355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Даглас Хофштадтер » ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда » Текст книги (страница 4)
ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда
  • Текст добавлен: 6 октября 2016, 04:15

Текст книги "ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда"


Автор книги: Даглас Хофштадтер


Жанры:

   

Философия

,

сообщить о нарушении

Текущая страница: 4 (всего у книги 64 страниц)

Иногда бывает желательно ослабить строгость канонической формы. Немного отступив от точного копирования темы, можно достигнуть более полной гармонии. Некоторые каноны имеют к тому же «свободные» голоса, не повторяющие тему, а просто состоящие в приятном согласовании с «каноническими» голосами.

Каждый канон «Музыкального приношения» построен на вариации Королевской темы; при этом Бах выжимает все возможное из замысловатых приемов, описанных выше. Иногда композитор даже комбинирует несколько из них в развитии одной темы. Например, в одном из трехголосных канонов «Приношения» под названием «Canon per Augmentationem, contario Motu» средний голос является свободным и исполняет Королевскую тему, в то время как два других голоса канонически «танцуют» выше и ниже Королевской темы, используя приемы увеличения и обращения. Другой канон носит загадочное название «Quaerendo invenietis» («Ищущий обрящет»). Все канонические головоломки Баха были решены; ответы на них нашел один из его учеников. Иоганн Филипп Кирнбергер. Однако читатель может попытаться найти и другие решения; очень вероятно, что возможности загадочных канонов Баха еще не исчерпаны до конца!

Теперь я должен вкратце объяснить, что такое фуга. Фуга похожа на канон тем, что основная мелодия и ее имитации исполняются несколькими голосами в различных тональностях, а также иногда в разном темпе, снизу вверх или от конца к началу. Однако фуга гораздо менее строга по форме, чем канон, что придает ей больший артистизм и эмоциональность. Безошибочной определяющей приметой фуги является её начало: один голос исполняет тему до конца. Затем вступает второй голос, четырьмя тонами выше или тремя тонами ниже. Первый голос в это время ведет дополнительную тему, подобранную так, чтобы дать ритмический, гармонический и мелодический контраст к основной теме. Последующие голоса вступают по очереди, исполняя основную тему, часто являющуюся аккомпанементом дополнительной темы; остальные голоса в это время занимаются тем, что, следуя прихотливой фантазии композитора, «украшают» фугу различными мелодиями. Когда все голоса «прибывают» к концу темы, правил больше не существует. Существуют, конечно, некоторые типичные приемы; но они не настолько стандартны, чтобы по ним, как по формулам, можно было бы строить фуги. Две фуги из «Музыкального приношения» – яркий пример композиций, которые никогда не могли бы быть «сочинены по формулам». В них есть нечто гораздо более глубокое, чем простая «фугообразность».

В целом, «Музыкальное приношение» – одно из высших достижений Баха в области контрапункта. Оно само по себе является одной большой интеллектуальной фугой, где переплетаются множество идей и форм и на каждом шагу встречаются шутливые иносказания и тонкие намеки. Это прекрасное создание человеческого ума, которым мы не устанем восхищаться. (Все произведение замечательно описано в книге X. Т. Дэвида «Музыкальное приношение» И. С. Баха (Н.T.David, «J.S.Bach's Musical Offering»).

Естественно растущий канон

Один из канонов «Музыкального приношения» особенно необычен. Это трехголосный канон под названием «Canon per tonos» («Тональный канон»). Самый высокий голос исполняет Королевскую тему; два других голоса дают каноническую гармонизацию, основанную на второй теме, причем нижний голос ведет свою мелодию в до миноре (общая тональность всей фуги), а верхний – ту же мелодию, но на пять ступеней выше. Отличительным свойством этого канона является то, что в конце – или, вернее, когда нам кажется, что канон заканчивается – его тональность меняется с до минора на ре минор. Бах каким-то образом ухитряется смодулировать (поменять тональность) прямо под носом слушателей! Канон сконструирован таким образом, что его кажущийся финал неожиданно плавно переходит в начало; этот процесс можно повторить, придя на этот раз к тональности ми минор, которая в свою очередь оказывается началом! Эти последовательные модуляции уводят слушателя во все более далекие тональные «провинции», так что после нескольких из них он чувствует себя уже безнадежно далеко от начальной тональности. Однако, чудесным образом, после шести модуляций мы возвращаемся все к тому же до минору. Все голоса теперь звучат ровно на октаву выше, чем в начале – пьеса может быть естественным образом прервана на этом месте. Вы можете подумать, что Бах именно это и намеревался сделать – однако Бах, несомненно, упивался возможностью продолжать этот процесс бесконечно. Может быть, поэтому он и написал на полях «Пусть Королевская слава возрастает подобно этой модуляции». Чтобы подчеркнуть заложенную в описанном каноне возможность естественного бесконечного движения, я буду называть его «Естественно Растущий Канон».

