355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Жак Пикар » Глубина 11 тысяч метров. Солнце под водой » Текст книги (страница 12)
Глубина 11 тысяч метров. Солнце под водой
  • Текст добавлен: 14 сентября 2016, 23:05

Текст книги "Глубина 11 тысяч метров. Солнце под водой"


Автор книги: Жак Пикар



сообщить о нарушении

Текущая страница: 12 (всего у книги 33 страниц)

28. Тахометр.

29. Внутреннее освещение.

30. Приборный стеллаж гондолы.

31. Сидение.

32. Пол гондолы.

33. Оболочка сферы.

34. Входной люк.

35. Иллюминаторы.

Мы уже говорили о том, что ряд стран объявил о своем намерении строить новые батискафы. В Соединенных Штатах, Советском Союзе и Франции разрабатываются или уже строятся аппараты, напоминающие «Триест». Все они предназначены для больших глубин. Попробуем представить себе, как должен выглядеть идеальный батискаф будущего.

Прежде всего гондола. До сего времени все три гондолы, успешно прошедшие испытания в различных океанах мира, были построены по чертежам профессора Пикара и изготовлены из стали: первая – отлита, вторая и третья – выкованы. Но существует металл куда более легкий и прочный, чем сталь, это – титан. Его удельный вес в воде вполовину меньше, чем у стали, а прочностью он не уступает самым современным сплавам, в частности тем, что пошли на крупповскую гондолу. Аппарат из титана, будучи легче воды, смог бы достичь дна Марианского желоба. На первый взгляд может показаться, что коэффициент безопасности у него невелик. Кроме того, на нем нельзя было бы разместить необходимый полезный груз. Но достаточно увеличить объем гондолы, чтобы взять практически любой груз. Правда, в таком случае, чтобы сохранить нормальные пропорции, поплавок пришлось бы уменьшить.

Каким должен быть поплавок? Сжиженный под давлением газ был бы сложным и ненадежным «заполнителем»; остаются, таким образом, твердые и жидкие тела. Из жидкостей лучше всех подходит бензин. Единственное, пожалуй, неудобство в том, что он обладает большей сжимаемостью, чем вода, а это влечет уменьшение вертикальной остойчивости и значительный расход балласта. Во всем остальном бензин хорош, он легок и дешев, а то, что он не смешивается с водой, делает его особенно пригодным. В принципе можно даже обойтись одним бензином без балласта. Предположим, что в поплавке уменьшается 100 кубических метров бензина. Чтобы аппарат опустился, скажем на 3000 метров, ему необходимо отяжелеть на три тонны. Для этого нужно построить батискаф, имеющий на поверхности положительную плавучесть в три тонны. Погружаться он должен не статически, как инертный шар, а динамически, как подводная лодка, с помощью винтов и горизонтальных рулей. Достигнув глубины 3000 метров, аппарат окажется практически в равновесии, и пилот сможет удерживать его на дне одним гайдропом. Благодаря расширению бензина аппарат самопроизвольно поднимется на поверхность. Если обычный батискаф, закончив погружение, должен заново загрузиться балластом, а иногда и пополнить количество маневренного бензина, батискаф новой конструкции сможет совершить подряд несколько погружений, а это большое преимущество. Подобный тип батискафа более дешев, правда он требует мощных моторов. Отметим, что условия равновесия должны быть тщательно рассчитаны заранее.

Есть еще один выгодный заполнитель для поплавка: это концентрированный раствор аммиака, причем концентрацию можно подобрать таким образом, что сжимаемость жидкости будет такая же, как у воды. Аппарат, использующий эту смесь, будет сохранять равновесие и остойчивость практически на любой глубине. У аммиака есть одно неудобство – он смешивается с водой. Раствор поэтому придется держать в непроницаемой эластичной цистерне, чтобы полностью исключить контакт с морской водой. Такую систему, кстати сказать, намерена испытывать в скором будущем одна из американских лабораторий, разрабатывающая новые типы батискафов.

