой программы псевдо-эпигенезиса было бы описание фенотипа на высшем уровне.
Существует еще одна (очень маловероятная) возможность может быть, нам удастся научиться читать фенотип с генотипа, минуя изоморфную симуляцию физического процесса эпигенезиса и пользуясь вместо этого более простым расшифровывающим механизмом. Это можно назвать «сокращенным псевдо-эпигенезисом». К сожалению, сокращенный или нет, псевдо-эпигенезис пока нам недоступен – за одним замечательным исключением. Тщательный анализ вида Felis Catus показал, что на самом деле возможно прочитать фенотип прямо с генотипа. Читатель, может быть, лучше поймет этот замечательный факт, рассмотрев следующий типичный кусок ДНК Felis Catus:
… САТСАТСАТСАТСАТСАТСАТСАТСАТСАТ …
Ниже показаны уровни считываемое ДНК вместе с названиями разных уровней расшифровки. ДНК может быть прочитана как последовательность:
(1) оснований (нуклеотидов) .... транскрипция
(2) аминокислот .... трансляция
(3) белков (первичная структура) .... генное выражение
(4) белков (третичная структура) .... генное выражение
(5) скоплений белков .... более высокий уровень генного выражения
(6) ???
.
. .... неизвестные уровни, значения ДНК
(N-1) ???
(N) физические, умственные и психологические черты .... псевдо-эпигенез
Центральная Догма
После этой подготовки мы можем приступить к рассмотрению детального сравнения между «Центральной Догмой Молекулярной Биологии» Ф. Крика (ДОГМА I) и «Центральной Догмой Математической Логики» (ДОГМА II), на которой основана Теорема Гёделя. Отображение с одной Догмы на другую показано на рис. 99 и на следующей схеме, вместе они составляют Централизированную Догму.
Обратите внимание, что А и Т (арифметизация и трансляция) образуют пары, также как G и С (Godel и Crick) Математической логике достается сторона пуринов, а молекулярной биологии – пиримидинов.
ДОГМА I ДОГМА II
(Молекулярная биология) (Математическая логика)
цепочки ДНК <==> строчки ТТЧ
цепочки мРНК <==> утверждения Ч
белки <==> утверждения мета-ТТЧ
белки, воздействующие на белки <==> утверждения об утверждениях мета-ТТЧ
белки, воздействующие на белки, воздействующие на белки <==> утверждения об утверждениях об утверждениях мета-ТТЧ
транскрипция (ДНК=>РНК) <==> интерпретация (ТТЧ => Ч)
трансляция (РНК=>белки) <==> арифмоквайнирование
Крик <==> Гёдель
Генетический Код (произвольное соглашение) <==> Гёделев Код (произвольное соглашение)
кодон (триплет оснований) <==> кодон (триплет чисел)
аминокислота <==> символ ТТЧ, процитированный в мета-ТТЧ
авторепродукция <==> автореференция
клеточная система автономии, достаточно мощная, чтобы позволить авторепродукцию <==> арифметическая формальная система, достаточно мощная, чтобы позволить автореференцию
Рис. 99. Централизованная Догма. Здесь проводится аналогия между двумя важнейшими Спутанными Иерархиями, одна из которых лежит в области молекулярной биологии, а другая в области математической логики.
Для полноты картины я решил отобразить мою схему Геделевой нумерации на Генетический Код как можно точнее:
(нечетное) 1 <==> А (пурин)
(четное) 2 <==> С (пиримидин)
(нечетное) 3 <==> G (пурин)
(четное) 6 <==> U (пиримидин)
Каждая из двадцати аминокислот в точности соответствует одному из двадцати символов ТТЧ. Таким образом, наконец становится ясно, что я имел в виду, выдумывая строгий вариант ТТЧ – я хотел чтобы в нем было в точности двадцать символов! Геделев Код показан на рис. 100, сравните его с Генетическим Кодом. (рис. 94)
Есть нечто почти мистическое в глубоком структурном сходстве между двумя эзотерическими и тем не менее фундаментальными открытиями в таких разных областях знания.
