355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Даглас Хофштадтер » ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда » Текст книги (страница 39)
ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда
  • Текст добавлен: 6 октября 2016, 04:15

Текст книги "ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда"


Автор книги: Даглас Хофштадтер


Жанры:

   

Философия

,

сообщить о нарушении

Текущая страница: 39 (всего у книги 64 страниц)

Формула                                                         Геделев номер

a=a                                                                 262,111,262

теперь заменим все свободные переменные на символ числа 2

SS0=SS0                                                          123,123,666,111,123,123,666

                                                         *******

~Ea:Ea':Ea''=(SSa*SSa')                                      223,333,262,636,333,262,163,636,

.                                                                    262,163,163,111,362,123,123,262,

.                                                                    236,123,123,262,163,323

теперь заменим заменим свободные переменные на символ числа 4

~Ea:Ea':SSSS0=(SSa*SSa')                                  223,333,262,636,333,262,163,636,

.                                                                   123,123,123,123,666,111,362,123,

.                                                                   123,262,236,123,123,262,163,323,

В правой колонке происходит изоморфный арифметический процесс, в котором один большой номер превращается в другой, еще больший номер. Функцию, которая производит этот новый номер из старого, несложно описать арифметически в терминах сложения, умножения, возведения в десятую степень и так далее – но нам это не нужно. Важно здесь то, что отношения между (1) первоначальным Гёделевым номером, (2) номером, чей символ мы вставили и (3) Гёделевым номером, при этом получающимся – это примитивно рекурсивные отношения. Это значит, что на Блупе может быть написана программа-тест, которая, если мы введем в нее эти три номера, сможет ответить ДА. если между ними существуют такие отношения, и НЕТ – в противном случае. Вы можете проверить себя на способность проводить такие тесты (и в то же время убедиться, что в этом процессе нет спрятанных открытых петель), проверив следующие два случая:

(1) 362,262,112,262,163,323,111,123,123,123,123,666;

.     2;

.    362,123,123,666,112,123,123,666,323,111,123,123,123,123,666.

(2) 223,362,262,236,262,323,111,262,163;

.     1;

.     223,362,123,666,236,123,666,323,111,262,163.

Как обычно, один из примеров проходит проверку, а другой – нет. Назовем эти отношения между тремя номерами отношениями замены. Поскольку они примитивно рекурсивны, они могут быть представлены некоей формулой ТТЧ с тремя свободными переменными. Давайте запишем эту формулу сокращенно:

   ZAM{a, a', a"}

Поскольку эта формула представляет отношения замены, нижеследующая формула ТТЧ должна являться теоремой:

ZAM{SSSSS..... SSSSS0/a, SS0/a', SSSSSS..... SSSS0/a"}

.           |________|                          |________|

.         262,111,262-«S»          123,123,666,111,123,123,666 «S»

(Это основано на первом примере отношений замены, показанном ранее в виде параллельных колонок.) С другой стороны, поскольку формула ZAM представляет собой отношения замены, формула, данная ниже, не является теоремой ТТЧ:

ZAM{SSS0/a, SS0/a', S0/a"}

Арифмоквайнирование

Пора соединить все эти части в одно гармоничное целое. Мы попробуем использовать технику ПАР-ДОКАЗАТЕЛЬСТВА-ТТЧ и формул ZAM для построения суждения ТТЧ, интерпретирующегося как «Эта строчка ТТЧ – не теорема ТТЧ». Как это возможно? Даже теперь, когда у нас есть все необходимые инструменты, ответ на этот вопрос найти нелегко.

Интересный и на вид довольно несерьезный прием состоит в подстановке в формулу ее собственного Гёделева номера. Это весьма похоже на другое, тоже легкомысленное на вид понятие «квайнирования», о котором вы прочли в «Арии в ключе G». Однако квайнирование оказалось важным, поскольку оно представляет из себя новый способ создания автореферентных суждений. Автореферентность подобного типа сначала кажется весьма странной, но, поняв ее принцип, вы найдете ее простой и изящной. Арифметическая версия квайнирования – назовем ее арифмоквайнированием – позволит нам получать суждения ТТЧ, «говорящие о себе самих».

