355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Даглас Хофштадтер » ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда » Текст книги (страница 59)
ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда
  • Текст добавлен: 6 октября 2016, 04:15

Текст книги "ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда"


Автор книги: Даглас Хофштадтер


Жанры:

   

Философия

,

сообщить о нарушении

Текущая страница: 59 (всего у книги 64 страниц)

Разумеется, если его целью является постепенное внушение дзен-буддистского восприятия мира как свободного от категорий и значений, то такое искусство – как и рассуждения по поводу дзена – пытается послужить катализатором, вдохновляющим зрителя на более глубокое ознакомление с философией, отрицающей «внутренние значения» и объемлющей мир как одно целое. В таком случае, оно не достигает этой цели немедленно, так как зрители все равно размышляют о его значении; но, в конце концов, некоторые из них могут обратиться к источникам этого искусства, и тогда его цель будет достигнута. Но в любом случае неверно, что здесь нет никакого кода, с помощью которого идеи передаются зрителю. На самом деле, этот код весьма сложен и включает сведения об отсутствии кодов и тому подобное – то есть он является отчасти кодом, отчасти мета-кодом и так далее. Сообщения, которые передают самые «дзен-буддистские» предметы искусства, представляют из себя Запутанную Иерархию; может быть, поэтому многие находят современное искусство таким непонятным.

Еще раз об изме

Во главе движения, пытавшегося стереть границы между искусством и природой, стоял Кэйдж. Он считал, что в музыке все звуки равны – нечто вроде акустической демократии. Тишина точно так же важна, как и звук, и случайные звуки ничем не хуже организованных. Леонард Мейер в своей книге «Музыка, искусство и идеи» (Leonard В. Meyer. «Music, Art and Ideas») называет это движение в музыке «трансцендентализмом» и утверждает:

Если различие между искусством и природой ошибочно, то эстетическая оценка неважна. Фортепианная соната достойна оценки не более, чем камень, буря или морская звезда. «Категорические суждения, такие, как правильно и неправильно прекрасно или уродливо, типичные для рационалистского мышления тональной эстетики» – пишет Люциано Берио (современный композитор), – «уже не годятся для понимания того, как сегодняшний композитор работает над слышимыми формами и музыкальным действием».

Затем Мейер продолжает, описывая философскую позицию трансцендентализма:

все вещи во времени и пространстве сложнейшим образом переплетены друг с другом. Любые деления, классификации или типы организации, открытые нами во вселенной, чисто случайны. Мир – это сложное, непрерывное, единое событие.[88]88
  Leonard В. Meyer, «Music, The Arts, and Ideas», стр. 161, 167.


[Закрыть]
(Эхо дзена!)

 Мне кажется, что «трансцендентализм» – слишком громоздкое название для этого движения. Я предпочитаю называть его просто «измом». Будучи суффиксом без корня, это напоминает идеологию без идей, – что, скорее всего, так и есть, как бы мы ее не интерпретировали. Поскольку «изм» включает в себя все, что угодно, это название сюда отлично подходит. В «изме» слово «is» (есть) наполовину используется, наполовину упоминается; что может быть более подходящим? Изм – это дух дзена в искусстве. Так же, как основная задача дзена – сорвать маску с самого себя, основная задача искусства нашего столетия, как кажется, – это найти ответ на вопрос, что такое искусство. Все его метания – поиски самого себя.

Итак, конфликт между использованием и упоминанием, доведенный до крайности, превращается в философскую проблему дуализма символа и объекта, что связывает его с тайной разума. Магритт писал о своей картине «Человеческое состояние I» (Рис. 141):

Я расположил перед окном картину, видимую из комнаты, на которой была изображена именно часть пейзажа, скрытая картиной. Таким образом дерево на картине скрывало от взгляда дерево, расположенное за ним, вне комнаты. При этом в голове зрителя дерево существовало одновременно в комнате (как часть картины) и снаружи (как часть настоящего пейзажа). Именно так мы видим мир мы думаем, что он вне нас, хотя он – только наше мысленное представление о нем, возникающее внутри нас.[89]89
  Suzi Gablik, «Magritte», стр. 97.


[Закрыть]


Рис. 141. Рене Магритт. Человеческое состояние I (1933).

