Текст книги "ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда"
Автор книги: Даглас Хофштадтер
Жанры:
Философия
,сообщить о нарушении
Текущая страница: 5 (всего у книги 64 страниц)
В начале двадцатого века, проблемы подобного типа в основах математики вызвали живой интерес к кодификации методов логического мышления. Математики и философы начали сомневаться в том, что даже самые конкретные теории, такие, как теория чисел, построены на прочном фундаменте. Если парадоксы могли возникнуть в теории множеств, основанной на простых интуитивных понятиях, то почему бы им не проникнуть и в другие области математики? А что, если логические парадоксы, такие как парадокс Эпименида, свойственны математике в целом, и, таким образом, ставят всю ее под сомнение? Подобные проблемы тревожили в первую очередь тех – а их было немало – кто твердо верил в то, что математика – лишь один из разделов логики (или, наоборот, что логика – лишь один из разделов математики). Уже сам этот вопрос, «являются ли математика и логика отдельными и непохожими дисциплинами?», вызывал горячие споры.
Изучение самой математики получило название метаматематики или, иногда, металогики, поскольку математика и логика тесно переплетены. Важнейшей задачей метаматематиков было определение природы математических рассуждений. Что является законным методом рассуждений и что – незаконным? Поскольку рассуждения велись на каком-либо «естественном языке», скажем, французском или латинском, всегда были возможны двусмысленные и неясные толкования. Одно и то же слово может иметь разные значения для разных людей, вызывать различные образы, и так далее. Хорошей и важной идеей казалось установление единой нотации, с помощью которой велись бы все математические рассуждения, так чтобы два математика всегда могли договориться о том, верно ли предложенное доказательство. Эта задача потребовала бы кодификации всех общепринятых методов человеческих рассуждений, по крайней мере постольку, поскольку они приложимы к математике.
Последовательность, полнота, и программа Гильберта
Такая кодификация являлась основной идеей системы «Оснований математики» («ОМ»), авторы которой задались целью вывести всю математику из логики, причем без малейших противоречий! Многие восхищались их грандиозным трудом, но никто не был уверен в том, что 1) методы Рассела и Уайтхеда действительно описывают всю математику и 2) эти методы достаточно последовательны и корректны. Действительно ли при следовании этим методам никогда и не при каких условиях не могло возникнуть парадоксов?
Этот вопрос особенно тревожил знаменитого немецкого математика (и метаматематика) Дэвида Гильберта, кто поставил перед математиками (и метаматематиками) всего мира следующую задачу: со всей строгостью доказать, возможно, при помощи самих методов Рассела и Уайтхеда, что эти методы, во-первых, непротиворечивы и во-вторых, полны (иными словами, что в системе «ОМ» может быть выведено любое истинное высказывание). Эта задача весьма непростая, и ее можно критиковать за некоторую «порочную кругообразность», как можно пытаться доказать какие-либо методы рассуждения, пользуясь этими же методами? Это все равно, что пытаться поднять самого себя на воздух за шнурки от собственных ботинок. (Кажется, нам-таки никуда не деться от этих Странных Петель)
Гильберт, разумеется, полностью отдавал себе отчет в этой дилемме; однако он надеялся, что доказательство полноты и непротиворечивости удастся найти с помощью только небольшой группы так называемых «финитных» методов рассуждения, признаваемых большинством математиков. В этом смысле Гильберт надеялся, что математикам все же удастся «поднять самих себя на воздух за шнурки ботинок», доказав правильность всех математических методов путем использования лишь нескольких из них. Эта цель может показаться слишком эзотерической, однако именно она занимала умы многих великих математиков в первые тридцать лет двадцатого столетия.
Однако в тридцать первом году Гёдель опубликовал работу, подорвавшую основы Гильбертовой программы. Эта работа показала не только наличие незаполнимых «дыр» в аксиоматической системе, предложенной Расселом и Уайтхедом, но и то, что ни одна аксиоматическая система не может породить все истинные высказывания теории чисел, если она не является противоречивой! Наконец, Гёдель показал, насколько тщетна надежда доказать непротиворечивость системы «ОМ» если бы такое доказательство было найдено только при помощи методов, используемых в «ОМ» – и это одно из самых удивительных следствий Гёделевской работы – сами «ОМ» оказались бы противоречивы!