Давайте рассмотрим пример арифмоквайнирования. Нам нужна формула, по меньшей мере, с одной переменной. Для этого годится следующая формула:

a=S0

Гёделев номер этой формулы – 262,111,123,666; теперь мы подставим этот номер в саму формулу – или, точнее, мы подставим в нее символ этого номера. У нас получится:

SSSSS.....SSSSSO=S0

|____________|

262,111,123,666 «S»

Эта новая формула очень глупа: она утверждает, что 262,111,123,666 равняется 1. Если бы мы начали со строчки ~a=S0, и затем арифмоквайнировали ее, у нас получилось бы верное высказывание, в чем вы сами можете убедиться.

Разумеется, арифмоквайнируя, вы проделываете специальную операцию замены, о которой мы упомянули ранее. Чтобы говорить об арифмоквайнировании в ТТЧ, нам понадобилась бы формула:

ZAM{a'',a'',a'}

где две первые переменные совпадают. Это происходит потому, что мы используем один и тот же номер двумя разными способами (эхо Канторовского диагонального метода!) Номер а' является одновременно (1) первоначальным Гёделевым номером и (2) номером-заменой. Давайте сократим вышеприведенную формулу:

ARITHMOQUINE{a'', a'}

В переводе на русский это означает, что:

а' – Гёделев номер формулы, полученной арифмоквайнированием формулы с Гёделевым номером а''.

Предыдущее предложение – длинное и запутанное. Давайте попробуем выразить то же самое с помощью краткого и элегантного термина:

а' – арифмоквайнификация а''

Например, арифмоквайнификацией формулы 262,111,123,666 был бы следующий невероятный гигант:

123,123,123, ...... 123,123,123,666,111,123,666

|_________________________|

«123» повторяется 262, 111, 123,666 раз.

(Это всего-навсего Гёделев номер формулы, полученной, когда мы арифмоквайнировали a=S0.) Как видите, мы можем довольно легко говорить об арифмокваинировании в ТТЧ.

Последняя соломинка

Если вы снова перелистаете «Арию в ключе G», то увидите, что последний трюк, необходимый для получения автореференции по Квайну, заключается в том, чтобы квайнировать высказывание, само говорящее о квайнировании. Одного квайнирования оказывается недостаточно – вы должны квайнировать предложение о квайнировании! Нам придется использовать параллельный трюк и арифмоквайнировать формулу, саму упоминающую квайнирование. Давайте запишем эту формулу; назовем ее дядей G.

~Eа:Eа':<ПАРА-ДОКАЗАТЕЛЬСТВА-

TTЧ{a,a'}Λ ARITHMOQUINE{a",a'}>

Легко увидеть, насколько здесь замешано арифмоквайнирование. У этого «дяди», разумеется, есть Гёделев номер – мы будем называть его d. Начало и конец d и даже кое-какие фрагменты его середины мы можем прочитать без труда:

d = 223,333,262,636,333,262,163,636,212..... 161,.... 213

Для остального нам только нужно знать, как выглядят в записи формулы ПАРА-ДОКАЗАТЕЛЬСТВА-ТТЧ и ARITHMOQUINE. Приводить здесь эту запись слишком сложно, да и не нужно.

Теперь осталась самая малость – нужно арифмоквайнировать самого дядю! Для этого надо избавиться от свободных переменных, которых у нас только одна – а'' – и заменить их на символ числа d. Мы получим:

~Ea:Ea':<ПАРА-ДОКАЗАТЕЛЬСТВА-ТТЧ{a,a'}

ΛARITHMOQUINE{SS…SSS0/a'',a'}>

.                       |___|

.                       d «S»

Именно это и есть Гёделева строчка, которую мы называем «G». Теперь у нас возникают два вопроса, на которые необходимо ответить без промедления. Вот они:

(1) Каков Гёделев номер G?

(2) Какова интерпретация G?

Сначала ответим на первый вопрос. Как мы получили G? Мы начали с дяди и арифмоквайнировали его, так что, по определению арифмоквайнирования, Гёделев номер G – это:

арифмоквайнификация d.