Понимание разума

Сначала многозначительными образами своего рисунка и затем прямым текстом Магритт говорит о связи между двумя вопросами: «Как работают символы?» и «Как работает наш разум?» Кроме того, он возвращает нас к поставленному ранее вопросу. «Можем ли мы надеяться когда-либо понять собственный мозг и разум?»

Или же какое-то удивительное и дьявольское построение, подобное Гёделеву, не позволит нам проникнуть в эту тайну? Если принять достаточно разумное определение того, что такое «понимание», то я не вижу никаких Геделевых препятствий к постепенному пониманию сути нашего разума. Например, мне кажется вполне разумным желание понять общий принцип работы мозга, так же, как мы понимаем общий принцип работы автомобильного мотора. Это совсем не то, что пытаться понять любой отдельный мозг во всех деталях, – и, тем более, пытаться проделать это с собственным мозгом! Я не вижу никакой связи между Теоремой Гёделя, даже в самой приблизительной интерпретации, и возможностью выполнения этого проекта. Мне кажется, что Теорема Гёделя не накладывает никаких ограничений на нашу способность формулировать и проверять общие механизмы мыслительных процессов, происходящих в нервных клетках. По моему мнению, Теорема Гёделя не противоречит созданию компьютеров (или их преемников), которые смогут манипулировать символами примерно с тем же успехом, как и мозг. Совершенно иное дело – пытаться воспроизвести в программе определенный человеческий мозг, однако создание разумных программ вообще – это более скромная цель Теорема Гёделя запрещает воспроизводство нашего уровня разума с помощью программ не более, чем она запрещает воспроизводство нашего уровня разума с помощью передачи наследственной информации в ДНК. В главе XVI мы видели, как именно замечательный Гёделев механизм – Странная Петля белков и ДНК – делает возможной передачу разума.

Значит ли это, что Теорема Гёделя не привносит ничего нового в наши размышления о собственном разуме? Мне кажется, что это не так, – некая связь здесь есть, но не в том мистическом и ограничительном смысле, как считают некоторые. Думаю, что процесс понимания Гёделева доказательства с его произвольными кодами, сложными изоморфизмами, высоким и низким уровнями интерпретации и способностью к самоотражению может обогатить наше представление о символах и их обработке, что, в свою очередь, может развить наше интуитивное понимание мыслительных структур на разных уровнях.

Случайная необъяснимость разума?

Прежде чем предложить философски интригующее «приложение» Гёделева доказательства, я хочу упомянуть об идее «случайной необъяснимости» разума. Вот в чем она состоит. Может быть, наши мозги, в отличие от автомобильных моторов, представляют собой упрямые и необъяснимые системы, разложить которые никак невозможно. В данной момент мы не знаем, уступит ли мозг нашим усилиям разделить его на уровни, каждый из которых сможет быть объяснен в терминах низших уровней, или же он сорвет все наши попытки его проанализировать.

Но даже если мы и потерпим неудачу в попытке понять самих себя, за этим вовсе не обязательно должна стоять теорема Гёделя. Может быть, наш мозг по чистой случайности слишком слаб для этого. Подумайте, например, о скромном жирафе. Очевидно, что его мозг – намного ниже уровня, необходимого для понимания себя. Тем не менее, он очень похож на наш мозг! Действительно, мозги горилл, эму и бабуинов – и даже мозги черепах или неизвестных существ, намного умнее нас, – действуют, скорее всего, по примерно одинаковому принципу. Жирафы могут находиться намного ниже уровня, необходимого для понимания того, как эти правила сочетаются, чтобы произвести качества разума. Люди могут стоять ближе к этому уровню – чуть-чуть ниже или даже чуть-чуть выше критического порога понимания. Но в этом может не быть никакой принципиальной причины типа Гёделевой, по которой качества разума были бы необъяснимы, – они могут быть вполне понятны существам, стоящим на более высокой ступени развития.

Неразрешимость неотделима от точки зрения высшего уровня

Исключив пессимистическое понятие о врожденной необъяснимости нашего мозга, посмотрим, какие идеи может нам предложить доказательство Гёделя в отношении объяснения нашего мозга/разума. Оно дает нам понять, что взгляд на систему с точки зрения высшего уровня может позволить понять то, что на низших уровнях кажется совершенно необъяснимым. Я имею в виду следующее. Предположим, что в качестве строчки ТТЧ вам дали высказывание Гёделя G. Представьте, что вам при этом ничего не известно о Гёделевой нумерации. Вы должны ответить на вопрос: «Почему эта строчка – не теорема ТТЧ?»