В этом каноне Баха мы впервые сталкиваемся с примером «Странных Петель». «Странная Петля» получается каждый раз, когда, двигаясь вверх или вниз по уровням иерархической системы, мы неожиданно оказываемся в исходном пункте. (В нашем примере это система музыкальных тональностей.) Иногда, описывая систему со Странной Петлей, я использую термин Запутанная Иерархия. В дальнейшем тема Странных Петель прозвучит еще не раз. Иногда она будет спрятана, а иногда будет лежать на поверхности; иногда она будет проводиться слева направо, иногда – вверх ногами, а иногда – ракоходом. Мой совет читателю – «Quaerendo invenietis».

Эшер

Как мне кажется, самые яркие и впечатляющие зрительные реализации идеи Странных Петель представлены в работах голландского графика М. К. Эшера, жившего с 1898 по 1971 год Эшер был создателем одних из самых интеллектуально стимулирующих рисунков всех времен Многие из них берут свое начало в парадоксе, иллюзии или двояком значении. Среди первых поклонников графики Эшера оказались математики, это неудивительно, так как его рисунки часто основаны на математических принципах симметрии или структуры. Однако типичный рисунок Эшера представляет из себя нечто гораздо большее, чем только лишь симметрию или определенную структуру часто в его основе лежит некая идея, представленная в художественной форме В частности, Странная Петля – одна из наиболее часто повторяющихся в работах Эшера тем. Взгляните, например, на литографию «Водопад» (рис. 5) и сравните ее бесконечно спускающуюся шестиступенчатую Петлю с бесконечно поднимающейся шестиступенчатой Петлей «Тонального канона». Сходство поистине удивительное! Бах и Эшер проводят одну и ту же тему в двух различных «ключах»: музыка и изобразительное искусство.

Рис. 5. М. К. Эшер. «Водопад».

В работах Эшера встречаются различные типы Странных Петель: они могут быть расположены по порядку в зависимости от того, как туго они «затянуты». Литография «Подъем и спуск» (рис. 6), на которой монахи плетутся по лестнице, навсегда уловленные Петлей, является самой свободной версией, так как Петля здесь содержит множество ступеней.

Рис. 6. М. К. Эшер. «Подъем и спуск».

Более «тугая» Петля представлена в «Водопаде», который, как мы уже видели, содержит всего шесть ступеней. Читатель может возразить, что понятие «ступени» весьма неопределенно: к примеру, можно считать, что «Подъем и спуск» имеет не сорок восемь (ступеньки), а всего четыре (лестничные клетки) уровня.

Рис. 7. М. К. Эшер. «Рука с зеркальным шаром».


Рис. 8. М. К. Эшер. «Метаморфоза II».

Действительно, подсчету ступеней-уровней всегда свойственна некоторая неопределенность; это верно не только для картин Эшера, но и для любых многоступенчатых иерархических систем. Позже мы постараемся глубже понять причину этой неопределенности. Однако не будем отвлекаться! Если затянуть Петлю еще туже, мы получим замечательную картину «Рисующие руки» (рис. 135), на которой каждая из рук рисует другую – двуступенчатая Странная Петля. Наконец, самая тугая Петля представлена в «Картинной галерее»(рис. 142): это картина картины, содержащей саму себя. Или это картина галереи, содержащей саму себя? Или города, содержащего самого себя? Или молодого человека, содержащего самого себя? (Между прочим, иллюзия, лежащая в основе «Подъема и спуска» и «Водопада» была изобретена не Эшером, а английским математиком Роджером Пенроузом в 1958 году. Однако тема Странных Петель появилась в работах Эшера уже в 1948 году, когда он создал свои «Рисующие руки» «Картинная галерея» датируется 1956 годом.)