Теперь второй вопрос. Постараемся перевести G на русский постепенно, шаг за шагом проясняя значение этой строчки. Нашей первой попыткой будет дословный перевод:

«Не существует чисел а и а' таких, что они оба:

(1) составляют пару доказательства ТТЧ и

(2) а' является арифмоквайнификацией d».

Мы знаем, однако, что существует число а', являющееся арифмоквайнификацией d. Следовательно, дело в другом числе, в а. Это позволяет нам перефразировать наш перевод:

«Не существует такого числа а, которое составляло бы пару доказательства ТТЧ с арифмоквайнификацией d»

(Этот шаг может быть немного сложным для понимания; ниже мы остановимся на нем подробнее.) Видите ли вы, что происходит? G утверждает, что:

«Формула, чей Гёделев номер – арифмоквайнификация d, не является теоремой ТТЧ».

Но – и это уже не должно нас удивлять – эта формула не что иное, как сама строчка G! Следовательно, нашим окончательным переводом будет:

«G – не теорема ТТЧ»;

или, если вам так больше нравится —

«Я – не теорема ТТЧ».

Начав с интерпретации на низшем уровне – суждения теории чисел, мы постепенно дошли до интерпретации на высшем уровне – суждения мета-ТТЧ.

ТТЧ выбрасывает полотенце

В главе IX мы уже упоминали о главном следствии этого удивительного построения: это неполнота ТТЧ. Давайте вспомним, как мы при этом рассуждали:

Является ли G теоремой ТТЧ? Если это так, то она должна утверждать истинный факт. Но что именно утверждает G? Свою собственную нетеоремность. Следовательно, из ее теоремности вытекала бы ее нетеоремность. Противоречие!

С другой стороны, что, если G не теорема? Это можно принять, так как противоречия здесь не возникает. Но G утверждает именно собственную нетеоремность – следовательно, G утверждает истинный факт. Значит, поскольку G не теорема, мы можем заключить, что существует по меньшей мере один истинный факт, не являющийся теоремой ТТЧ.

Теперь – обещанное объяснение сложного шага нашего перевода. Я воспользуюсь для этого похожим примером. Возьмем строчку

~Eа:Eа':<ЧЕРЕПАШЬЯ ПАРА{а, а'}ΛДЕСЯТАЯ СТЕПЕНЬ{SS0/а'',а'}>

где оба сокращения обозначают строчки ТТЧ, которые вы можете дописать сами. ДЕСЯТАЯ СТЕПЕНЬ{а'',а'} представляет высказывание «а' равняется а'' в десятой степени». Таким образом, дословный перевод на русский получается такой:

«Не существует чисел а и а' таких, что они (1) составляют Черепашью пару, и (2) а' – 2 в десятой степени».

Но мы знаем, что десятая степень 2 существует – это 1024. Таким образом, эта строчка на самом деле утверждает, что:

«Не существует числа а, которое составляет Черепашью пару с числом 1024».

Это высказывание, в свою очередь, сводится к:

«1024 не обладает Черепашьим свойством».

Нам удалось заменить символ числа на его описание. Это было возможно, благодаря использованию дополнительной квалифицированной переменной (а' ), В данном случае, число 1024 было описано как «десятая степень двух»– выше это было числом, описанным как «арифмоквайнификация d».

«Будучи арифмоквайнированным, производит нетеоремность!»

Переведем дыхание и посмотрим, что мы сделали до сих пор. Для этого сравним арифмоквайнирование с парадоксом Эпименида. Вот схема этого соответствия:

ложность <==> нетеоремность

цитата фразы <==> Геделев номер строки

предварение предиката цитатой фразы <==> подстановка символа (или определенного терма) в открытую формулу

предварение предиката цитатой фразы <==> подстановка Гёделева номера строчки в открытую формулу

предварение предиката им самим в кавычках (квайнирование) <==> Подстановка Гёделева номера открытой формулы в саму эту формулу (арифмоквайнирование)

После квайнирования производит ложное высказывание (предикат без подлежащего) <==> «дядя» G (открытая формула ТТЧ)