Последний иронический штрих для доказательства теоремы Гёделя о неполноте потребовалось внедрить парадокс Эпименида прямо в сердце «Оснований математики» – бастиона, считавшегося недоступным для Странных Петель. Хотя Гёделева Странная Петля и не разрушила «Оснований математики», она сделала их гораздо менее интересными для математиков, доказав иллюзорность цели, первоначально поставленной Расселом и Уайтхедом.
Баббидж, компьютеры, искусственный разум...
Как раз когда работа Гёделя вышла в свет, мир был накануне создания электронных цифровых компьютеров. Идея механических счетных машин носилась в воздухе уже давно В семнадцатом веке Паскаль и Лейбниц разработали машины для выполнения установленных операций сложения и умножения. К сожалению, эти машины не имели памяти и не были, в современном понимании этого слова, программируемыми
Первым человеком, понявшим, какой огромный счетный потенциал заключают в себе машины, был лондонец Чарльз Баббадж (Charles Babbage, 1792– 1871), фигура, словно сошедшая со страниц «Пиквикского клуба». При жизни он был известен более всего тем, что вел энергичные кампании по очистке Лондона от «нарушителей спокойствия», в первую очередь, шарманщиков.
Эти паразиты любили подразнить Баббаджа и исполняли для него «серенады» в любой час дня и ночи, а он, в ярости, гнал их вдоль по улице. Сегодня мы признаем, что Баббадж был человеком, обогнавшим свое время лет на сто он не только изобрел основные принципы современных компьютеров, но и был первым борцом за охрану окружающей среды от шума.
Его первое изобретение, «разностная машина», могла вычислять математические таблицы многих типов по «методу разностей». Однако, прежде чем была создана первая модель «РМ», Баббаджем завладела идея гораздо более революционная его «аналитическая машина». Довольно нескромно, Баббадж писал: «Я пришел к этой мысли таким сложным и запутанным путем, какой, возможно, впервые прошел человеческий ум».[4]4
Charles Babbage «Passages from the Life of a Philosopher» стр 145 6
[Закрыть] В отличие от созданных ранее машин, «AM» должна была иметь «склад» (память) и «фабрику» (считающее и принимающее решения устройство). Оба устройства должны были быть построены из тысяч цилиндров, сцепленных самым сложным и причудливым образом. Баббадж представлял себе числа, влетающие и вылетающие из «фабрики» под контролем некоторой программы, содержащейся в перфорированных картах – на эту идею его натолкнул ткацкий станок Жаккара, изготовлявший при помощи подобных карт удивительно сложные узоры. Подруга Баббаджа графиня Ада Лавлейс, дочь Байрона, женщина незаурядного таланта и горькой судьбы, поэтично прокомментировала: «Аналитическая машина ткет алгебраические узоры, наподобие того, как станок Жаккара ткет узоры из цветов и листьев». К сожалению, использование графиней настоящего времени вводит читателя в заблуждение: «AM» так никогда и не была построена, и Баббадж умер горько разочаровавшимся человеком.
Леди Лавлейс не менее, чем Баббадж, отдавала себе отчет в том, что, пытаясь создать аналитические машины, человечество флиртовало с искусственным разумом – в особенности, если эти машины способны «укусить себя за хвост» (так Баббадж описывал Странную Петлю, получавшуюся, когда его машина «залезала внутрь себя» и меняла заложенную в нее программу). В 1842 году она написала в своих мемуарах,[5]5
Lady A. A. Lovelace «Notes upon the Memoir „Sketch of the Analytical Engine Invented by Charles Babbage“» записано L. F. Menabrea (Женева 1842) и воспроизведено в книге E. Morrison «Charles Babbage and His Calculating Engines» стр. 248 9 284
[Закрыть] что аналитическая машина «может воздействовать не только на цифры, но и на другие вещи». В то время, как Баббадж мечтал о создании шахматного или «крестико-ноликового» автомата, леди Лавлейс предположила, что если записать на цилиндры машины тона и гармонии, то она могла бы «создавать искусно сделанные научные музыкальные композиции любой сложности и длины». Впрочем, там же она объясняет: «Аналитическая машина не претендует на создание чего-то нового, она может делать только то, что мы умеем ей приказать». Верно поняв, какая мощь заложена в механических вычислениях, она, тем не менее, оставалась скептически настроенной по отношению к механическому разуму. Однако могла ли она, со всей своей проницательностью, предположить, какие возможности откроются, когда человечество подчинит себе электричество?
