355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Большая Советская Энциклопедия » Большая Советская Энциклопедия (ПО) » Текст книги (страница 76)
Большая Советская Энциклопедия (ПО)
  • Текст добавлен: 7 октября 2016, 13:23

Текст книги "Большая Советская Энциклопедия (ПО)"


Автор книги: Большая Советская Энциклопедия


Жанр:

   

Энциклопедии


сообщить о нарушении

Текущая страница: 76 (всего у книги 147 страниц)

Полупроводниковые материалы

Полупроводнико'вые материа'лы , полупроводники , применяемые для изготовления электронных приборов и устройств. В полупроводниковой электронике используют главным образом кристаллические П. м. Большинство из них имеет кристаллическую структуру с тетраэдрической координацией атомов, характерной для структуры алмаза .

  Значительную роль в развитии полупроводниковой техники сыграл селен : селеновые выпрямители долгое время оставались основными полупроводниковыми приборами, получившими массовое применение.

  В начале 70-х гг. 20 в. наиболее распространённые П. м. – кремний и германий . Обычно их изготовляют в виде массивных монокристаллов , легированных различными примесями. Легированные монокристаллы Si с удельным сопротивлением 10-3 —104ом ×см получают преимущественно методом вытягивания из расплава (по Чохральскому), а легированные монокристаллы Ge с удельным сопротивлением 0,1—45 ом ×см получают, кроме того, зонной плавкой . Как правило, примесные атомы V группы периодической системы (Р, As и Sb) сообщают кремнию и германию электронную проводимость, а примесные атомы III группы (В, Al, Ga, In) – дырочную. Si и Ge обычно используют для изготовления полупроводниковых диодов , транзисторов , интегральных микросхем и т.д.

  Большую группу П. м. составляют химические соединения типа AIII BV (элементов III группы с элементами V группы) – арсениды, фосфиды, антимониды, нитриды (GaAs, InAs, GaP, lnP, InSb, AlN, BN и др.). Их получают различными методами изготовления монокристаллов как из жидкой, так и из газовой фазы. Синтез и выращивание монокристаллов обычно производят в замкнутых сосудах из высокотемпературных химически инертных материалов, обладающих высокой прочностью, поскольку давление насыщенного пара над расплавом таких элементов, как Р и As, сравнительно велико. Примеси элементов II группы придают этим П. м., как правило, дырочную проводимость, а элементов IV группы – электронную. П. м. этой группы используют в основном в полупроводниковых лазерах , светоизлучающих диодах , Ганна диодах , фотоэлектронных умножителях , в качестве плёночных детекторов излучения в рентгеновской, видимой и инфракрасной областях спектра электромагнитных волн.

  П. м. типа Aii Bvi из которых наиболее широко применяют соединения ZnO, ZnS, CdS, CdSe, ZnSe, HgSe, CdTe, ZnTe, HgTe, получают преимущественно с помощью химических реакций в газовой фазе или сплавлением компонентов. Удельное сопротивление и тип проводимости этих П. м. определяются не столько легирующими примесями, сколько характерными для них структурными дефектами, связанными с отклонением их состава от стехиометрического (см. Стехиометрия ). Использование П. м. этого типа связано главным образом с их оптическими свойствами и фоточувствительностью. Поэтому их применяют в фоторезисторах , фотоэлементах , электроннолучевых приборах и приборах ночного видения, модуляторах оптического излучения (см. Модуляция света ) и т.д.

  К П. м. относят также некоторые аморфные стеклообразные халькогенидные системы, например сплавы Р, As, Sb, Bi с Ge, S, Se, Te, и оксидные системы, например V2 O5 – P2 O5 – Rx Oy, где R – металлы I – IV групп, х — число атомов металла и у — число атомов кислорода в окисле. Их используют главным образом в качестве оптических покрытий в приборостроении.