«После квайнирования производит ложное высказывание» (тот же предикат, квайнированныи) <==> номер d (Гёделев номер предыдущей открытой формулы)

«После квайнирования производит ложное высказывание» После квайнирования производит ложное высказывание <==> строчка G (высказывание ТТЧ, полученное путем подстановки d в «дядю», то есть, путем его арифмоквайнирования)

Вторая теорема Гёделя

Поскольку интерпретация G истинна, интерпретация ее отрицания ~G – ложна. Мы знаем, что в ТТЧ невозможно вывести ложные утверждения. Следовательно. ни G, ни ее отрицание ~G не могут быть теоремами ТТЧ. Мы нашли в нашей системе «дыру» – неразрешимое суждение. Из этого следуют несколько фактов. Вот один из них, довольно любопытный: несмотря на то, что ни G, ни ее отрицание ~G не являются теоремами ТТЧ, формула – теорема, поскольку из правил исчисления высказываний следует, что все правильно построенные формулы типа

V ~P> – теоремы.

Это – простой пример того случая, когда утверждение внутри системы и утверждение о системе противоречат друг другу. Возникает вопрос: действительно ли система верно отражает саму себя? Соответствует ли «отраженная метаматематика», существующая внутри ТТЧ, «обыкновенной», повседневной математики? Это было одним из вопросов, интересовавших Гёделя, когда он писал свою статью. В частности, он был заинтересован в том, возможно ли доказать в «отраженной метаматематике» непротиворечивость ТТЧ. Вспомните, что доказательство непротиворечивости систем было важным философским вопросом того времени. Гёдель нашел простой способ выразить высказывание «ТТЧ непротиворечива» в виде формулы ТТЧ; после чего он показал, что эта формула (как и все другие формулы, выражающие похожую идею) является теоремой ТТЧ только при одном условии: если ТТЧ противоречива. Этот еретический результат был тяжелым ударом для оптимистов, считавшим, что возможно найти строгое доказательство непротиворечивости математики.

Как можно выразить высказывание «ТТЧ непротиворечива» в самой ТТЧ? Опираясь на простой факт: противоречивость означает, что две формулы, x и ~x, одна из которых – отрицание другой, одновременно являются теоремами. Но если они обе – теоремы, тогда, согласно исчислению высказываний, все правильно сформированные формулы – теоремы. Таким образом, чтобы доказать непротиворечивость ТТЧ, достаточно доказать нетеоремность единственного высказывания ТТЧ. Следовательно, один возможный способ выразить непротиворечивость ТТЧ – это высказывание типа «формула ~0=0 не является теоремой ТТЧ». Такое высказывание уже было предложено в качестве упражнения несколькими страницами ранее. Вот что у нас должно получиться:

~Eа:ПАРА-ДОКАЗАТЕЛЬСТВА-ТТЧ{а,SSSSS…SSSSSO/a'}

.                                                     |_________|

.                                                  «S» 223666111666 раз

Путем длинных, но несложных рассуждений можно доказать, что пока ТТЧ остается непротиворечивой, ее клятва в собственной непротиворечивости – не теорема. Таким образом, ТТЧ весьма сильна в выражении идей, но слабовата в их доказательстве. Это очень интересный результат, если метафорически приложить его к проблеме человеческого самосознания.

ТТЧ страдает ω-неполнотой

От какой именно разновидности неполноты «страдает» ТТЧ? Мы вскоре увидим, что речь идет о неполноте типа «омега», определенной в главе VIII. Это означает, что существует некая бесконечная пирамидальная семья строчек, каждая из которых является теоремой – но при этом соответствующая «итоговая» строчка теоремой не является. Эту итоговую не-теорему найти нетрудно:

~Aа:~Eа':<ПАРА-ДОКАЗАТЕЛЬСТВА-ТТЧ{а,а'}

ΛARITHMOQUINE{SS… SSSO/a'',a'}>

.                       |_____|

.                     «S» d раз

Чтобы понять, почему эта строчка – не теорема ТТЧ, заметьте, что она крайне напоминает саму G – на самом деле, согласно правилу замены ТТЧ, от нее до G – лишь один шаг. Следовательно, если бы она была теоремой, то нам бы пришлось признать теоремность G. Теперь постараемся показать, что все строчки в пирамидальной семье на самом деле являются теоремами. Мы можем легко их записать:

~Eа':<ПАРА-ДОКАЗАТЕЛЬСТВА-ТТЧ{O/а,а}ΛARITHMOQUINE{SSS…SSSO/а",а}>

~Eа':<ПАРА-ДОКАЗАТЕЛЬСТВА-ТТЧ{SO/а,а}ΛARITHMOQUINE{SSS…SSSO/а",а}>

~Eа':<ПАРА-ДОКАЗАТЕЛЬСТВА-ТТЧ{SSO/а,а}ΛARITHMOQUINE{SSS…SSSO/а",а}>

~Eа':<ПАРА-ДОКАЗАТЕЛЬСТВА-ТТЧ{SSSO/а,а}ΛARITHMOQUINE{SSS…SSSO/а",а}>

*   *

*   *

*   *

Что утверждает каждая из этих строчек? Вот их соответствующие переводы.

«0 и арифмоквайнификация d – не пара доказательства ТТЧ».

«1 и арифмоквайнификация d – не пара доказательства ТТЧ».

«2 и арифмоквайнификация d – не пара доказательства ТТЧ».

«3 и арифмоквайнификация d – не пара доказательства ТТЧ».

«4 и арифмоквайнификация d – не пара доказательства ТТЧ».

*   *

*   *

*   *

Каждое из этих утверждений говорит о том, формируют ли два определенных числа пару доказательства, или нет. (С другой стороны, G говорит о том, является ли одно определенное число. числом-теоремой, или нет.) Поскольку G – не теорема, не существует такого числа, которое составляло бы пару доказательства с Гёделевым номером G. Таким образом, каждое из утверждений пирамидальной семьи истинно. Основная идея в том, что свойство являться парой доказательств примитивно рекурсивно и, следовательно, представимо – поэтому каждое из утверждений выше должно быть переводимо в теорему ТТЧ, что означает, что все утверждения в нашей бесконечной пирамидальной семье – теоремы. И это показывает, почему ТТЧ ω-неполна.

Два разных способа заткнуть дыру

Поскольку интерпретация G истинна, интерпретация ее отрицания ~G ложна. Из нашего предположения о непротиворечивости ТТЧ следует, что в ней не могут быть выведены ложные утверждения.

Таким образом, ни G, ни ее отрицание ~G не являются теоремами ТТЧ. Мы нашли в нашей системе дыру – неразрешимое суждение. Это не должно нас особенно беспокоить, если мы достаточно свободомыслящи, чтобы признать, что из этого следует. Это означает, что ТТЧ можно дополнить, как можно дополнить абсолютную геометрию. В действительности, ТТЧ, как и абсолютную геометрию, можно расширить в двух направлениях. Она может быть расширена в стандартном направлении, что соответствует расширению абсолютной геометрии в Эвклидовом смысле; или же, она, может быть расширена в нестандартном направлении, что, разумеется, соответствует расширению абсолютной геометрии в неэвклидовом смысле. Стандартным дополнением будет:

добавление G в качестве новой аксиомы.

Это кажется довольно безвредным и даже желательным, поскольку G всего на всего утверждает некую истину о системе натуральных чисел. А как насчет нестандартного расширения? Если следовать аналогии с ситуацией аксиомы параллельности, оно должно означать:

добавление отрицания G в качестве новой аксиомы.

Но как мы можем даже подумать о таком ужасной, отвратительной вещи? В конце концов, если перефразировать Саккери, не является ли то, что утверждает ~G, «противным самой природе натуральных чисел»?