В нашем веке пришло время для компьютеров, превзошедших самые смелые мечты Паскаля, Лейбница, Баббаджа или леди Лавлейс. В 1930-х и 1940-х годах были разработаны и построены первые «блестящие электронные головы». Это послужило катализатором к соединению трех ранее совершенно различных областей науки, теории аксиоматических рассуждений, изучения механических вычислений и исследований по психологии человеческого разума. В те же годы гигантскими скачками двигалась вперед теория компьютеров. Эта теория была тесно связана с математикой. Фактически, теорема Гёделя имеет параллель в теории вычислений: Алан Тюринг открыл существование неизбежных «дыр» в возможностях даже самого могучего компьютера. Словно в насмешку, как раз когда делались эти довольно мрачные прогнозы, строились новые компьютеры, чьи возможности росли на глазах, далеко превосходя самые смелые предсказания их создателей. Баббадж, сказавший однажды, что он с радостью отдал бы остаток жизни за возможность вернуться на три дня лет через пятьсот, чтобы получить возможность ознакомиться с наукой будущего, возможно, потерял бы дар речи от удивления уже через сто лет после своей смерти, пораженный как новыми машинами, так и их неожиданными ограничениями.
В начале 1950-х годов казалось, что до механического разума – рукой подать: однако за каждой преодоленной вершиной вставала новая, препятствуя созданию по-настоящему думающей машины. Возможно ли, что это упорное отдаление цели имело глубинные причины?
Никто не знает, где пролегает граница между разумным и не-разумным поведением; в самом деле, возможно, что само предположение о существовании четкой границы звучит глупо. Однако мы с уверенностью можем перечислить основные критерии разума:
гибко реагировать на различные ситуации;
извлекать преимущество из благоприятного стечения обстоятельств;
толковать двусмысленные или противоречивые сообщения;
оценивать различные элементы данной ситуации по степени их важности;
находить сходство между ситуациями, несмотря на возможные различия;
находить разницу между ситуациями, несмотря на возможное сходство;
создавать новые понятия, по-новому соединяя старые;
выдвигать новые идеи.
Здесь мы сталкиваемся с кажущимся парадоксом. Компьютеры, по определению, являются самыми негибкими, безвольными и послушными приказам существами. Несмотря на свою быстроту, они, тем не менее, сама бессознательность. Как же, в таком случае, можно запрограммировать разумное поведение? Не является ли уже само это предположение кричащим противоречием? Одна из основных идей этой книги – показать, что это вовсе не противоречие. Одна из основных целей этой книги – побудить каждого читателя встретиться с кажущимся парадоксом во всеоружии, попробовать его на вкус, вывернуть его наизнанку, разобрать его на части, пошлепать в нем, как ребенок в луже, чтобы в результате читатель смог взглянуть по-новому на кажущуюся неприступной пропасть между формальным и неформальным, одушевленным и неодушевленным, гибким и негибким
Это и составляет предмет исследований науки об искусственном интеллекте (ИИ). Работа специалистов по ИИ кажется странной и удивительной именно потому, что они разрабатывают строго формальные правила, говорящие негибким машинам, как стать гибкими
Что же это за правила такие, могущие описать всю сложность поведения разумных существ? Безусловно, это должны быть правила самых разных уровней: «простые» правила, «метаправила» для модификации «простых», «метаметаправила» для модификации метаправил, и так далее. Гибкость нашего разума зависит именно от огромного количества правил и сложности их иерархии. Некоторые ситуации вызывают стереотипные реакции, для которых годятся «простые» правила. Другие ситуации представляют собой комбинации из стереотипных ситуаций; тут нужны правила, говорящие, какие из «простых» правил приложимы к данной ситуации. Некоторые ситуации вообще не поддаются классификации – следовательно, требуются правила для изобретения новых правил… ит. д., и т. п. Без сомнения, Странные Петли, правила, изменяющие сами себя, находятся в самом сердце разума. Иногда сложность нашего разума кажется нам настолько поразительной, что у нас опускаются руки перед задачей понять и описать его; тогда нам кажется, что никакие, даже самые замысловатые иерархические правила не способны управлять поведением разумных существ.