 Вы уже хорошо знакомы с подобными вопросами; например, если бы такой вопрос был задан вам о строчке S0=0, вы ответили бы без труда: «Потому что теоремой является ее отрицание, ~S0=0.» Этот факт вместе с вашим знанием о непротиворечивости ТТЧ объясняет, почему данная строчка – не теорема. Это то, что я называю объяснением «на уровне ТТЧ». Обратите внимание, насколько оно отличается от объяснения того, почему MU – не теорема системы MIU, первое объяснение дано в режиме М, второе – в режиме I.

А как насчет G? Объяснение на уровне ТТЧ, сработавшее для строчки S0=0, для G не работает, поскольку ~G теоремой не является. Человек, не имеющий общего представления о ТТЧ, не поймет, почему он не может вывести G, следуя правилам, – ведь в G, как в арифметическом высказывании, нет никаких ошибок! Когда G превращено в универсально квантифицированную строчку, в ТТЧ может быть выведено любое высказывание, полученное из него путем подстановки символов чисел вместо переменных. Единственный способ объяснить нетеоремность G заключается в использовании Гёделевой нумерации и взгляде на ТТЧ с совершенно иного уровня. Дело тут не в том, что в ТТЧ объяснение написать слишком сложно, – это просто невозможно. Подобного объяснения в ТТЧ в принципе не существует. На высшем уровне есть некие возможности, которыми ТТЧ не обладает. Нетереомность ТТЧ, если можно так выразиться, является фактом высшего уровня. У меня есть подозрение, что это верно для всех неразрешимых суждений – иными словами, любое неразрешимое суждение является ни чем иным, как Гёделевым высказыванием, утверждающим собственную нетеоремность в некоей системе с помощью какого-либа кода.

Сознание как явление высшего уровня

В этом смысле, Гёделево доказательство наводит на мысль – хотя ни в коем случае ее не доказывает! – что может существовать некий высший уровень, на котором можно рассматривать разум/мозг. На этом уровне могут существовать понятия, отсутствующие на низших уровнях. Это значит, что там можно было бы легко объяснить те факты, которые на низшем уровне объяснить невозможно. Какими бы длинными и громоздкими ни были высказывания низшего уровня, они не смогут объяснить данного явления. Это аналогично тому факту, что, выводя одну за другой деривации в ТТЧ, какими бы длинными и громоздкими они ни получались, вы никогда не сможете вывести G, несмотря на то, что на высшем уровне вы легко замечаете, что G истинно.

В чем могут заключаться эти понятия высшего уровня? Ученые и гуманисты, сторонники холизма и наличия души, давно уже предположили, что сознание невозможно объяснить в терминах составляющих мозга, – так что это, по крайней мере, один кандидат. Кроме того, существует загадочное понятие свободной воли. Возможно, что эти качества появляются «неожиданно», в том смысле, что психология не в состоянии объяснить их возникновения. Но важно понять, что, руководствуясь доказательством Гёделя в формировании этих смелых гипотез, мы должны довести аналогию до конца. В частности, необходимо помнить, что нетеоремность G имеет объяснение, – это вовсе не тайна! Это объяснение опирается не только на понимание отдельного уровня, но и того, как этот уровень отражает свой мета-уровень и какие от этого получаются последствия. Если наша аналогия правильна, то «неожиданные» явления могут быть объяснены в терминах отношений между различными уровнями в разумных системах.

Странные Петли в сердце разума

Я убежден в том, что объяснение «неожиданно» возникающих в наших мозгах явлений – идей, надежд, образов, аналогий и, наконец, сознания и свободной воли – основаны на некоем типе Странных Петель, то есть такого взаимодействия между уровнями, при котором высший уровень воздействует на низший уровень, будучи в то же время сам определен этим низшим уровнем. Иными словами, это самоусиливающий «резонанс» между различными уровнями – нечто вроде суждения Хенкина, которое становится доказуемым, только утверждая свою доказуемость. Индивидуальность рождается в тот момент, когда она становится способна отразить саму себя.