Из твердых тел легче воды, могущими быть использованными в поплавке, назовем парафин и металлический литий. Оба этих вещества испытывал в свое время, много лет назад, мой отец. И оба отверг. Первый – потому что его удельный вес ненамного легче воды, второй – потому что он был немыслимо дорог. Но теперь атомная индустрия в состоянии производить литий, цены на него существенно понизились, и любая фирма или правительственная организация способны приобрести потребное количество. Удельный вес лития – 0,53 (из обычных твердых тел это самое легкое) и более низкая по сравнению с водой сжимаемость делают его особенно перспективным для батискафов. К сожалению, литий вступает в реакцию с водой.

Что касается атомной энергии, то ее можно использовать в батискафах с тем же успехом, что и на подводных лодках. Правда, батискаф долго еще будет удовлетворяться двигателями мощностью в несколько десятков, максимум несколько сот киловатт, поэтому нет необходимости строить для него атомные реакторы мощностью в десятки тысяч лошадиных сил, как ка «Наутилусе» или «Скейте». [42]42
  Американские подводные лодки с атомными двигателями.


[Закрыть]
Вполне достаточно использовать простейшую конструкцию, своего рода атомную батарею.

Итак, наш батискаф принимает законченные формы: титановая гондола, втянутая внутрь передней части поплавка, наполненного литием; на корме – атомный реактор и главный двигатель. Вся конструкция имеет обтекаемую форму. В нынешних батискафах гондола отстоит от поплавка, поскольку строительство отдельных частей обходилось дешевле. Да мы и не стремились к тому, чтобы аппарат быстро передвигался по дну.

Разумеется, подобный идеальный батискаф обойдется дорого. Но цены на титан и литий постепенно становятся доступными. При всей дороговизне такой аппарат будет стоить дешевле истребителя или любого другого современного носителя смерти.

Если представить себе, что батискаф способен плыть в любом месте океана, на любой глубине, с хорошей скоростью и находиться под водой любое потребное время, можно понять, с каким нетерпением мы ждем появления этого жюльверновского «Наутилуса»…

Многие, в том числе мой отец, думали о создании системы, имитирующей плавание дельфина, наделенного природой поразительными особенностями. Сейчас в Соединенных Штатах ведутся интенсивные поиски в этом направлении, в частности разрабатывается форма, предложенная Дмитрием Ребиковым. [43]43
  Американский исследователь моря, автор конструкции «подводного самолета».


[Закрыть]
В случае удачи в воде можно будет передвигаться с фантастической скоростью, расходуя небольшую энергию. Аппараты станут служить тогда не только для наблюдений за жизнью дна, но и для путешествий на громадные расстояния.

Глубоководный корабль с плавучим корпусом из титана будет иметь значительное преимущество по сравнению с батискафом – исчезнет необходимость в поплавке. Правда, батискафы нагружены обширной научной аппаратурой, так что до поры до времени поплавок необходим для исследования глубин, превышающих 6 тысяч метров. Зато для работы на глубинах до 4 километров вполне достаточно иметь автономную гондолу из титана, стали и даже алюминия. Чем меньше глубина, тем выгоднее использовать легкие металлы.

Желая продемонстрировать возможности алюминия при строительстве подводных лодок, американская фирма «Рейнолдс алюминиум энд металс компани» изготовила опытный экземпляр судна «Алюминаут». Цилиндрический корпус имеет стенки 15 сантиметров толщиной, 10 метров длиной и диаметр в 2 метра 10 сантиметров. Корпус этой миниатюрной подводной лодки обладает положительной плавучестью, так что дополнительный поплавок кораблю не нужен. Лодку вполне можно использовать на глубинах до 4 тысяч метров, таким образом, этому кораблю доступны шестьдесят пять процентов Мирового океана. В отличие от батискафа, у которого он заимствовал систему балласта, иллюминаторы и кое-какие аксессуары, «Алюминаут» сохраняет вертикальную остойчивость: он может парить в воде наподобие воздушного шара. Моторы позволяют развить ход до 4 узлов, а батареи – пройти за один раз больше 100 километров.

В настоящее время со всех сторон сыплются предложения, проекты и даже новые опытные образцы подводных судов. Океанографы-профессионалы и любители, инженеры и финансисты, гражданские и военные лица проявляют громадный интерес к морю. Все хотят осваивать океан. В одних Соединенных Штатах и Западной Европе разрабатывается тьма проектов.