...и Бах
В 1754 году, четыре года спустя после смерти И. С. Баха, лейпцигский теолог Иоганн Микаэль Шмидт написал в своем труде о музыке и о душе следующие достойные внимания строки:
Не так давно из Франции сообщили, что там сделана была статуя, способная исполнить несколько пьес на Fleuttraversiere; статуя эта подносит флейту к губам и затем ее опускает, двигает глазами и т. д. Однако никто еще не изобрел образа, который бы думал, желал, сочинял или делал бы что-либо отдаленно подобное. Пусть любой, кто желает в этом убедиться, обратится к последним фугам Баха, которому мы уже воздали почести ранее. (Эти фуги были выгравированы на меди, но не были закончены, так как этому помешала слепота композитора.) Пусть увидит наблюдатель, какое искусство содержится в этой музыке – еще более он будет поражен чудесным Хоралом, который был записан под диктовку слепого Баха. «Wenn wir in hőchen Nothen seyn». Я уверен, что наблюдателю вскоре понадобится душа, ежели он желает прочувствовать всю содержащуюся в этой музыке красоту или, более того, исполнить эту музыку и составить суждение об авторе. Все аргументы чемпионов Материализма должны рассыпаться в прах лишь от одного этого примера.[6]6
David and Mendel стр. 255 6
[Закрыть]
Скорее всего, под главным «чемпионом Материализма» здесь имеется в виду не кто иной как Жюльен Оффрой де Ламеттри, придворный философ Фридриха Великого, автор книги «Человек как машина» и материалист до мозга костей. С тех пор прошло более двухсот лет, но битва между сторонниками Иоганна Микаэля Шмидта и Жюльена Оффроя де Ламеттри все еще в полном разгаре. В этой книге я надеюсь дать читателю некоторую перспективу этой битвы.
«Гёдель, Эшер, Бах»
Эта книга построена необычно – как контрапункт между Диалогами и Главами. С помощью такой структуры я смог вводить новые понятия дважды: каждое из них сначала представлено в метафорической форме в диалоге, что дает читателю конкретные зрительные образы; эти образы затем служат интуитивным фоном для более серьезного, абстрактного обсуждения того же понятия. Многие Диалоги создают поверхностное впечатление, что я говорю о какой-то определенной идее, когда на самом деле я имею в виду совсем иную идею, тщательно замаскированную.
Сначала единственными действующими лицами моих Диалогов были Ахилл и Черепаха, пришедшие ко мне от Зенона из Элей через посредство Льюиса Кэрролла. Зенон, изобретатель парадоксов, жил в 5 веке до н.э. Один из его парадоксов был аллегорией, в которой действовали Ахилл и Черепаха. История изобретения Зеноном этой счастливой парочки рассказана в первом Диалоге, «Трехголосная инвенция». В 1895 году Льюис Кэрролл воссоздал Ахилла и Черепаху для иллюстрации своего собственного нового парадокса о бесконечности. Парадокс Кэрролла, заслуживающий гораздо большей популярности, играет значительную роль в этой книге. В оригинале он называется «Что Черепаха сказала Ахиллу» – здесь он приведен как «Двухголосная инвенция».