В концепции Странных Петель скрыта идея бесконечности, ибо что такое Петля, как не способ представить бесконечный процесс в конечной форме? Бесконечность играет важную роль во многих картинах Эшера. Копии какой-либо «темы» часто «вставлены» друг в друга, создавая зрительные аналогии с канонами Баха. Несколько таких структур можно увидеть на знаменитой Эшеровской гравюре «Метаморфоза»(рис. 8). Она немного напоминает «Естественно Растущий Канон»: уходя все дальше и дальше от начального пункта, мы внезапно возвращаемся обратно к началу. В черепичных плоскостях «Метаморфозы» уже есть намек на бесконечность; однако другие картины Эшера являют еще более смелые образы бесконечного, На некоторых его рисунках одна и та же тема «звучит» на нескольких уровнях реальности. Скажем, один из планов легко узнается как фантастический, в то время как другой представляет реальность. Сама картина, возможно, содержит только эти два плана; однако само наличие подобной «двусмысленности» приглашает зрителя увидеть самого себя как часть еще одного плана. Сделав этот шаг, он уже околдован предложенной Эшером возможностью бесконечной последовательности планов, где для каждого данного уровня существует высший, более «реальный», и низший, более «фантастичный» уровни. Такая ситуация сама по себе является достаточно удивительной и пугающей. Однако что произойдет, если цепь уровней к тому же будет не линейная, а замкнутая саму на себя, образуя Петлю? Что тогда будет реальностью, а что фантазией? Гений Эшера заключается в том, что он не только придумал, но и сумел изобразить десятки полуреальных, полумифических миров, миров, полных Странных Петель, куда он приглашает войти Зрителя.

Гёдель

Рис. 9. Курт Гёдель

Во всех примерах Странных Петель, которые мы видели у Баха и Эшера, присутствует конфликт между конечным и бесконечным, конфликт, рождающий ощущение парадокса. Интуиция подсказывает, что здесь замешано нечто, связанное с математикой. В самом деле, не так давно – в нашем веке – было найдено математическое соответствие этого явления. Это открытие оказало огромное влияние на развитие логической мысли. Подобно Петлям Баха и Эшера, основанным на простых и привычных образах (музыкальная гамма, лестница), открытие Странных Петель в математических системах, принадлежащее К. Гёделю, берет свое начало в простых и интуитивных идеях. В самой упрощенной форме открытие Гёделя сводится к переводу на язык математики одного из старинных философских парадоксов, так называемого парадокса Эпименида (или парадокса лжеца). Критский философ Эпименид был автором бессмертного суждения: «Все критяне – лжецы». В более прямой форме парадокс звучит так: «Я лгу» или «Это высказывание – ложь». В дальнейшем, говоря о парадоксе Эпименида, я буду иметь в виду последний вариант. Это суждение грубо нарушает обычное представление о том, что все суждения делятся на истинные и ложные, так как если мы на минуту представим, что оно истинно, то тут же увидим, что мы ошиблись, и на самом деле суждение ложно. Точно так же, из предпосылки ложности этого суждения вытекает, что оно должно быть истинным, Попробуйте сами!

Парадокс Эпименида является Странной Петлей «в одну ступеньку», так же, как «Картинная галерея» Эшера. Но какое отношение имеет он к математике? В этом как раз и заключается открытие, сделанное Гёделем. Он попытался использовать математические рассуждения для анализа самих же математических рассуждений. Идея заставить математику заняться «самоанализом» оказалась необычайно продуктивной; теорема Гёделя о неполноте, пожалуй, самое важное её следствие. То, что эта теорема утверждает, и то, как это утверждение в ней доказывается, это разные вещи, которые мы подробно рассмотрим в дальнейшем. Саму теорему можно сравнить с жемчужиной, а метод доказательства – с устрицей, её скрывающей. Мы восхищаемся сияющей простотой жемчужины; устрица же является сложным живым организмом, в чьем нутре зарождается эта таинственно простая драгоценность.

Теорема Гёделя впервые увидела свет как «теорема VI» в его статье 1931 года «О формально неразрешимых суждениях в „Principia Mathematica“ и родственных системах, I». Теорема утверждает следующее:

Каждому ω-непротиворечивому рекурсивному классу формул k соответствует рекурсивный символ классов r такой, что ни v Gen r ни Neg (v Gen r) не принадлежат к Flg (к), где v – свободная переменная r.