Таблица некоторых физических свойств важнейших полупроводниковых материалов


Элемент, тип соедине– ния Наиме– нование материа– ла Ширина запрещенной зоны, эвПодвижность носителей заряда, 300 K, см2 /(в ×сек ) Кристал-лическая структура Постоян– ная решётки, Темпера– тура плавле– ния, °С Упругость пара при темпера– туре плавле– ния, атм
при 300 К при 0 К элек– троны дырки
Элемент С (алмаз) 5,47 5,51 1800 1600 алмаз 3,56679 4027 10-9
Ge 0,803 0,89 3900 1900 типа алмаза 5,65748 937
Si 1,12 1,16 1500 600 » 5,43086 1420 10-6
a—Sn ~0,08 » 6,4892
IV—IV a—SiC 3 3,1 400 50 типа сфалерита 4,358 3100
III—V AISb 1,63 1,75 200 420 типа сфалерита 6,1355 1050 <0,02
BP 6 » 4,538 >1300 >24
GaN 3,5 типа вюртцита 3,186 (по оси a ) 5,176 (по оси с) >1700 >200
GaSb 0,67 0,80 4000 1400 типа сфалерита 6,0955 706 <4×10-4
GaAs 1,43 1,52 8500 400 то же 5,6534 1239 1
GaP 2,24 2,40 110 75 » 5,4505 1467 35
InSb 0,16 0,26 78000 750 » 6,4788 525 <4×10-5
InAs 0,33 0,46 33000 460 » 6,0585 943 0,33
InP 1,29 1,34 4600 150 » 5,8688 1060 25
II—VI CdS 2,42 2,56 300 50 типа вюртцита 4,16 (по оси a ) 6,756 (по оси с) 1750
CdSe 1,7 1,85 800 типа сфалерита 6,05 1258
ZnO 3,2 200 кубич. 4,58 1975
ZnS 3,6 3,7 165 типа вюртцита 3,82 (по оси a) 6,26 (по оси с) 1700
IV—VI PbS 0,41 0,34 600 700 кубич. 5,935 1103
PbTe 0,32 0,24 6000 4000 то же 6,460 917

  П. м. в широких пределах изменяют свои свойства с изменением температуры, а также под влиянием электрических и магнитных полей, механических напряжений, облучения и др. воздействий. Этим пользуются для создания различного рода датчиков .

  П. м. характеризуются следующими основными параметрами: удельным сопротивлением, типом проводимости, шириной запрещенной зоны, концентрацией носителей заряда и их подвижностью, эффективной массой и временем жизни. Ряд характеристик П. м., например ширина запрещенной зоны и эффективная масса носителей, относительно слабо зависит от концентрации химических примесей и степени совершенства кристаллической решётки. Но многие параметры практически полностью определяются концентрацией и природой химических примесей и структурных дефектов. Некоторые физические свойства важнейших П. м. приведены в таблице.

  В электронных приборах П. м. используют как в виде объёмных монокристаллов, так и в виде тонких моно– и поликристаллических слоев (толщиной от долей мкм до нескольких сотен мкм ), нанесённых на различные, например изолирующие или полупроводниковые, подложки (см. Микроэлектроника ). В таких устройствах П. м. должны обладать определёнными электрофизическими свойствами, стабильными во времени и устойчивыми к воздействиям среды во время эксплуатации. Большое значение имеют однородность свойств П. м. в пределах монокристалла или слоя, а также степень совершенства их кристаллической структуры (плотность дислокаций, концентрация точечных дефектов и др.).

  В связи с высокими требованиями к чистоте и совершенству структуры П. м. технология их производства весьма сложна и требует высокой стабильности технологических режимов (постоянства температуры, расхода газовой смеси, продолжительности процесса и т.д.) и соблюдения специальных условий, в частности т. н. полупроводниковой чистоты аппаратуры и помещений (не более 4 пылинок размером свыше 0,5 мкм в 1 л воздуха). Продолжительность процесса выращивания монокристаллов в зависимости от их размеров и вида П. м. составляет от нескольких десятков мин до нескольких сут. При обработке П. м. в промышленных условиях используют процессы резания П. м. алмазным инструментом, шлифовки и полировки их поверхности абразивами, термической обработки, травления щелочами и кислотами.

  Контроль качества П. м. весьма сложен и разнообразен и выполняется с помощью специализированной аппаратуры. Основные контролируемые параметры П. м.: химический состав, тип проводимости, удельное сопротивление, время жизни носителей, их подвижность и уровень легирования. Для анализа состава П. м. обычно пользуются оптическими, спектральными, масс-спектроскопическими и активационными методами. Электрофизические характеристики измеряют т. н. зондовыми методами или используют Холла эффект . Совершенство структуры монокристаллов исследуют методами рентгеноструктурного анализа и оптической микроскопии. Толщину слоев измеряют либо бесконтактными оптическими методами, либо методами сошлифовки слоя.