Вскоре после того, как я начал писать Диалоги, каким-то образом они связались в моим воображении с музыкальными формами. Не помню того момента, когда это произошло, помню лишь, как однажды я в задумчивости написал «фуга» над текстом одного из ранних Диалогов. Идея привилась, и с тех пор я стал писать Диалоги, формально составленные по образцу различных композиций Баха. Это оказалось неплохой мыслью. Сам Бах часто напоминал своим ученикам, что различные части их композиций должны вести себя как «люди, беседующие друг с другом в избранном обществе». Возможно, что я вложил в этот совет более буквальный смысл, чем Бах, надеюсь все же, что результат оказался верен также и его духу. Особенно меня вдохновили некоторые поразительные аспекты Баховских композиций, которые так прекрасно описаны Менделем и Давидом в их книге «Баховская хрестоматия» (Mendel & David, «The Bach Reader»):
Форма у Баха в основном опиралась на соотношения между отдельными частями от полного сходства с одной стороны до повторения какого-либо одного композиционного принципа или просто мелодической переклички с другой стороны. Получившиеся композиции часто бывали симметричными но это никоим образом не являлось необходимым следствием. Иногда соотношения между частями создают запутанный клубок, который можно распутать только путем детального анализа. Обычно впрочем, несколько доминирующих черт позволяют сориентироваться с первого взгляда или прослушивания, хотя при дальнейшем изучении мы можем открыть для себя множество тонкостей нас никогда не покидает чувство единства, связывающего каждое произведение Баха в одно гармоничное целое.[7]7
Там же стр. 40
[Закрыть]
Я решил попытаться сплести Бесконечную Гирлянду из этих трех прядей Гедель, Эшер, Бах. По началу я планировал написать эссе, центральной темой которого была бы теорема Геделя о неполноте. Я думал, что у меня получится тоненькая брошюрка, однако мой проект стал расти, как снежный ком, и вскоре затронул Баха и Эшера. Некоторое время я не знал, выразить ли эту связь открыто или же оставить ее при себе как источник собственного вдохновения. В конце концов я понял, что Гедель, Эшер и Бах для меня – только тени, отбрасываемые в разные стороны некой единой центральной сущностью. Я попробовал реконструировать этот центральный объект, результатом моей попытки явилась эта книга.
Трехголосная инвенция
Ахилл (греческий воин, самый быстроногий из смертных) и Черепаха стоят рядом на пыльной беговой дорожке; жара, палит солнце. Далеко в конце дорожки на высоком флагштоке висит большой прямоугольный ярко-красный флаг. В центре флага вырезана дыра в форме кольца, сквозь которую видно небо.
Ахилл: Что это за странный флаг там, на другом конце дорожки? Он чем-то напоминает мне гравюру моего любимого художника, Эшера.
Черепаха: Это флаг Зенона.
Ахилл: Не кажется ли вам, что дыра в нем похожа на отверстия в листе Мёбиуса на одной из картин Эшера? Могу поспорить, что с этим флагом что-то не в порядке.
Черепаха: В нем вырезано кольцо в форме нуля – любимого числа Зенона.
Ахилл: Но ведь в то время нуль еще не был изобретен! Он будет придуман неким индусским математиком только несколько тысяч лет спустя. Это доказывает, дорогая г-жа Ч, что подобный флаг невозможен.
Черепаха: Ваши доводы убедительны, Ахилл, и я должна согласиться, что такой флаг, действительно, не может существовать. Но все равно он замечательно красив, не правда ли?
Ахилл: В этом я не сомневаюсь.
Черепаха: Интересно, не связана ли его красота с его невозможностью? Не знаю, не знаю.. У меня никогда не доходили лапы до анализа Красоты. Это Сущность с Большой Буквы, а у меня никогда не хватало времени на Сущности с Большой Буквы.
Ахилл: Кстати, о Сущностях с Большой Буквы – вы никогда не задавались вопросом о Смысле Жизни?
Черепаха: Бог мой, конечно же, нет!
Ахилл: Не спрашивали ли вы себя, зачем мы здесь и кто нас изобрел?
Черепаха: Ну, это совершенно другое дело. Нас изобрел Зенон (в чем вы сами скоро убедитесь); мы находимся здесь, чтобы бежать наперегонки.