Супернатуральные числа

Надеюсь, что вы оценили иронический смысл этой цитаты. Проблема с подходом Саккери к геометрии заключалась в том, что он основывался на жестком понятии о том, что истинно и что ложно; он хотел доказать только то, что он считал истинным с самого начала. Несмотря на его оригинальный метод – отрицание пятого постулата и доказательство многих «противных» утверждений вытекающей из этого геометрии – Саккери не допускал возможности иного взгляда на точки и линии. Не будем повторять его знаменитой ошибки; вместо этого давайте рассмотрим как можно беспристрастней, что означала бы добавка ~G в качестве аксиомы ТТЧ. Подумайте только, на что была бы похожа современная математика, если бы люди не решили в свое время добавить к ней аксиом типа:

Ea: (a+a)=S0

Ea: Sa=0

Ea: (a*a)=SS0

Ea: S(a*a)=0

Хотя каждое из этих утверждений «противно природе ранее известных числовых систем», каждое из них в то же время означает значительное и замечательное расширения понятия целых чисел: рациональные числа, отрицательные числа, иррациональные числа, мнимые числа. ~G пытается открыть нам глаза на такую возможность. В прошлом каждое новое расширение системы натуральных чисел встречалось в штыки. Это можно заметить по именам, данным непрошеным пришельцам: «иррациональные», «мнимые». Оставаясь верными традиции, давайте назовем числа, которые порождает ~G, супернатуральными, поскольку они противоречат всем понятиям разума и здравого смысла.

Если мы собираемся добавить ~G в качестве шестой аксиомы ТТЧ, мы должны постараться понять, каким образом эта строчка может сосуществовать с вышеприведенной пирамидальной семьей. Ведь ~G утверждает, что

«существуют некое число, составляющее пару доказательства с d».

При этом члены пирамидальной семьи с успехом утверждают, что

«0 не является этим числом»

«1 не является этим числом»

«2 не является этим числом»

*

*

Это сбивает с толку, поскольку кажется совершеннейшим противоречием (именно поэтому это называется ω-противоречивостью). Наша проблема заключается в том, что, так же как и в случае с расширенной геометрией, мы упрямо отказываемся модифицировать интерпретацию символов, несмотря на то, что прекрасно понимаем, что имеем дело с модифицированной системой. Мы хотим обойтись без добавления хотя бы одного символа – что, разумеется, оказывается невозможным.

Проблема разрешается, если мы интерпретируем E как «существует некое обобщенное натуральное число» вместо «существует некое натуральное число». Одновременно с этим нам придется соответствующим образом изменить интерпретацию A. Это значит, что, кроме натуральных, мы открываем дверь для неких новых чисел. Это супернатуральные числа. Натуральные и супернатуральные числа вместе составляют обобщенные натуральные числа.

Кажущееся противоречие теперь испаряется, поскольку пирамидальная семья все еще утверждает, что «никакое натуральное число не составляет пару доказательства ТТЧ с арифмоквайнификацией d» Строчки этой семьи ничего не упоминают о супернатуральных числах, поскольку для них не существует символов. С другой стороны, ~G утверждает, что существует такое обобщенное натуральное число, которое составляет пару доказательства ТТЧ с арифмоквайнификацией d. Противоречия больше нет. ТТЧ+~G превращается в непротиворечивую систему, если ее интерпретация включает супернатуральные числа.

Поскольку мы решили расширить интерпретацию обоих кванторов, это означает, что значение любой включающей их теоремы также расширяется. Например, теорема коммутативности

Aa:Aa':(a+a')=(a'+a)

теперь говорит нам, что сложение коммутативно для всех обобщенных чисел – другими словами, не только для натуральных, но и для супернатуральных чисел. Таким же образом, теорема ТТЧ. утверждающая, что «2 – не квадрат натурального числа» —

~Ea:(a*a)=SSO

теперь говорит нам, что 2 также не является квадратом никакого супернатурального числа. На самом деле, супернатуральные числа имеют те же свойства, как и натуральные, всегда, когда эти свойства выражены в теоремах ТТЧ. Иными словами, все, что может быть формально доказано для натуральных чисел, верно и для супернатуральных чисел. Это означает, что супернатуральные числа не являются чем-то хорошо знакомым, вроде дробей, отрицательных чисел, комплексных чисел и т. п. Вместо этого, супернатуральные числа могут быть представлены, как целые числа, большие чем всё натуральные числа – то есть, как бесконечно большие целые числа. Дело в том, что хотя теоремы ТТЧ могут «запретить» отрицательные числа, дроби, иррациональные и комплексные числа, они бессильны против бесконечно больших величин. Проблема в том, что в ТТЧ невозможно даже выразить высказывание «бесконечных величин не существует».