  Лит.: Технология полупроводниковых материалов, пер. с англ., М., 1961; Родо М., Полупроводниковые материалы, пер. с франц., М., 1971; Зи С. М., Физика полупроводниковых приборов, пер. с англ., М., 1973; Палатник А. С., Сорокин В. К., Основы пленочного полупроводникового материаловедения, М., 1973; Кристаллохимические, физико-химические и физические свойства полупроводниковых веществ, М., 1973.

  Ю. Н. Кузнецов, А. Ю. Малинин.

Полупроводниковые приборы

Полупроводнико'вые прибо'ры,электронные приборы , действие которых основано на электронных процессах в полупроводниках. В электронике П. п. служат для преобразования различных сигналов, в энергетике — для непосредственного преобразования одних видов энергии в другие.

  Известно много разнообразных способов классификации П. п., например по назначению и принципу действия, по типу материала, конструкции и технологии, по области применения. Однако к основным классам П. п. относят следующие: электропреобразовательные приборы, преобразующие одни электрические величины в др. электрические величины (полупроводниковый диод , транзистор , тиристор ); оптоэлектронные приборы, преобразующие световые сигналы в электрические и наоборот (оптрон , фоторезистор , фотодиод , фототранзистор , фототиристор . полупроводниковый лазер , светоизлучающий диод , твердотельный преобразователь изображения – аналог видикона и т.п.); термоэлектрические приборы, преобразующие тепловую энергию в электрическую и наоборот (термоэлемент , термоэлектрический генератор , солнечная батарея , термистор и т.п.); магнитоэлектрич. приборы (датчик, использующий Холла эффект , и т.п.); пьезоэлектрический и тензометрический приборы, которые реагируют на давление или механическое смещение. К отдельному классу П. п. следует отнести интегральные схемы , которые могут быть электропреобразующими, оптоэлектронными и т.д. либо смешанными, сочетающими самые различные эффекты в одном приборе. Электропреобразовательные П. п. – наиболее широкий класс приборов, предназначенных для преобразования (по роду тока, частоте и т.д.), усиления и генерирования электрических колебаний в диапазоне частот от долей гц до 100 Ггц и более; их рабочие мощности находятся в пределах от < 10-12вт до нескольких сотен вт, напряжения – от долей в до нескольких тыс. в   и ток – от нескольких на до нескольких тыс. а . В зависимости от применяемого полупроводникового материала различают германиевые, кремниевые и др. П. п. По конструктивным и технологическим признакам П. п. разделяют на точечные и плоскостные; последние, в свою очередь, делят на сплавные, диффузионные, мезапланарные, планарные (наиболее распространены, см. Планарная технология ), эпипланарные и др. В соответствии с областью применения различают высокочастотные, высоковольтные, импульсные и др. П. п.

  П. п. выпускают в металлостеклянных, металлокерамических или пластмассовых корпусах, защищающих приборы от внешних воздействий; для использования в гибридных интегральных схемах выпускаются т. н. бескорпусные П. п. (см. Микроэлектроника ). Номенклатура П. п., выпускаемых во всех странах, насчитывает около 100 000 типов приборов различного назначения. См. также Полупроводниковая электроника .

  Я. А. Федотов.

Полупроводниковый гетеропереход

Полупроводнико'вый гетероперехо'д , контакт двух различных по химическому составу полупроводников . На границе раздела изменяется обычно ширина запрещенной зоны DE , подвижность носителей тока, их эффективные массы и др. характеристики полупроводников. В «резком» П. г. изменение свойств происходит на расстоянии, сравнимом или меньшем, чем ширина области объёмного заряда (см. Электронно-дырочный переход ). В зависимости от легирования обеих сторон П. г. можно создать р—n- гетеропереходы (анизотипные), р—р- и n—n -гетеропереходы (изотипные). Комбинации различных П. г. и р—n -переходов образуют гетероструктуры.

  Идеальная стыковка кристаллических решёток в П. г. возможна лишь при совпадении типа, ориентации и периода кристаллических решёток сращиваемых материалов. Кроме того, в идеальном П. г. граница раздела должна быть свободна от структурных и др. дефектов (дислокаций , заряженных центров и т.п.) и механических напряжений. Наиболее широко применяются монокристаллические П. г. между полупроводниковыми соединениями типа AIII BV и их твёрдыми растворами на основе арсенидов, фосфидов и антимонидов Ga и Al. Благодаря близости ковалентных радиусов Ga и Al изменение химического состава происходит без изменения периода решётки. Изготовление монокристаллических П. г. и гетероструктур стало возможным благодаря развитию методов эпитаксиального наращивания полупроводниковых кристаллов.