Ахилл: Мы – наперегонки?. Это возмутительно! Я, самый быстроногий из смертных – и вы медлительная, как… как… как Черепаха!
Черепаха: Вы могли бы дать мне фору.
Ахилл: Это была бы огромная фора.
Черепаха: Ну что же, я не возражаю.
Ахилл: Все равно я вас нагоню, раньше или позже – скорее всего, раньше.
Черепаха: А вот и нет, если верить парадоксу Зенона. Зенон надеялся с помощью нашего маленького соревнования доказать, что движение невозможно. По Зенону, движение происходит только в нашем воображении. Это значит, что Мир Изменяется Исключительно Иллюзорно. Он доказывает этот постулат весьма элегантно.
Ахилл: Ах, да, теперь я припоминаю знаменитый коан мастера дзен-буддизма Дзенона… тьфу!. Зенона, я имею в виду. Действительно, очень просто.
Черепаха: Дзен коан? Дзен мастер? О чем вы говорите?
Ахилл: Вот, послушайте… Два монаха спорили о флаге Один сказал; «Этот флаг движется». Другой возразил: «Нет, это ветер движется». В это время мимо проходил шестой патриарх, Зенон, который сказал монахам: «Не флаг и не ветер – движется ваша мысль!»
Рис. 10. М.К. Эшер. «Лист Мёбиуса I» (гравюра на дереве, отпечатанная с четырех блоков, 1961).
Черепаха: Что-то вы все путаете, Ахилл. Зенон вовсе не мастер дзен-буддизма. На самом деле, он греческий философ из города Элей, лежащего на полпути между точками А и Б. Спустя столетия, его все еще будут славить как автора парадоксов движения. В центре одного из них – наше соревнование по бегу.
Ахилл: Вы меня совсем сбили с толку. Я отчетливо помню, как много раз повторял наизусть имена шести патриархов дзена: «Шестой патриарх – Зенон, шестой патриарх – Зенон...» (Внезапно поднимается теплый ветер.) Взгляните, госпожа Черепаха, как развевается флаг! Как приятно смотреть на волны, бегущие по его мягкой ткани. И кольцо, вырезанное в нем, развевается вместе с флагом!
Черепаха: Не смешите меня. Этот флаг в принципе невозможен, следовательно, он не может развеваться. Это движется ветер.
(В этот момент мимо идет Зенон.)
Зенон: День добрый! Приветствую вас! Что слышно?
Ахилл: Флаг движется!
Черепаха: Ветер движется!
Зенон: О мои дражайшие друзья! Прекратите ваши словопрения! Оставьте ваши разногласия! Поберегите ваше красноречие! Я разрешу ваш спор, не сходя с места. Эгей, и в такой чудный денек!
Ахилл: Этот тип явно дурака валяет.
Черепаха: Нет, подождите, Ахилл, давайте-ка его послушаем. О неизвестный господин, будьте так любезны поделиться с нами вашими соображениями по этому поводу.
Зенон: С превеликим удовольствием. Не ветер и не флаг – на самом деле, вообще ничто не движется, что следует из моей великой Теоремы. Она гласит: «Мир Изменяется Исключительно Иллюзорно». А из этой Теоремы вытекает еще более великая Теорема, Теорема Зенона: «Мир Ультранеподвижен».
Ахилл: Теорема Зенона? Вы, случаем, уж не Зенон ли из Элей будете?
Зенон: Он самый, Ахилл.
Ахилл (чешет голову в замешательстве): Откуда он знает, как меня зовут?
Зенон: Возможно ли убедить вас выслушать меня, чтобы вы поняли, почему это так? Я прошел сегодня от точки А до самой Элей, только затем, чтобы найти кого-нибудь, кто согласился бы послушать мои тщательно отточенные доводы. Но все встречные сразу разбегались. Им, видите ли, было некогда. Вы не представляете себе, как это разочаровывает, когда встречаешь отказ за отказом… Однако простите меня – я совсем замучил вас пересказом моих неприятностей. Я прошу вас только об одном: не согласитесь ли вы ублажить старика-философа и уделить несколько минут – обещаю вам, всего лишь несколько минут – его экстравагантным теориям?