Это не должно быть понято как антиредукционистское утверждение. Я хочу сказать лишь то, что редукционистское объяснение разума, чтобы быть понятым, должно содержать такие «гибкие» понятия как уровни, отображение и значение. В принципе, я не сомневаюсь, что теоретически может существовать полностью редукционистское, но непостижимое объяснение мозга; проблема заключается в том, как перевести его на понятный нам язык. Безусловно, нам не нужно описания в терминах позиций и моментов частиц: мы хотим иметь описание, соотносящее нейронную активность с «сигналами» (явлениями промежуточного уровня), а сигналы, в свою очередь, – с «символами» и «подсистемами», включая предполагаемый «само-символ». Перевод с языка низших уровней физиологической аппаратуры на язык высших уровней психологических программ аналогичен переводу численно-теоретических суждений в суждения метаматематики. Вспомните, что именно скрещение уровней, возникающее в момент перевода, является причиной Гёделевой неполноты и самодоказующего характера суждения Хенкина. Я утверждаю, что именно это скрещение порождает наше почти неподдающееся анализу чувство индивидуальности.

Чтобы понять мозг и разум во всей полноте, мы должны быть способны с легкостью переходить от одного уровня к другому. Кроме того, мы должны будем принять существование нескольких типов «причинности», то есть того, как явления на одном уровне описания могут быть причиной явлений на других уровнях. Иногда мы будем говорить, что явление А является «причиной» явления Б просто потому, что одно из них – перевод второго в термины иного уровня. Иногда слово «причина» будет употребляться в обычном смысле – физическая причина. Оба типа причинности – и, возможно, какие-либо еще – должны быть приняты в любом объяснении разума, поскольку мы должны будем согласиться с тем, что в Запутанной Иерархии разума причины могут распространяться как снизу вверх, так и сверху вниз – так же, как и в схеме Центральной Догмы.

В моей гипотетической модели мозга сознание представлено как весьма реальная действующая сила, влияющая на события. Оно занимает важное место в причинно-следственной связи событий и в цепи команд, управляющих мозговыми процессами, где сознание появляется в качестве активной силы… Выражаясь проще, все сводится к тому, кто главенствует среди множества причинных сил, населяющих наш мозг. Иными словами, дело идет об установлении иерархии внутричерепных сил контроля. Под черепной коробкой живет множество различных причинных сил; более того, там существуют силы внутри сил внутри сил. как ни в каком другом известном нам пространстве размером в половину кубического фута вселенной.

Короче говоря, продолжая взбираться наверх в иерархии команд в мозгу, на самом верху мы находим общие организующие силы и динамические качества крупных возбужденных структур мозга, соответствующих мысленным состояниям или психической активности. Близко к вершине этой системы команд в мозгу мы находим идеи. В отличие от шимпанзе, у человека есть идеи и идеалы. В этой модели сила причинности которой обладает идея или идеал, так же реальна как молекула, клетка или нервный импульс. Одни идеи порождают другие и помогают их эволюции. Они взаимодействуют между собой и с другими мысленными силами в одном и том же мозгу, в соседних мозгах и, благодаря глобальной системе коммуникаций в далеких, иностранных мозгах. Кроме этого, они также взаимодействуют с внешним миром; общим результатом всех этих взаимодействий является гигантский скачок в эволюции, подобного которому история еще не знала, включая сюда возникновение живой клетки.[90]90
  Roger Sperry, «Mind, Brain, and Humanist Values», стр. 78-83.


[Закрыть]

Известно, что между двумя языками, субъективным и объективным, большая разница. Например, «субъективное» чувство красного и «объективная» длина волны, соответствующая красному цвету. Многим людям эти языки кажутся в принципе несовместимыми. Я так не считаю. Мне кажется, они не более несовместимы, чем два восприятия Эшеровских рисующих рук. «изнутри системы», где руки рисуют одна другую, и извне, где Эшер рисует обе руки. Субъективное ощущение красного появляется благодаря самосознанию в мозгу; объективная длина волны соответствует взгляду извне системы. Хотя никому не удастся выйти из системы настолько, чтобы увидеть «всю картину разом», мы не должны забывать, что такая картина существует. Необходимо помнить, что все это вызвано к жизни физическими законами, глубоко-глубоко в нейронных закоулках и трещинках, куда не достигают наши «зонды», запущенные с высшего уровня наблюдения.