Упомянем «ныряющее блюдце», построенное во Франции инженером Жаном Молларом по заказу капитана Жака-Ива Кусто. Этот аппарат предназначен для наблюдений дна на глубине 300 метров. Кабина сделана из прочной стали; вес снаряжения, оперативного и запасного балласта, а также двух пассажиров придает судну почти нейтральную плавучесть. «Блюдце» приводится в движение не гребными винтами, а гидрореактивными двигателями, как на американском корабле «Уитек». Чтобы уменьшить сопротивление и придать своему детищу ультрасовременный вид так называемых летающих тарелочек, конструктор сделал кабину действительно в форме блюдца. Но эстетические преимущества обернулись серьезными неудобствами: сжимаемость подобной формы очень велика, а это рискует нарушить статическое равновесие аппарата. У капитана Кусто вышло немало хлопот с этим блюдцем. Пришлось потратить много времени на испытания, прежде чем были получены удовлетворительные результаты. Одна или две модели были потеряны; на борту возник пожар – любители злословия могли вдоволь потешиться! Но мы знали, что у Кусто великолепные инженеры, большие финансовые возможности, и рано или поздно ныряющее блюдце будет доведено до совершенства. Аппарат позволит производить съемки на небольших глубинах, а в этом, как известно, сотрудники группы Ж.-И. Кусто блестяще специализировались.

В 1959 году невдалеке от того места, где стоял в сухом доке «Триест», мы увидели странный аппарат, напоминавший подводный танк. Его испытывали американцы, сотрудники Лаборатории электроники и ученые Института Скриппса. Он назывался ДПМ – «дистанционный подводный манипулятор». Смонтированный на гусеничном ходу, оснащенный манипуляторами (как явствует из его названия), подводной телекамерой и мощными прожекторами, ДПМ действовал как робот, причем команды передавались ему с берега по электрическому кабелю. Оператор мог заставить ДПМ ползти вперед, назад, поворачиваться во все стороны. Камера позволяла видеть дно. Кабель имел около восьми километров длины и автоматически сматывался на барабан внутри ДПМ. Гусеницы, по мысли создателей, должны были позволить ему преодолевать препятствия высотой в 1 фут. ДПМ способен опускаться до глубины 6 тысяч метров, и большинство рабочих органов аппарата имели соответствующую конструкцию.

Такой аппарат приобретает особую ценность, если работает в паре с батискафом. Как известно, подводные телекамеры сплошь и рядом дают нечеткое изображение. Мы давно уже планировали использовать такого рода мини-танк при условии, что им можно будет руководить из гондолы «Триеста». Но к сожалению, во время испытаний танк едва не потеряли, поскольку он застревал на дне. Морское дно покрыто слоем осадков, и в них тонули гусеницы ДПМ. Приходилось пускать его на скальном дне, а там столько выступов и щелей, что танк то и дело останавливался. Видимо, было бы выгоднее построить более легкий аппарат, способный плавать с помощью гребных винтов. Ведь гусеницы, ко всему прочему, при каждом повороте поднимают облака ила. Конструкторы ДПМ уже подумывают над созданием своего рода подводного вертолета, получающего команды с берега либо из гондолы батискафа. Его можно использовать, к примеру, для работ в подводных зонах, имеющих по тем или иным причинам сильную радиацию.

Идею подводного вертолета предложил мой отец еще в 1954 году. Речь шла об аппарате, работающем в «промежуточной стадии», то есть ниже глубин, которых может достичь аквалангист (300 метров, как планировал Ганс Келлер), но выше тех, где выгодно использовать тяжелый батискаф с поплавком. Профессор Пикар предложил сделать гондолу легче воды; причем она должна оставаться чуть легче воды даже после погрузки технического снаряжения и аппаратуры. Таким образом, отпадает надобность в поплавке – вертолет смог бы опускаться с помощью гребных винтов, приводимых в действие электромоторами. Преимущество данной системы – в ее полной надежности: если по каким-либо причинам двигатели выйдут из строя, аппарат автоматически всплывет на поверхность.

В одном из проектов предлагалось построить гондолу целиком из плексигласа; это обеспечило бы круговой обзор. Человек очутился бы внутри маленького пузыря, способного подниматься, опускаться, плыть по течению… Океанограф смог бы «включить» в море все свои чувства, как наш предок, миллиарды лет назад живший в воде.