С первого взгляда это кажется весьма, странным. Насколько велико число, составляющее пару доказательства с Гёделевым номером строчки G? (Давайте назовем это число «I», без особой на то причины.) К несчастью, у нас нет подходящих терминов для описания размера бесконечно больших целых чисел, так что я боюсь, что мне не удастся поведать вам, насколько велико I. С другой стороны, насколько велико i (квадратный корень из -1)? Его величина не может быть выражена в терминах знакомых нам натуральных чисел. Вы не можете сказать, что i вдвое меньше 14. Вам приходится успокоиться на том, что i в квадрате равняется -1. Здесь уместно процитировать Абраама Линкольна. Когда его спросили, какой длины должны быть человеческие ноги, он ответил; «Достаточно длинными, чтобы доставать до земли». Примерно так же нам придется ответить на вопрос о величине I: оно должно равняться числу, определяющему структуру доказательства G: не больше и не меньше.

Разумеется, любая теорема ТТЧ может быть выведена разными способами, так что вы можете пожаловаться, что мое определение I не является единственным. Это верно. Но сравнение с i, квадратным корнем из -1, все равно годится. Вспомните, что существует еще одно число, чей квадрат равняется -1 – а именно, -i. i и -i – не одно и то же число. У них просто есть общее свойство. Проблема в том, что они определяются именно через это свойство! Нам приходится выбрать одно из них – неважно, какое именно – и называть его i. На самом деле, мы никак не можем их различить. Вполне возможно, что все эти годы мы считали за «i» ошибочное число – однако для нас в этом не было никакой разницы. Так же как i, I определено неоднозначно. Вы можете думать об I как о каком-либо из многих супернатуральных чисел, составляющих пару доказательства с арифмоквайнификацией d.

У супернатуральных теорем – бесконечно длинные деривации

Мы еще не выяснили всех последствий добавления —G в качестве аксиомы ТТЧ Дело в том, что ~G утверждает, что у G имеется доказательство! Как может какая-либо система устоять, когда одна из ее аксиом утверждает, что ее собственное отрицание имеет доказательство? Тут-то мы попали в переделку! Однако все не так плохо, как кажется Пока мы строим только конечные доказательства, нам не удастся доказать G. Таким образом, кошмарного столкновения между G и ее отрицанием —G не произойдет никогда Супернатуральное число I не будет причиной несчастья. Однако нам придется привыкнуть к мысли, что теперь истинно ~G (утверждающее, что у G есть доказательство), в то время как G (утверждающее, что у G нет доказательства) ложно. В стандартной теории чисел дело обстоит наоборот – но там нет никаких супернатуральных чисел. Обратите внимание на то, что супернатуральная теорема ТТЧ – а именно, G – может утверждать нечто ложное, но все натуральные теоремы остаются истинными.

Супернатуральное сложение и умножение

Я хотел бы поделиться с вами одним интересным и неожиданным фактом по поводу супернатуральных чисел – при этом я оставлю этот факт без доказательства. (Так как сам его не знаю.) Этот факт напоминает о принципе неопределенности Гейзенберга в квантовой механике. Оказывается, что супернатуральные числа можно «индексировать» простым и естественным образом, ассоциируя с каждым из них тройку обыкновенных чисел (включая отрицательные). Таким образом, наше I может получить индекс (9,-8,3), а следующее за ним I+1 – индекс (9,-8,4). Не существует какого-то одного способа индексировать все супернатуральные числа: у разных методов есть свои плюсы и минусы. Некоторые схемы индексации позволяют легко вычислить тройной индекс для суммы двух супернатуральных чисел, исходя из индексов двух слагаемых. Другие схемы позволяют нам с легкостью вычислить индекс произведения двух супернатуральных чисел, исходя из индексов двух множителей. Но никакая из существующих схем не позволяет нам вычислить и то, и другое. Если индекс суммы вычисляется с помощью рекурсивной функции, то индекс произведения не будет рекурсивной функцией – и наоборот, если индекс произведения – рекурсивная функция, то индекс суммы – нет. Таким образом, супернатуральные детишки, изучающие в своей школе сложение, не смогли бы проходить таблицы умножения – и наоборот! Знать и то и другое одновременно невозможно.