Ахилл: О, без сомнения! Сделайте милость, просветите нас! Я знаю, что говорю за обоих, так как моя приятельница, госпожа Черепаха, только что отзывалась о вас весьма уважительно и упоминала как раз о ваших парадоксах.
Зенон: Благодарю вас. Видите ли, мой Мастер, пятый патриарх, учил меня, что реальность всегда одна и та же, единая и неизменная. Все разнообразие, изменение и движение – не более, чем иллюзии наших органов чувств. Некоторые смеялись над его взглядами, но я могу доказать всю абсурдность их насмешек. Мои доводы весьма просты. Я покажу их на примере двух персонажей моего собственного изобретения: Ахилл (греческий воин, самый быстроногий из смертных) и Черепаха. В моем рассказе, прохожий убеждает их бежать наперегонки к флагу, развевающемуся на ветру в конце беговой дорожки. Предположим, что Черепаха, как гораздо более медленный бегун, получит фору, скажем, в пятьдесят локтей. Соревнование начинается. В несколько прыжков Ахилл добегает до того места, откуда стартовала Черепаха.
Ахилл: Ха!
Зенон: Теперь Черепаха впереди него лишь на пять метров. Ахилл вмиг достигает того места.
Ахилл: Хо-хо!
Зенон: Все же за этот миг Черепаха успела немного продвинуться вперед. В мгновение ока Ахилл покрывает и эту дистанцию.
Ахилл: Хи-хи-хи!
Зенон: Но и в это кратчайшее мгновение Черепаха чуточку продвинулась, и опять Ахилл оказался позади. Теперь вы видите, что если Ахилл хочет нагнать Черепаху, ему придется играть в эти «догонялки» БЕСКОНЕЧНО – а следовательно, он НИКОГДА ее не догонит!
Черепаха: Хе-хе-хе-хе!
Ахилл: Хм… хм… хм… хм… хм… Этот довод кажется мне неверным. Однако я никак не могу понять, в чем здесь ошибка.
Зенон: Хороша головоломочка? Это мой любимый парадокс.
Черепаха: Прошу прощения, Зенон, но мне кажется, что вы рассказали нам что-то не то. Через несколько веков этот ваш рассказ будет известен как парадокс Зенона «Ахилл и Черепаха»; он показывает – гм! – что Ахилл никогда не догонит Черепаху. Доказательство же того, что Мир Изменяется Исключительно Иллюзорно (а следовательно, Мир Ультранеподвижен) содержится в вашем «Дихотомическом Парадоксе», не так ли?
Зенон: Ах, какой стыд. Конечно же, вы правы. Это тот парадокс, где объясняется, что идя от А до Б, надо сначала пройти половину пути – но от этой половины также придется сначала пройти половину… и так далее. Оба эти парадокса очень похожи; честно говоря, я просто обыгрывал мою Великую Идею с разных сторон.
Ахилл: Могу поклясться, что эти аргументы содержат ошибку. Хотя я не вижу, где в них ошибка, зато прекрасно понимаю, что они не могут быть верными.
Зенон: Так вы сомневаетесь в правильности моих парадоксов? Отчего же вам самим не попробовать? Видите тот красный флаг в конце дорожки?
Ахилл: Невозможный, сделанный по гравюре Эшера?
Зенон: Тот самый. Как насчет того, чтобы вам с Черепахой пробежаться к флагу наперегонки? Конечно, ей надо будет дать приличную фору, скажем…
Черепаха: Как насчет пятидесяти локтей?
Зенон: Отлично – пусть будут пятьдесят локтей.
Ахилл: Я-то всегда готов.
Зенон: Вот и чудесно. Все это захватывающе интересно! Сейчас мы проверим мою строго доказанную Теорему на опыте! Госпожа Черепаха, будьте так добры, займите позицию на пятьдесят локтей впереди Ахилла.
(Черепаха продвигается на пятьдесят локтей ближе к флагу.)
Ну как, вы оба готовы?
Черепаха и Ахилл: Готовы!
Зенон: На старт… Внимание… Марш!