Централизованная Догма, разумеется, ни в коем случае не является строгим доказательством идентичности этих двух теорий, но она ясно указывает на глубокое родство между ними, родство заслуживающее более глубокого исследования.
Рис. 100. Гёделев Код. Согласно этой схеме Гёделевой нумерации, каждый символ ТТЧ получает один или более кодонов. Маленькие овалы показывают, как эта таблица включает Геделеву нумерацию, приведенную ранее в главе IX.
Странные Петли в Централизованной Догме
Одним из наиболее интересных моментов сходства между двумя сторонами нашей схемы является то, что на высшем уровне обеих возникают петли произвольной степени сложности. Слева это белки действующие на белки, действующие на белки – и так далее до бесконечности. Справа это высказывания о высказываниях, о высказываниях Мета ТТЧ – и так далее до бесконечности. Это напоминает гетерархии, которые мы обсуждали в главе V, где достаточно сложный фундамент позволяет возникать Странным Петлям высшего уровня полностью изолированным от нижних уровней. Мы рассмотрим эту идею более подробно в главе XX.
Читатель может спросить: «Чему же на схеме Централизованной Догмы соответствует сама Теорема Геделя о неполноте?» Подумайте над этим прежде чем читать дальше!
Централизованная Догма и «Акростиконтрапунктус»
Оказывается, что схема Централизованной Догмы весьма схожа со схемой, приведенной в главе IV, где дано отображение Теоремы Геделя на понятия Акростиконтрапунктуса. Таким образом, мы можем провести параллели между тремя системами:
(1) формальные системы и строчки
(2) клетки и цепочки ДНК
(3) патефоны и пластинки
Следующая схема показывает подробное сравнение между системами 2 и 3.
«Акростиконтрапунктус» Молекулярная биология
патефон <==> клетка
«Совершенный» патефон <==> «Совершенная» клетка
пластинка, воспроизводимая на данном патефоне <==> цепочка ДНК, воспроизводимая данной клеткой
пластинка, невоспроизводимая на этом патефоне <==> цепочка ДНК, невоспроизводимая этой клеткой
процесс превращения звуковых дорожек в звуки <==> процесс транскрипции ДНК в мРНК
звуки, производимые патефоном <==> цепочки мессенджера РНК
перевод звуков в вибрации патефона <==> перевод мРНК в белки
отражение внешних звуков в вибрациях патефона <==> Генетический Код (отображение с триплетов мРНК на аминокислоты)
поломка патефона <==> разрушение клетки
Название песни, специально записанной для Патефона X: «Меня нельзя воспроизвести на патефоне X» <==> интерпретация на высшем уровне цепочки ДНК, специально изготовленной для клетки X: «Меня нельзя воспроизвести клеткой X».
«Несовершенный» патефон <==> клетка, для которой существует хотя бы одна невоспроизводимая в ней цепочка ДНК.
«Теорема Гоголя»: «для любого данного патефона всегда существует невоспроизводимая запись» <==> Теорема Иммунитета: «Для любой данной клетки существует невоспроизводимая цепочка ДНК»
Аналогом Теоремы Гёделя является отдельный факт, возможно, малополезный для молекулярных биологов (для которых он самоочевиден):
Всегда возможно построить такую цепочку ДНК, которая, будучи введена в клетку, произведет, после транскрипции, такие белки, которые разрушат клетку (или ДНК); результатом этого будет не-воспроизводство данной ДНК.
Если рассмотреть это в свете эволюции, то можно представить себе следующий странный образ: вид вирусов, незаметно вторгающихся в клетку и затем обеспечивающих производство белков, которые разрушат сами эти вирусы!
Это нечто вроде самоубийства на молекулярном уровне, так сказать, в духе Эпименида. Разумеется, с точки зрения выживания вида это совсем не полезно. Однако, это передает если не букву, то дух процесса самозащиты, который развили как клетки, так и их непрошенные гости.