  П. г. используются в различных полупроводниковых приборах: полупроводниковых лазерах , светоизлучающих диодах , фотоэлементах , оптронах и т.д.

  Лит.: Алферов Ж. И., Гетеропереходы в полупроводниковой электронике близкого будущего, в кн.: Физика сегодня и завтра, под ред. В. М. Тучкевича, Л., 1973; Елисеев П. Г., Инжекционные лазеры на гетеропереходах, «Квантовая электроника», 1972, № 6; Алферов Ж. И., Инжекционные гетеролазеры, в сборнике: Полупроводниковые приборы и их применение, под ред. Я. Федотова, в. 25, М., 1971.

  Ж. И. Алферов.

Полупроводниковый детектор

Полупроводнико'вый дете'ктор в ядерной физике, прибор для регистрации ионизирующих излучений , основным элементом которого является кристалл полупроводника . П. д. работает подобно ионизационной камере с тем отличием, что ионизация происходит не в газовом промежутке, а в толще кристалла. П. д. представляет собой полупроводниковый диод , на который подано обратное (запирающее) напряжение (~ 102 в ). Слой полупроводника вблизи границы р—n -перехода (см. Электронно-дырочный переход ) с объёмным зарядом «обеднён» носителями тока (электронами проводимости и дырками) и обладает высоким удельным электросопротивлением. Заряженная частица, проникая в него, создаёт дополнительные (неравновесные) электронно-дырочные пары, которые под действием электрического поля «рассасываются», перемещаясь к электродам П. д. В результате во внешней цепи П. д. возникает электрический импульс, который далее усиливается и регистрируется (см. рис. ).

  Заряд, собранный на электродах П. д., пропорционален энергии, выделенной частицей при прохождении через обеднённый (чувствительный) слой. Поэтому, если частица полностью тормозится в чувствительном слое, П. д. может работать как спектрометр. Средняя энергия, необходимая для образования 1 электронно-дырочной пары в полупроводнике, мала (у Si 3,8 эв, у Ge ~ 2,9 эв ). В сочетании с высокой плотностью вещества это позволяет получить спектрометр с высокой разрешающей способностью (~ 0,1% для энергии ~ 1 Мэв ). Если частица полностью тормозится в чувствительном слое, то эффективность её регистрации ~ 100%. Большая подвижность носителей тока в Ge и Si позволяет собрать заряд за время ~10 нсек, что обеспечивает высокое временное разрешение П. д.

  В первых П. д. (1956—57) использовались поверхностно-барьерные (см. Шотки диод ) или сплавные p—n -переходы в Ge. Эти П. д. приходилось охлаждать для снижения уровня шумов (обусловленных обратным током), они имели малую глубину чувствительной области и не получили распространения. Практическое применение получили в 60-е гг. П. д. в виде поверхностно-барьерного перехода в Si (рис. , а). Глубина чувствительной области W в случае поверхностно-барьерного П. д. определяется величиной запирающего напряжения V:

W = 5,3×10-5.

  Здесь r – удельное сопротивление полупроводника в ом ×см. Для поверхностно-барьерных переходов в Si c r = 104ом ×см при V = (1 2)102в, W = 1 мм. Эти П. д. имеют малые шумы при комнатной температуре и применяются для регистрации короткопробежных частиц и для измерения удельных потерь энергии dEldx.

  Для регистрации длиннопробежных частиц в 1970—71 были созданы П. д. р—i—n -типа (рис. , б). В кристалл Si р -типа вводится примесь Li. Ионы Li движутся в р -области перехода (под действием электрического поля) и, компенсируя акцепторы, создают широкую чувствительную i -область собственной проводимости, глубина которой определяется глубиной диффузии ионов Li и достигает 5 мм. Такие дрейфовые кремний-литиевые детекторы используются для регистрации протонов с энергией до 25 Мэв, дейтронов – до 20 Мэв, электронов – до 2 Мэв и др.