В оригинале это было написано по-немецки; читатель, возможно, думает, что с тем же успехом можно было бы это на немецком и оставить. Постараемся привести перевод на более понятный язык.

Все непротиворечивые аксиоматические формулировки теории чисел содержат неразрешимые суждения.

Это наша жемчужина.

В ней трудно увидеть Странную Петлю, потому что эта Петля спрятана в «устрице» – в доказательстве. Доказательство теоремы Гёделя о неполноте вращается вокруг автореферентного (описывающего самого себя) математического суждения, так же как парадокс Эпименида – вокруг такого суждения в языке. Говорить о языке, используя для этого сам язык, несложно; гораздо труднее вообразить, как может говорить само о себе математическое суждение о числах. На самом деле, уже для того, чтобы связать идею автореферентного суждения с теорией чисел, понадобился гениальный ум. Интуитивно придя к мысли о возможности такого суждения, Гёдель преодолел одну из основных трудностей. Само же создание автореферентного суждения было делом техники, раздуванием костра из блистательной искры мгновенного прозрения.

Мы остановимся на теореме Гёделя в последующих главах; но чтобы покуда не оставить читателя в полной тьме, я несколькими штрихами обрисую суть идеи в надежде на то, что это заставит вас задуматься. Для начала уясним, в чем здесь основная трудность. Математические суждения описывают свойства целых чисел (мы будем говорить здесь о суждениях теории чисел). Ни целые числа, ни их свойства не являются сами по себе суждениями. Суждения теории чисел не говорят ничего про суждения теории чисел; они не более как суждения теории чисел. В этом и заключается проблема; однако Гёдель сумел увидеть глубже того, что лежит на поверхности.

Гёдель предположил, что суждение теории чисел могло бы быть о суждении теории чисел (возможно даже о себе самом), если бы сами числа могли обозначать суждения. Иными словами, в центре его построения находится идея кода. В этом коде, обычно именуемом «Гёделевой нумерацией», символы и последовательности символов обозначаются числами. Таким образом, любое суждение теории чисел, будучи последовательностью специальных символов, получает Гёделев номер, что-то вроде телефонного номера или номерного знака машины. В дальнейшем, для ссылки на данное суждение используется соответствующий Гёделев номер. С помощью этого кодирующего трюка суждения теории чисел приобретают двоякое значение: они могут быть поняты как суждения теории чисел, а так же как суждения о суждениях теории чисел.

После того, как Гёдель изобрел эту кодирующую схему, ему пришлось разработать в деталях способ перевода парадокса Эпименида на формальный язык теории чисел. Конечный результат «пересадки» Эпименида на формальную почву звучит так: «Это суждение теории чисел не имеет доказательства» (вместо «Это суждение теории чисел ложно»). Эта формулировка может создать немалую путаницу. так как «доказательство» для многих является весьма приблизительным понятием. В действительности, труды Геделя были лишь частью долгих поисков, предпринятых математиками в надежде выяснить, что же такое доказательства. Необходимо помнить тот факт, что доказательства являются таковыми только внутри жестких систем теорем. В Гёделевской работе такой жесткой системой, к которой относится слово «доказательство», является огромный труд Бертрана Рассела и Альфреда Норта Уайтхеда «Principia Mathematical» («Основания математики»), опубликованный между 1910 и 1913 годами. Следовательно, Гёделево высказывание Г должно бы звучать более правильно как:

Это суждение теории чисел не имеет доказательств в системе «Оснований математики».

Заметим, между прочим, что Гёделево высказывание Г само по себе не является теоремой Гёделя, так же как высказывание Эпименида не является замечанием «Высказывание Эпименида – парадокс». Теперь мы можем установить, какой эффект произвело открытие Г. В то время как высказывание Эпименида создает парадокс, потому что оно не является ни истинным, ни ложным, Гёделево высказывание Г – истинно, хотя и не доказуемо в системе «Оснований математики». Из этого следует замечательный вывод: система «Оснований математики» неполна, так как существуют истинные суждения теории чисел, не доказуемые методами самой теории (эти методы доказательства оказываются слишком «слабыми».)