Символ самого себя и свободная воля

В главе XII была высказана мысль, что то, что мы называем свободной волей, – это результат взаимодействия символа (или подсистемы) самого себя с другими символами в мозгу. Если согласиться с тем, что символы – это явления высшего порядка, которые наделяются значениями, то можно попытаться объяснить связь между символом «Я» и остальными символами мозга. Чтобы рассмотреть вопрос о свободной воле в перспективе, его можно заменить вопросом, по моему мнению, эквивалентным, но выраженным в более нейтральных терминах. Вместо того, чтобы спрашивать: «Обладает ли система X свободной волей?» мы можем спросить: «Есть ли в системе X понятие выбора?» Думаю, что выяснение того, что мы имеем в виду, говоря, что некая механическая или биологическая система способна «выбирать», может многое прояснить в вопросе о свободной воле. Рассмотрим несколько различных систем, которые в разных обстоятельствах классифицируются нами как «способные к выбору» Из этих примеров станет ясно, что мы имеем в виду под этим выражением.

В качестве парадигмы давайте возьмем следующие системы: шарик, скатывающийся с горки; карманный калькулятор, вычисляющий десятичную часть квадратного корня из двух; сложная компьютерная программа, отлично играющая в шахматы; робот в Т-образном лабиринте (лабиринт в форме буквы «Т», в одном из концов которого находится награда), человеческое существо перед сложной задачей.

Прежде всего, рассмотрим скатывающийся с горы шарик. Выбирает ли он свой путь? Думаю, что все мы единогласно скажем, что нет, хотя никто из нас не способен предсказать даже короткий отрезок его пути. Нам кажется, что он не мог бы катиться по иному пути, поскольку его путь предопределен жесткими законами природы. В нашем мысленном блочном представлении о физике мы, разумеется, можем вообразить множество «возможных» путей шарика, по одному из которых шарик катится в действительности. Отсюда следует, что на некоем уровне нашего разума мы считаем, что шарик «выбрал» один из мириад мысленных путей; в то же время, на другом уровне мы инстинктивно понимаем, что мысленная физика – всего лишь вспомогательное средство для формирования нашего внутреннего представления о мире. Механизмы, вызывающие к жизни те или иные события действительности, не нуждаются в том, чтобы природа проходила через аналогичный процесс разработки возможных мысленных вариантов в некоей гипотетической вселенной («мозг Бога») и затем выбирала между ними. Таким образом, мы не должны называть этот процесс «выбором», хотя с практической точки зрения этот термин удобен, поскольку он вызывает множество ассоциаций.

Как насчет калькулятора, запрограммированного на вычисление десятичной дроби корня из двух? Или шахматной программы? Можно сказать, что здесь мы имеем дело всего лишь с усложненными «шариками,» катящимися с усложненных горок. На деле, аргументы против выбора здесь еще сильнее, чем в предыдущем случае. Если вы попробуете повторить эксперимент с шариком, то, без сомнения, получите иные результаты: шарик покатится по новой дорожке. В то же время, сколько бы раз вы не включали калькулятор, вычисляющий квадратный корень из двух, результат всегда будет одинаковым. Кажется, что шарик выбирает иной путь, как бы аккуратно вы ни повторяли условия первого спуска, в то время как программа действует совершенно одинаково каждый раз.

В случае сложных шахматных программ есть несколько возможностей. Если вы начнете вторую партию теми же ходами, что и первую, некоторые программы будут просто повторять свои ходы. Незаметно, чтобы они чему-нибудь учились или стремились к разнообразию. Другие программы имеют устройства, обеспечивающие некоторое разнообразие, но это делается чисто механически, а не по желанию программы. Параметры такой программы можно вернуть в начальное состояние, словно она играет в первый раз, и она опять будет повторять точно те же ходы. Существуют также программы, которые учатся на своих ошибках и меняют стратегию в зависимости от результата партии. Они не будут повторять ходов, если в первый раз эти ходы привели к проигрышу. Разумеется, и здесь можно «перевести часы назад», стерев все изменения в памяти, представляющие новое знание, так же, как можно было вернуть к нулю генератор произвольных чисел в предыдущем случае, – однако это было бы довольно недружелюбным поступком по отношению к машине. Кроме того, можно ли считать, что вы смогли бы изменить любое из ваших прошлых решений, если бы каждая деталь – включая, разумеется, ваш мозг – была бы возвращена к начальному состоянию их принятия?