  Дальнейший шаг в развитии П. д. был сделан возвращением к Ge, обладающему большим порядковым номером Z и, следовательно, большей эффективностью для регистрации гамма-излучения . Дрейфовые германий-литиевые плоские (планарные) П. д. применяются для регистрации g-квантов с энергией в несколько сотен кэв. Для регистрации g-квантов с энергией до 10 Мэв используются коаксиальные германий-литиевые детекторы (рис. , в) с чувствительным объёмом достигающим 100 см3 . Эффективность регистрации g-квантов с энергией < 1 Мэв ~ десятков % и падает при энергиях >10 Мэв до 0,1—0,01%. Для частиц высоких энергий, пробег которых не укладывается в чувствительной области, П. д. позволяют, помимо акта регистрации частицы, определить удельные потери энергии dEldx, а в некоторых приборах координату х частицы (позиционно-чувствительные П. д.).

  Недостатки П. д.: малая эффективность при регистрации g-квантов больших энергии; ухудшение разрешающей способности при загрузках > 104 частиц в сек; конечное время жизни П. д. при высоких дозах облучения из-за накопления радиационных дефектов (см. Радиационные дефекты в кристаллах ). Малость размеров доступных монокристаллов (диаметр ~ 3 см, объём ~ 100 см3 ) ограничивает применение П. д. в ряде областей.

  Дальнейшее развитие П. д. связано с получением «сверхчистых» полупроводниковых монокристаллов больших размеров и с возможностью использования GaAs, SiC, CdTe (см. Полупроводниковые материалы ). П. д. широко применяются в ядерной физике, физике элементарных частиц, а также в химии, геологии, медицине и в промышленности.

  Лит.: Полупроводниковые детекторы ядерных частиц и их применение, М., 1967; Дирнли Дж., Нортроп Д., Полупроводниковые счетчики ядерных излучений, пер. с англ., М., 1966; Полупроводниковые детекторы ядерного излучения, в сборнике: Полупроводниковые приборы и их применение, в. 25, М., 1971 (Авт.: Рывкин С. М., Матвеев О. А., Новиков С. Р., Строкан Н. Б.).

  А. Г. Беда. В. С. Кафтанов.

Полупроводниковые детекторы; штриховкой выделена чувствительная область; n – область полупроводника с электронной проводимостью, р – с дырочной, i – с собственной проводимостями; а – кремниевый поверхностно-барьерный детектор; б – дрейфовый германий-литиевый планарный детектор; в – германий-литиевый коаксиальный детектор.

Полупроводниковый диод

Полупроводнико'вый дио'д, двухэлектродный электронный прибор на основе полупроводникового (ПП) кристалла. Понятие «П. д.» объединяет различные приборы с разными принципами действия, имеющие разнообразное назначение. Система классификации П. д. соответствует общей системе классификации полупроводниковых приборов . В наиболее распространённом классе электропреобразовательных П. д. различают: выпрямительные диоды, импульсные диоды, стабилитроны, диоды СВЧ (в т. ч. видеодетекторы, смесительные, параметрические, усилительные и генераторные, умножительные, переключательные). Среди оптоэлектронных П. д. выделяют фотодиоды, светоизлучающие диоды и ПП квантовые генераторы.

  Наиболее многочисленны П. д., действие которых основано на использовании свойств электронно-дырочного перехода (р—n -перехода). Если к р—n -переходу диода (рис. 1 ) приложить напряжение в прямом направлении (т. н. прямое смещение), т. е. подать на его р-область положительный потенциал, то потенциальный барьер , соответствующий переходу, понижается и начинается интенсивная инжекция дырок из р -области в n -область и электронов из n -области в р -область – течёт большой прямой ток (рис. 2 ). Если приложить напряжение в обратном направлении (обратное смещение), то потенциальный барьер повышается и через р—n- переход протекает лишь очень малый ток неосновных носителей заряда (обратный ток). На рис. 3 приведена эквивалентная схема такого П. д.