Супернатуральные числа полезны...

Можно пойти еще дальше теории супернатуральных чисел и рассмотреть супернатуральные дроби (отношение двух супернатуральных чисел), супернатуральные действительные числа, и так далее. На самом деле, вычисления могут делаться на новой основе если мы введем понятие действительных супернатуральных чисел. Бесконечно малые величины, такие как dx и dy, этот кошмар для математиков, могут быть с легкостью объяснены если рассматривать их как противоположность бесконечно больших действительных чисел! Некоторые теоремы высшей математики могут быть доказаны более интуитивно с помощью «нестандартного анализа».

… но реальны ли они?

Нестандартная теория чисел при первом знакомстве сбивает с толку. Но ведь и неэвклидова геометрия тоже странная штука! В обоих случаях так и хочется спросить: «Но какая из этих двух соперничающих теорий правильна? Какая из них выражает истину?» В некотором смысле, ответа на этот вопрос не существует. (Но в другом смысле, о котором мы поговорим позже, на этот вопрос можно дать ответ.) То, что ответа нет, объясняется тем фактом, что соперничающие теории, хотя они и пользуются одинаковыми терминами, говорят о разных вещах. Поэтому они соперники только по видимости, точно так же как эвклидова и неэвклидова геометрии. В геометрии слова «точка», «линия» и так далее – неопределенные термины, и их значения определяются той аксиоматической системой, в рамках которой они в данный момент используются.

То же самое можно сказать о теории чисел. Решив формализовать ТТЧ, мы заранее выбрали термины для интерпретации – например, «число», «плюс», «умножить» и так далее. Приступив к формализации, мы тем самым согласились работать с любыми значениями, которые эти термины могут принять. Но оказывается, что, как и Саккери, мы не были готовы к сюрпризам. Мы думали, что нам известно, какая теория чисел истинна, правильна и единственна, и не подозревали о том, что ТТЧ не сможет ответить на некоторые вопросы о числах – вопросы, на которые оказалось возможным ответить ad libitum только расширив теорию чисел в разных направлениях. Таким образом, у нас нет основания утверждать, что теория чисел «в действительности» имеет ту или иную форму, так же как мы не можем сказать, существует ли в действительности квадратный корень из -1.

Варианты геометрии и физики

Против этого можно использовать следующий довод. Предположим, что физические эксперименты в реальном мире могут быть более экономно объяснены с помощью одного определенного варианта геометрии. В таком случае, у нас было бы основание называть именно этот вариант «истинной» геометрией. С точки зрения физика, желающего иметь дело с «правильной» геометрией, имеет смысл различать между «истинным» и остальными вариантами геометрии. Но к этому нельзя подходить слишком упрощенно. Физики всегда имеют дело с приближенными или идеализированными ситуациями. Например, моя собственная диссертация, о которой я упомянул в главе V, была основана на крайней идеализации проблемы кристаллов в магнитном поле. Результатом этого были некие красивые и симметричные математические модели. Несмотря на искусственность модели – или, скорее, благодаря ей – в графике ясно отразились некоторые ее основные черты. Это помогает представить, что может происходить в более реалистических ситуациях. Без упрощающих допущений, использованных мною при построении графика, такие догадки были бы невозможны. Такие ситуации встречаются в физике очень часто: физики используют «воображаемую» ситуацию, чтобы узнать о глубоко спрятанных чертах действительности. Поэтому необходимо быть осторожным, утверждая, что геометрия, используемая физиками, представляет собой «истинную геометрию»; на самом деле, физики используют несколько различных вариантов геометрии, в каждой данной ситуации выбирая наиболее простой и подходящий.


    Ваша оценка произведения:

Популярные книги за неделю