«Основания математики» явились первой, но далеко не последней жертвой удара. Выражение «и родственные системы» в заглавии Гёделевой статьи говорит о многом. Если бы результат, полученный Гёделем, указывал бы только на дефект в работе Рассела и Уайтхеда, другие математики могли бы попытаться исправить ошибки в «Основаниях математики» и «перехитрить» теорему Гёделя. Однако это оказалось невозможным: теорема Гёделя была приложима ко всем аксиоматическим системам, ставившим своей целью то же, что и система Рассела и Уайтхеда. Для различных систем подходил один и тот же основной трюк. Короче, Гёдель показал, что понятие «доказуемости» уже, слабее понятия истинности вне зависимости от того, какую аксиоматическую систему мы выбираем.

Таким образом, теорема Гёделя произвела электризующий эффект на логиков, математиков и философов, заинтересованных в основах математики, поскольку она показала, что ни одна установленная система, какой бы сложной она не была, не может отразить всей сложности целых чисел: 0,1, 2, 3… Современный читатель, возможно, не окажется от этого в таком замешательстве, как читатели 1931 года, так как за прошедшее время наша культура впитала теорему Гёделя вместе с революционными идеями теории относительности и квантовой механики, и широкая публика получила доступ к этим концепциям, поражающим и дезориентирующим мышление даже в смягченном прослойкой переводов (а зачастую и затемненном этими переводами) виде. Сейчас идея «ограничивающих» результатов витает в воздухе; тогда, в 1931 году, она была как гром с ясного неба.

Математическая логика: краткий обзор

Чтобы полностью оценить теорему Гёделя, необходим определенный контекст. Я попытаюсь здесь дать обзор истории математической логики до 1931 года на нескольких страницах – невозможная задача! (Хорошее изложение истории этого предмета читатель может найти у Делонга, Нибоуна, или Нагеля и Ньюмена). Все началось с попытки механизировать мыслительный процесс логических рассуждений. Обратите внимание, что умение мыслить всегда рассматривалось как отличительная черта человека; на первый взгляд, желание механизировать самую человеческую черту кажется парадоксальным. Тем не менее, уже древние греки знали, что логическое мышление – структурный процесс, до некоторой степени управляемый определенными законами. Эти законы можно описать. Аристотель систематизировал силлогизмы, а Эвклид – геометрию; однако с тех пор прошло много веков до того, как в изучении логического мышления снова наступила эра прогресса.

Одним из важнейших открытий геометров девятнадцатого столетия были различные геометрии, равно имеющие право на существование. Под геометрией здесь понимается теория, описывающая свойства абстрактных точек и линий. До этого считалось, что геометрия – это система, кодифицированная Эвклидом; она могла иметь незначительные недостатки, которые могли быть со временем исправлены. Таким образом, любой прогресс в этой области означал исправление и дополнение Эвклида. Это убеждение было разбито вдребезги, когда несколько математиков почти одновременно открыли неэвклидову геометрию – открытие, потрясшее математический мир, поскольку оно сильно поколебало бытовавшее мнение, что математика изучает реальную действительность. Каким образом в одной и той же реальности могли существовать различные типы точек и линий? Сегодня решение этой дилеммы может быть очевидно даже для некоторых далеких от математики людей, но в то время она посеяла панику в математических кругах.

Позже в девятнадцатом веке английские логики Джордж Буль и Август де Морган пошли значительно дальше Аристотеля в кодификации строго дедуктивных рассуждений. Буль даже назвал свою книгу «Законы мысли», что, безусловно, было некоторым преувеличением; однако его попытки внесли серьезный вклад в общие усилия. Льюис Кэрролл был очарован механическими методами рассуждений и изобрел множество головоломок, решавшихся с помощью этих методов. Готтлоб Фреге в Йене и Джузеппе Пеано в Турине работали над соединением формальных рассуждений с изучением чисел и множеств. Дэвид Гильберт в Геттингене трудился над более строгой, чем у Эвклида, формализацией геометрии. Все эти усилия были направлены на выяснение вопроса о том, что же такое «доказательство».