  На резкой несимметричности вольтамперной характеристики (ВАХ) основана работа выпрямительных (силовых) диодов. Для выпрямительных устройств и др. сильноточных электрических цепей выпускаются выпрямительные П. д., имеющие допустимый выпрямленный ток Iв до 300 а и максимальное допустимое обратное напряжение U*обр от 20—30 в до 1—2 кв. П. д. аналогичного применения для слаботочных цепей имеют Iв < 0,1 а и называются универсальными. При напряжениях, превышающих U*o6p , ток резко возрастает, и возникает необратимый (тепловой) пробой р—n -перехода, приводящий к выходу П. д. из строя. С целью повышения U*обр до нескольких десятков кв используют выпрямительные столбы , в которых несколько одинаковых выпрямительных П. д. соединены последовательно и смонтированы в общем пластмассовом корпусе. Инерционность выпрямительных диодов, обусловленная тем, что время жизни инжектированных дырок (см. Полупроводники ) составляет > 10-5 —10-4сек, ограничивает частотный предел их применения (обычно областью частот 50—2000 гц ).

  Использование специальных технологических приёмов (главным образом легирование германия и кремния золотом) позволило снизить время переключения до 10-7 10-10 сек и создать быстродействующие импульсные П. д., используемые, наряду с диодными матрицами , главным образом в слаботочных сигнальных цепях ЭВМ.

  При невысоких пробивных напряжениях обычно развивается не тепловой, а обратимый лавинный пробой р—n -перехода – резкое нарастание тока при почти неизменном напряжении, называется напряжением стабилизации U . На использовании такого пробоя основана работа полупроводниковых стабилитронов . Стабилитроны общего назначения с Ucт от 3—5 в до 100—150 в применяют главным образом в стабилизаторах и ограничителях постоянного и импульсного напряжения; прецизионные стабилитроны, у которых встраиванием компенсирующих элементов достигается исключительно высокая температурная стабильность U (до 1×10-5 – 5×10-6 К-1 ), – в качестве источников эталонного и опорного напряжений.

  В предпробойной области обратный ток диода подвержен очень значительным флуктуациям; это свойство р—n- перехода используют для создания генераторов шума. Инерционность развития лавинного пробоя в р—n -переходе (характеризующаяся временем 10-9 —10-10сек ) обусловливает сдвиг фаз между током и напряжением в диоде, вызывая (при соответствующей схеме включения его в электрическую цепь) генерирование СВЧ колебаний. Это свойство успешно используют в лавинно-пролётных полупроводниковых диодах , позволяющих осуществлять генераторы с частотами до 150 Ггц.

  Для детектирования и преобразования электрических сигналов в области СВЧ используют смесительные П. д. и видеодетекторы, в большинстве которых р—n -переход образуется под точечным контактом. Это обеспечивает малое значение ёмкости Св (рис. 3 ), а специфическое, как и у всех СВЧ диодов, конструктивное оформление обеспечивает малые значения паразитных индуктивности Lk и ёмкости Ск и возможность монтажа диода в волноводных системах.

  При подаче на р—n -переход обратного смещения, не превышающего U*обр , он ведёт себя как высокодобротный конденсатор, у которого ёмкость Св зависит от величины приложенного напряжения. Это свойство используют в варикапах , применяемых преимущественно для электронной перестройки резонансной частоты колебательных контуров, в параметрических полупроводниковых диодах , служащих для усиления СВЧ колебаний, в варакторах и умножительных диодах, служащих для умножения частоты колебаний в диапазоне СВЧ. В этих П. д. стремятся уменьшить величину сопротивления rб (основной источник активных потерь энергии) и усилить зависимость ёмкости Св от напряжения Uo6p .

  У р—n -перехода на основе очень низкоомного (вырожденного) полупроводника область, обеднённая носителями заряда, оказывается очень тонкой (~ 10-2 мкм ), и для неё становится существенным туннельный механизм перехода электронов и дырок через потенциальный барьер (см. Туннельный эффект ). На этом свойстве основана работа туннельного диода , применяемого в сверхбыстродействующих импульсных устройствах (например, мультивибраторах , триггерах ), в усилителях и генераторах колебаний СВЧ, а также обращенного диода, применяемого в качестве детектора слабых сигналов и смесителя СВЧ колебаний. Их ВАХ (рис. 4 ) существенно отличаются от ВАХ других П. д. как наличием участка с «отрицательной проводимостью», ярко выраженной у туннельного диода, так и высокой проводимостью при нулевом напряжении.