Но вернемся к вопросу о том, применимо ли сюда слово «выбор». Если программы – не более, чем «сложные шарики, скатывающиеся со сложных горок», то есть ли у них выбор? Конечно, ответ всегда будет субъективен, но я бы сказал, что сюда подходят те же соображения, как и в случае шарика. Однако должен добавить, что использование слова «выбор» здесь весьма привлекательно, хотя это слово и является только удобным сокращением. То, что шахматная программа, в отличие от шарика, заглядывает вперед и выбирает одну из ветвей сложного дерева возможностей, делает ее более похожей на одушевленное существо, чем на программу, вычисляющую квадратный корень из двойки. И все же здесь еще нет ни глубокого самосознания, ни чувства свободной воли.

Теперь давайте вообразим робота, снабженного набором символов. Он помещается в Т-образный лабиринт. Вместо того, чтобы идти за поощрением, расположенным в одном из концов Т, робот запрограммирован таким образом, что он идет налево, когда следующая цифра корня из двойки четная, и направо, когда она нечетная. Робот умеет изменять ситуацию в своих символах таким образом, что может наблюдать за процессом решения. Если каждый раз, когда он приближается к развилке, спрашивать его: «Знаешь ли ты, куда ты сейчас повернешь?», – он будет отвечать «Нет.» Затем он должен будет включить процедуру «решение», вычисляющую следующую цифру квадратного корня из двойки, и затем принять решение. О внутреннем механизме принятия решения роботу ничего не известно – в его системе символов этот механизм выглядит как черный ящик, таинственным и, по-видимому, произвольным образом выдающий команды «направо» или «налево.» Если символы робота не способны установить связи между его решениями и чередованием четных и нечетных цифр в корне из двойки, бедняга будет недоумевать перед своим «выбором». Но можно ли сказать, что этот робот на самом деле что-либо выбирает? Поставьте себя на его место. Если бы вы находились в шарике, катящемся с горы, и могли бы наблюдать его путь, не имея никакой возможности на него повлиять, сказали бы вы, что шарик выбирает дорогу? Разумеется, нет. Если вы не можете повлиять на выбор пути, то совершенно все равно, существуют ли символы.

Теперь мы модифицируем нашего робота, позволив символам – в том числе, символу его самого – влиять на его решения. Перед нами оказывается пример действующей по законам физики программы, которая гораздо ближе подходит к сути проблемы выбора, чем предыдущие примеры. Когда на сцену выходит блочное самовосприятие робота, мы можем идентифицировать себя с ним, поскольку сами действуем подобным образом. Это больше не похоже на вычисление квадратного корня из двойки, где никакие символы не влияли на результат. Однако, если бы мы взглянули на программу нашего робота на низшем уровне, то обнаружили бы, что она выглядит почти так же, как и программа для вычисления корня из двойки. Она выполняет команду за командой и результатом является «налево» или «направо». Но на высшем уровне мы видим, что в оценке ситуации и в принятии решения участвуют символы. Это коренным образом меняет наше восприятие программы. На этом этапе на сцену выходит значение, похожее на то, с каким имеет дело человеческий разум.

Водоворот Гёделя, где скрещиваются все уровни

Если некая внешняя сила теперь предложит роботу пойти налево («Л»), это предложение будет направлено в крутящуюся массу взаимодействующих символов. Там, как лодка, затянутая в водоворот, оно неизбежно окажется втянутым во взаимодействие с символом, представляющим самого робота. Здесь «Л» попадает в Запутанную Иерархию символов, где оно передается наверх и вниз. Само-символ не способен наблюдать за всеми внутренними процессами; таким образом, когда принято конечное решение – «Л», «П» или что-либо вне системы, – система не способна сказать, откуда оно взялось. В отличие от стандартной шахматной программы, которая не следит за собой и не знает, почему она выбирает тот или иной ход, эта программа имеет некоторое понятие о собственных идеях; однако она не может уследить за всеми деталями идущих в ней процессов. Не понимая их полностью, она воспринимает эти процессы интуитивно. Из этого равновесия между само-пониманием и само-непониманием рождается чувство свободной воли.