Между тем, в классической математике тоже происходили интересные события. В 1880-х годах Георг Кантор развил теорию о различных типах бесконечности, известную под именем теории множеств. Теория Кантора была глубока и красива, но шла вразрез с интуицией; вскоре на свет появилось целое семейство парадоксов, основанных на теории множеств. Ситуация была не из приятных. Только математики начали оправляться от удара, нанесенного по математическому анализу парадоксами, связанными с теорией пределов, как попали из огня в полымя из-за нового, еще худшего набора парадоксов!

Самый известный из них – парадокс Рассела. По всей видимости, большинство множеств не являются элементами самих себя: скажем, множество моржей – это не морж; множество, содержащее только одного члена, Жанну д'Арк, само не является Жанной (множество не человек!), и так далее. В этом смысле, большинство множеств совершенно заурядны. Однако существуют такие «самозаглатывающие» множества, которые содержат самих себя, как, например, множество всех множеств, или множество всех вещей за исключением Жанны Д'Арк, и тому подобные. Ясно, что множества могут быть только одного из этих двух типов – либо заурядные, либо самозаглатывающие – и ни одно множество не может входить сразу в два класса. Однако ничто не мешает нам изобрести множество R всех заурядных множеств. На первый взгляд, R кажется довольно заурядным изобретением, но вам придется пересмотреть свое мнение, если вы спросите себя, является ли множество R самозаглатывающим или заурядным. Вы придете к следующему ответу: R не является ни тем, ни другим, так как любой из этих двух ответов приводит к парадоксу. Попробуйте и убедитесь сами!

Но если R не заурядное и не самозаглатывающее, тогда что же оно такое? По меньшей мере, ненормальное. Однако такой уклончивый ответ никого не удовлетворял. Тогда люди стали пытаться докопаться до основ теории множеств; при этом они задавали себе следующие вопросы: «В чем заключается ошибка нашего интуитивного понимания понятия „множество“? Можно ли создать строгую теорию множеств, которая бы не противоречила нашей интуиции и в то же время исключала бы парадоксы?» Здесь, так же как и в теории чисел и в геометрии, проблема заключалась в том, чтобы примирить интуицию с формальными, аксиоматическими системами логических рассуждений.

Удивительный вариант парадокса Рассела, называющийся парадоксом Греллинга, получается, если вместо множеств использовать прилагательные. Разделите все прилагательные русского языка на две категории: те, которые описывают самих себя, «самоописывающие», («пятисложное», «шелестящий,» «пренеестественнейший» и т. п.), и те, которые таким свойством не обладают («съедобный», «двусложный», «кратчайший»). Рассмотрим теперь прилагательное «несамоописывающий». К какому классу оно относится? Попробуйте ответить!

У всех этих парадоксов есть общий виновник: автореферентность, или «страннопетельность». Таким образом, если наша цель – избавиться от всех парадоксов, то почему бы нам не попытаться избавиться от автореферентности и тех условий, которые ее порождают? Это не так легко, как кажется, так как иногда бывает трудно найти, где именно происходит автореференция. Иногда она бывает распределена по Странной Петле в несколько ступеней, как в следующей расширенной версии парадокса Эпименида, напоминающей Эшеровские «Рисующие руки» —

Следующее высказывание ложно.

Предыдущее высказывание истинно.

Вместе эти высказывания производят такой же эффект, как первоначальный парадокс Эпименида; однако взятые по отдельности они безобидны и даже полезны Ни одно из них не может нести ответственности за Странную Петлю; виновато их объединение, то, как они указывают друг на друга. Точно так же каждый взятый по отдельности кусок «Подъема и спуска» совершенно правилен; невозможно лишь подобное соединение этих кусков в одно целое Видимо, существуют прямой и косвенный типы автореферентности; если мы считаем, что в автореферентности – корень зла, то мы должны найти способ избавиться сразу от обоих типов.

Изгнание Странных Петель

Рассел и Уайтхед считали именно таких труд «Основания математики» («ОМ») был титаническим усилием, направленным на изгнание Странных Петель из логики, теории множеств и теории чисел. В основе их системы лежала следующая идея. Множество «низшего» типа могло иметь своими элементами лишь «предметы», а не множества. На следующей ступени стояли множества, которые могли содержать предметы или множества первого типа. Вообще, любое данное множество могло содержать лишь множества низшего типа или предметы. Каждое множество принадлежало к определенному типу. Ясно, что никакое множество не могло содержать самого себя, так как оно оказалось бы тогда принадлежащим к более высокому типу, чем его собственный. В такой системе существуют лишь обыкновенные множества; более того, наш старый знакомец, множество R, теперь вообще не считается множеством, так как оно не принадлежит ни к одному конечному типу! По всей видимости, эта теория типов, которую мы также могли бы именовать «теорией уничтожения Странных Петель», преуспела в избавлении теории множеств от парадоксов – но только ценой введения искусственной иерархии и запрета на определенный тип множеств, такой, например, как множество всех «заурядных» множеств. Интуитивно это идет вразрез с нашим представлением о множествах.