  К П. д. относят также ПП приборы с двумя выводами, имеющие неуправляемую четырёхслойную р—n—р—n -структуру и называют динисторами (см. Тиристор ), а также приборы, использующие объёмный эффект доменной неустойчивости в ПП структурах без р—n -перехода – Ганна диоды . В П. д. используют и др. разновидности ПП структур: контакт металл – полупроводник (см. Шотки эффект , Шотки диод ) и р—i—n -структуру, характеристики которых во многом сходны с характеристиками р—n -перехода. Свойство р—i—n -структуры изменять свои электрические характеристики под действием излучения используют, в частности, в фотодиодах и детекторах ядерных излучений , устроенных т. о., что фотоны или ядерные частицы могут поглощаться в активной области кристалла, непосредственно примыкающей к р—n -переходу, и изменять величину обратного тока последнего. Эффект излучательной рекомбинации электронов и дырок, проявляющийся в свечении некоторых р—n -переходов при протекании через них прямого тока, используется в светоизлучающих диодах . К П. д. могут быть отнесены также и полупроводниковые лазеры .

  Большинство П. д. изготавливают, используя планарно-эпитаксиальную технологию (см. Планарная технология ), которая позволяет одновременно получать до нескольких тысяч П. д. В качестве полупроводниковых материалов для П. д. применяют главным образом Si, а также Ge, GaAs, GaP и др., в качестве контактных материалов – Au, Al, Sn, Ni, Cu. Для защиты кристалла П. д. его обычно помещают в металло-стеклянный, металло-керамический, стеклянный или пластмассовый корпус (рис. 5 ).

  В СССР для обозначения П. д. применяют шестизначный шифр, первая буква которого характеризует используемый полупроводник, вторая – класс диода, цифры определяют порядковый номер типа, а последняя буква – его группу (например, ГД402А – германиевый универсальный диод; КС196Б – кремниевый стабилитрон).

  От своих электровакуумных аналогов, например кенотрона , газоразрядного стабилитрона , индикатора газоразрядного , П. д. отличаются значительно большими надёжностью и долговечностью, меньшими габаритами, лучшими техническими характеристиками, меньшей стоимостью и поэтому вытесняют их в большинстве областей применения.

  С развитием ПП электроники совершился переход к производству наряду с дискретными П. д. диодных структур в ПП монолитных интегральных схемах и функциональных устройствах, где П. д. неотделим от всей конструкции устройства.

  Об исторических сведениях см. в ст. Полупроводниковая электроника .

  Лит.: Полупроводниковые диоды. Параметры. Методы измерений, М., 1968; Федотов Я. А., Основы физики полупроводниковых приборов, М., 1970; Пасынков В. В., Чиркин Л. К., Шинков А. Д., Полупроводниковые приборы, М., 1973; Зи С. М., Физика полупроводниковых приборов, пер. с англ., М., 1973.

  Ю. Р. Носов.

Рис. 4. Вольтамперные характеристики туннельного (1) и обращенного (2) диодов: U – напряжение на диоде; I – ток через диод.

Рис. 2. Типичная вольтамперная характеристика полупроводникового диода с р – n-переходом: U – напряжение на диоде; I – ток через диод; U*oбр и I*oбр – максимальное допустимое обратное напряжение и соответствующий обратный ток; Ucт – напряжение стабилизации.

Рис. 3. Малосигнальная (для низких уровней сигнала) эквивалентная схема полупроводникового диода с р – n-переходом: rp-n – нелинейное сопротивление р – n-перехода; rб – сопротивление объёма полупроводника (базы диода); ryт – сопротивление поверхностных утечек; СБ – барьерная ёмкость р – n-перехода; Сдиф – диффузионная ёмкость, обусловленная накоплением подвижных зарядов в базе при прямом напряжении; Ск – ёмкость корпуса; Lк – индуктивность токоподводов; А и Б – выводы. Сплошной линией показано подключение элементов, относящихся к собственно р – n-переходу.

Рис. 5. Полупроводниковые диоды (внешний вид): 1 – выпрямительный диод; 2 – фотодиод; 3 – СВЧ диод; 4 и 5 – диодные матрицы; 6 – импульсный диод. Корпуса диодов: 1 и 2 – металло-стеклянные; 3 и 4 – металло-керамические; 5 – пластмассовый; 6 – стеклянный.

Рис. 1. Структурная схема полупроводникового диода с р – n-переходом: 1 – кристалл; 2 – выводы (токоподводы); 3 – электроды (омические контакты); 4 – плоскость р – n-перехода.


    Ваша оценка произведения:

Популярные книги за неделю