Кишечная палочка против Т4
Давайте рассмотрим любимицу биологов, клетку бактерии Escherichia coli (не являющуюся родственницей Эшера!) и одного из ее непрошенных гостей странного и жуткого Т4 фага (рис. 101) (Кстати, слова «фаг» и «вирус» – синонимы и означают «атакующий бактериальную клетку») Это странное создание напоминает гибрид лунохода и комара – но оно гораздо страшнее последнего. У него есть «голова», в которой хранятся все его «знания» – то есть, его ДНК – шесть «ног», которыми он прикрепляется к стенке клетки, которую он выбрал для вторжения, «жало» (более точно называющееся его «хвостом») – чем не комар! Основная разница заключается в том, что, в отличие от комара который использует жало для высасывания крови, фаг Т4 вводит через него свою наследственную субстанцию в клетку, против желания жертвы. Таким образом, фаг совершает изнасилование в миниатюрном размере.
Рис. 101. Бактериальный вирус Т4 представляет из себя набор белковых компонентов. (а) «Голова» – это белковая мембрана в форме икосаэдра с тридцатью сторонами; внутри находится ДНК. «Шея» прикрепляет ее к «хвосту», состоящему из сжимающейся оболочки, полой внутри, и опирающейся на пластинку с шипами. К пластинке прикреплены шесть волокон. Эти шипы и волокна служат вирусу для того, чтобы прикрепляться к стенке клетки бактерии. (б) Оболочка сжимается, протаскивая «хвост» сквозь стенку, и вирус попадает в клетку. (Hanawault & Haynes. «The Chemical Basis of Life», стр. 230).
Молекулярный Троянский конь
Что же происходит когда ДНК вируса входит в клетку? Вирус «надеется», говоря антропоморфно, что клетка будет обращаться с его ДНК точно так же, как и со своей собственной. Это означает, что она будет транскрибирована и переведена и, таким образом сможет начать синтез своих собственных белков, чуждых клетке-хозяину – белков, которые тут же займутся своим делом. Это не что иное, как секретная переброска «закодированных» (на Генетическом Коде) вражеских белков в клетку, и затем их «расшифровка» (производство). Это немного напоминает историю Троянского коня, согласно которой сотни солдат тайком проникли в Трою, спрятанные в животе невинно выглядящего деревянного коня. Оказавшись в городе, они выскочили наружу и захватили Трою.
Чужие белки, оказавшись «расшифрованными» (синтезированными) из переносящей их ДНК, начинают действовать. Последовательность событий, вызванных действием Т4, была хорошо изучена; эти события развиваются примерно так (см. также рис. 102 и рис. 103):
Время Происходящее действие
0 мин. Введение виральной ДНК.
1 мин. Порча хозяйской ДНК. Прекращение производства клеточных белков и начало производства чужих (Т4) белков. Одними из первых производятся белки, управляющие воспроизводством чужой (Т4) ДНК.
5 мин. Начинается производство ДНК вируса.
8 мин. Начало производства структурных белков, которые сформируют «тела» новых фагов.
13 мин. Произведена первая полная копия агрессора (Т4).
25 мин. Лизосома (тип белка) атакует стенку клетки-хозяина, бактерия лопается, освобождая «двухсотняшек».
Таким образом, через каких-нибудь двадцать четыре или двадцать пять минут после того, как фаг Т4 вторгается в клетку Е. coli, эта клетка оказывается полностью подчиненной и разрушается. Оттуда вырываются около двух сотен точных копий вируса-агрессора – «двухсотняшки» – готовые атаковать новые клетки и разрушать их так же, как и первую.
Хотя с точки зрения бактерии подобные вещи представляют собой серьезную опасность, мы, с нашей точки зрения, можем интерпретировать это как игру между двумя игроками: агрессор, или игрок «Т» (названный по имени класса фагов Т, куда входят Т2. Т4 и другие), и игрок «К» (клетка). Игрок Т старается проникнуть в клетку и овладеть ею изнутри с целью самовоспроизводства. Игрок К старается защитить себя и уничтожить агрессора. Описанная таким образом, молекулярная игра Т-К напоминает макроскопическую игру Т-К, описанную в предыдущем Диалоге. (Читатель, разумеется, без труда поймет, какой игрок – Т или К – соответствует Черепахе Тортилле, а какой – Крабу.)