Теория типов справилась с парадоксом Рассела, но ничего не предприняла в отношении парадоксов Эпименида или Греллинга. Для тех, чей интерес не шел дальше теории множеств, этого было достаточно; однако людям, заинтересованным в уничтожении парадоксов вообще, казалось необходимым создание подобной иерархии в языке, чтобы изгнать оттуда Странные Петли. На первой ступеньке такой иерархии стоял бы предметный язык, на котором возможно говорить лишь об определенной сфере предметов, но нельзя говорить о самом предметном языке, обсуждать его грамматику или какие-либо высказывания, для этого понадобился бы метаязык. (Опыт двух различных лингвистических уровней знаком любому, кто изучал иностранные языки.) В свою очередь, чтобы говорить о метаязыке, потребовался бы метаметаязык, и так далее. Каждое высказывание должно было принадлежать к определенному уровню иерархии. Таким образом, если бы мы не могли найти для данного высказывания места в иерархической структуре, мы должны были бы считать такое высказывание бессмысленным и как можно скорее выбросить его из головы.

Можно попытаться проанализировать таким образом двуступенчатую петлю Эпименида, приведенную выше. Первое высказывание, поскольку оно говорит о втором, должно быть уровнем выше последнего; однако точно такое же рассуждение применимо и ко второму высказыванию. Поскольку это невозможно, оба высказывания «бессмысленны». Точнее, они вообще не могут существовать в системе, основанной на строгой иерархии языков. Это предупреждает возникновение любых версий парадокса Эпименида или Греллинга (К какому уровню принадлежит «самоописывающий»?)

В теории множеств, имеющей дело с абстракциями, далекими от повседневной жизни стратификация теории типов еще приемлема, хотя и выглядит натянутой. Когда же дело доходит до языка, важнейшей и ежедневно употребляемой части нашей жизни, такая стратификация кажется абсурдом. Трудно поверить что, разговаривая, мы скачем вверх и вниз по иерархии языков. Довольно обычное высказывание, такое как, например, «В этой книге я критикую теорию типов», было бы дважды запрещено в подобной системе. Во-первых, оно упоминает «эту книгу», которая должна бы упоминаться только в «метакниге», и во-вторых, оно упоминает обо мне – существе, о котором я не должен бы говорить вообще. Этот пример показывает, насколько нелепо выглядит теория типов в повседневном контексте. В данном случае, лекарство хуже самой болезни метод, используемый этой теорией, чтобы избавиться от парадоксов, заодно объявляет бессмыслицей множество вполне правильных конструкций. Эпитет «бессмысленный» кстати, был бы приложим к любому обсуждению теории лингвистических типов (и в частности, к данному параграфу), так как ясно, что никакое из них не может принадлежать ни к одному из уровней – ни к предметному ни к метаязыку, ни к метаметаязыку, и т. д. Таким образом, сам акт обсуждения теории оказывался бы ее грубейшим нарушением.

Конечно, мы могли бы попытаться защитить подобные теории, обговорив, что они имеют дело только с формальными языками, а не с повседневным, обыкновенным языком. Может, оно и так, но тогда такие теории оказываются чисто академическими и имеют дело с парадоксами только тогда, когда те возникают в специальных сделанных по заказу системах. К тому же, стремление уничтожить парадоксы любой ценой, особенно ценой создания чрезвычайно искусственных формализмов, придает слишком много значения плоской последовательности и логичности, и слишком мало – тому причудливому и замысловатому, что придает вкус жизни и математике. Вне сомнения, стараться быть последовательным важно, но когда это старание приводит к созданию удивительно неуклюжих и уродливых теорий, становится ясно, что здесь что-то не в порядке.


    Ваша оценка произведения:

Популярные книги за неделю