Представьте, например, писателя, старающегося передать некие идеи, представленные набором образов у него в голове. Он не уверен, как эти образы ухитряются гармонично сочетаться в его воображении, и начинает экспериментировать, выражая вещи по-разному, пока не остановится на окончательном варианте. Знает ли он, почему выбрал именно этот вариант? Только приблизительно. Большая часть источников его решения, подобно айсбергу, находится глубоко под водой, невидимая глазу, – и он об этом знает. Или представьте себе программу-композитора. Ранее мы уже это обсуждали, спрашивая, когда можно будет назвать эту программу композитором, а не простым инструментом человеческого сочинителя. Возможно, что мы сможем согласиться с ее самостоятельностью, когда в программе появится самосознание, основанное на взаимодействии символов, и она достигнет равновесия между само-пониманием и само-непониманием. Неважно, если система действует по детерминистским законам, мы говорим, что она делает выбор, когда можем идентифицировать себя с описанием процессов, происходящих на высшем уровне работающей программы.

На низшем уровне, уровне машинного языка, эта программа будет выглядеть точно так же, как любая другая, только на высшем, «блочном» уровне могут возникнуть такие качества, как «воля», «интуиция» и «творческие способности».

Идея в том, что именно «водоворот» само-символа порождает запутанность и «Гедельность» мышления Меня иногда спрашивают:«Автореферентность – очень интересная и забавная штука, но действительно ли вы считаете, что в этом есть что-то серьезное?» Безусловно. Я думаю, что именно это окажется в сердце Искусственного Интеллекта и в фокусе всех усилий направленных на понимание того, как работает человеческий разум. Именно поэтому Гедель так органично вплетен в ткань моей книги.

Водоворот Эшера, где скрещиваются все уровни

Рис. 142. М. К. Эшер. Картинная галерея (литография, 1956).

Поразительно красивая и в то же время странно тревожащая иллюстрация «глаза» циклона, порожденного Запутанной Иерархией, дана нам Эшером в его «Картинной галерее» (рис. 142). На этой литографии изображена картинная галерея где стоит молодой человек, глядя на картину корабля в гавани небольшого городка, может быть, мальтийского, судя по архитектуре, с его башенками, куполами и плоскими каменными крышами, на одной из которых сидит на солнце мальчишка, а двумя этажами ниже какая-то женщина – может быть, мать этого мальчишки – глядит из окна квартиры, расположенной прямо над картинной галереей, где стоит молодой человек, глядя на картину корабля в гавани небольшого городка, может быть, мальтийского – Но что это!? Мы вернулись к тому же уровню, с которого начинали, хотя логически этого никак не могло случиться. Давайте нарисуем диаграмму того, что мы видим на этой картине (рис 143).


Рис. 143. Абстрактная диаграмма «Картинной галереи» М. К. Эшера.

На этой диаграмме показаны три вида включения. Галерея физически включена в город («включение»); город художественно включен в картину («изображение»); картина мысленно включена в человека («представление»). Хотя эта диаграмма может показаться точной, на самом деле она произвольна, поскольку произвольно количество показанных на ней уровней. Ниже представлен другой вариант верхней половины диаграммы (рис. 144):


Рис. 144. Сокращенная версия предыдущей диаграммы.

Мы убрали уровень «города»; хотя концептуально он полезен, без него можно вполне обойтись. Рис. 144 выглядит так же, как диаграмма «Рисующих рук»: это двухступенчатая Странная Петля. Разделительные знаки произвольны, хотя и кажутся нам естественными. Это видно яснее из еще более сокращенной диаграммы «Картинной галереи»:


Рис. 145. Дальнейшее сокращение рис. 143.

Парадокс картины выражен здесь в крайней форме. Но если картина «включена в саму себя», то молодой человек тоже включен сам в себя? На этот вопрос отвечает рис. 146.


Рис. 146. Другой способ сокращения рис. 143.

Здесь мы видим молодого человека «внутри самого себя», в том смысле, какой получается от соединения трех аспектов «внутренности». Эта диаграмма напоминает нам о парадоксе Эпименида с его одноступенчатой автореференцией, в то время как двухступенчатая диаграмма похожа на пару утверждений, каждое из которых ссылается на другое. Затянуть Петлю туже не удается, но можно ее ослабить, вводя любое количество промежуточных уровней, таких как «рама картины», «аркада» и «здание». Сделав так, мы получим многоступенчатые Странные Петли, диаграммы которых изоморфны «Водопаду» (рис. 5) или «Спуску и подъему» (рис. 6) Количество ступеней определяется нашим чувством того, что «естественно», что может варьироваться в зависимости от контекста, цели, или нашего настроения. В конечном итоге, восприятие уровней – это вопрос интуиции и художественного вкуса.


    Ваша оценка произведения:

Популярные книги за неделю