Рис. 102. Вирусная инфекция начинается, когда ДНК вируса попадает в бактерию ДНК, бактерии при этом портится, зато ДНК вируса начинает размножаться. Синтез составляющих вирус белков и поглощение их вирусом происходит до тех пор, пока клетка не лопается, освобождая частицы (Hanawault & Haynes «The Chemical Basis of Life», cтp. 230)
Рис. 103. В морфогенетическом пути вируса Т4 есть три основных ветви, ведущие к независимому образованию голов, хвостов и волокон хвоста, которые затем соединяются и формируют полные копии вируса (Hanawault & Hayness «The Chemical Basis of Life», cтp. 237)
Узнавание, маскировка и наклеивание ярлыков
Эта «игра» делает очевидным тот факт, что узнавание – одна из центральных тем клеточной и субклеточной биологии. Каким образом молекулы (или структуры высшего уровня) узнают друг друга? Чтобы энзимы работали хорошо, они должны быть способны присоединяться к определенным местам соответствующих субстратов; бактерия должна уметь отличать собственную ДНК от ДНК фагов; клетки должны узнавать друг друга и взаимодействовать определенным образом. Эта проблема узнавания может напомнить вам об основном вопросе формальных систем: как можно узнать, является ли данная строчка теоремой? Есть ли для этого разрешающая процедура? Подобные вопросы принадлежат не только области математической логики; они важны также в теории вычислительной техники и, как мы видели, в молекулярной биологии.
Техника ярлыков, описанная в Диалоге, является, на самом деле, одним из трюков, используемых Е. coli, чтобы перехитрить агрессоров-фагов. Идея заключается в том, что цепочка ДНК может быть химически отмечена путем присоединения к нескольким нуклеотидам маленькой молекулы – метила. Эта операция «наклейки ярлыка» не меняет основных биологических свойств ДНК, другими словами, метилированная (отмеченная ярлыком) ДНК может быть транскрибирована точно так же, как и неметилированная (не отмеченная ярлыком) кислота, таким образом, она может управлять синтезом тех же белков. Однако, если клетка-хозяйка обладает специальным механизмом, проверяющим, отмечена ли ДНК, то ярлык становится крайне важен. В частности, клетка может располагать системой энзимов, распознающих и уничтожающих неотмеченные цепочки ДНК. Найдя такую цепочку, эти энзимы безжалостно рубят ее на куски. В таком случае, увы всем непрошенным гостям!
Метиловые ярлыки на нуклеотидах можно сравнить со специальным типографским шрифтом. Используя эту метафору, можно сказать, что клетка E coli ищет цепочки ДНК, напечатанные этим «специальным шрифтом» и разрушает любую цепочку ДНК напечатанную иным «шрифтом». Контрстратегией фагов, разумеется, было бы научиться снабжать свою ДНК такими же ярлыками и, таким образом, заставить клетки в которые они вторгаются, воспроизвести эту ДНК.
Эта битва Т-К может продолжаться до произвольных уровней сложности, но мы не будем рассматривать ее дальше. Главное здесь в том, что это битва между хозяином, пытающимся не впустить ни одной чужой ДНК, и фагом, который старается ввести свою ДНК в какую-нибудь клетку, которая транскрибировала бы ее в мРНК (после чего ее воспроизводство было бы гарантировано). Можно сказать, что ДНК, которой удается таким образом воспроизвести себя, интерпретируется на высшем уровне так: «Меня можно воспроизвести в клетках типа X» (В отличие от упомянутого ранее бесполезного с точки зрения эволюции фага, в котором закодированы белки, его же разрушающие, подобный фаг интерпретируется «Меня нельзя воспроизвести в клетках типа X»