Такой аппарат получил название «мезоскафа», то есть «корабля средних глубин».

Медленно, ощупью человек приспособился к суше. [44]44
  «Медленно, ощупью человек приспособился к суше» – метафорическое описание эволюции от первичного простейшего до человека.


[Закрыть]
Выйдя из крохотной живой клетки, обитавшей в море, он достиг земли и обжил на ней все широты. С точки зрения эволюции это громадный успех. Но впереди его ждет еще больший успех, когда он завершит свой удивительный цикл и вернется к истокам, к глубинам моря, тоску по которому сохранил навсегда.

Разгадки секретов моря

Тысячелетиями человека манят море и его сокровенные тайны. Сейчас, с появлением современной техники, мечта эта сделалась явью. Человек погружается в море не с голыми руками, а вооруженный самой совершенной аппаратурой. «Замкнулось» кольцо эволюции, длившейся миллионы лет. Правда, человек не собирается поселяться в абиссальных глубинах по примеру многих бывших жителей континента, поменявших среду обитания. Таков был путь части пресноводных рыб и млекопитающих. Костистые рыбы, как считают, развились вначале в реках, а потом эмигрировали в море. Сейчас они заполонили его до самых глубин (вспомним, что даже на дне Марианского желоба «Триест» обнаружил плоскую костистую рыбу). Кстати, вопреки распространенному поверью рыбы эти плоские не потому, что их «сплющило» давлением, а потому, что они живут на песчаном дне. Есть скаты, живущие на поверхности, – они такие же плоские, как их донные собратья!

Рыба вне зависимости от того, на какой она обитает глубине, уравновешивает свое внутреннее давление с давлением окружающей среды, точно так же как человек на суше. Даже у рыб, имеющих плавательный пузырь, давление внутри пузыря практически то же, что у толщи воды. Подобная система ставит перед наблюдателем интересные проблемы.

У плавательного пузыря много сходства с нашим легким, хотя это орган не дыхания, а плавучести, своего рода поплавок, позволяющий рыбе регулировать свой вес. Такая рыба – воздушный шар. Когда ей надо подняться выше, она, раздувая пузырь, уменьшает свой удельный вес. Но большое количество воздуха опасно, ибо плавательный пузырь при подъеме может лопнуть, это часто случается, когда рыбу ловят тралом.

Те разновидности, что быстро поднимаются с глубины 100–200 метров к поверхности, были вынуждены отказаться от пузыря. Им приходится, чтобы держаться на заданной глубине, непрестанно шевелить плавниками, – это уже не воздушные шары, а подводные самолеты. У глубоководных рыб пузырь не может быть наполнен воздухом, ибо физикохимические реакции вызовут у них «глубинное опьянение», «кессонную болезнь» и другие нарушения. [45]45
  Глубинное опьянение – состояние, вызываемое токсическим действием азота, содержащегося в воздухе, при погружении водолазов и акванавтов на большие глубины. Дыхательная смесь из кислорода и гелия позволяет избежать этого явления. Кессонная болезнь – болезнь, появляющаяся у водолазов и акванавтов в случае быстрого подъема с глубины. Вызывается выделением растворенных в крови и тканях газов, которые закупоривают или разрывают кровеносные сосуды.


[Закрыть]
Природа предложила здесь два выхода из положения: во-первых, наполнять пузырь не воздухом, а жиром. Жир легче воды и позволяет, таким образом, компенсировать вес. Подобная рыба представляет собой как бы маленький батискаф. У циклотона, скажем, пятнадцать процентов общего объема тела составляет жир. Эта рыба хорошо известна океанографам, она распространена почти во всех морях.

Второе решение – замена воздуха в пузыре инертным газом. Отдельные виды рыб, обитающих глубже 2 тысяч метров, обзавелись целым химическим заводом: они берут воздух из воды, разлагают его на составные части, выбрасывают избыток кислорода и азота – он для них опасен, оставляя только аргон. Газ аргон содержится в атмосфере в крайне небольшом количестве – всего 1 %, а рыбы доводят его содержание в пузыре до 99 процентов при давлении в 200 килограммов на квадратный сантиметр! Газ, естественно, находится в соответствии с давлением окружающей среды.

Каракатица из семейства Сепиа оффициналис, близкая родственница спрутов и осьминогов, выработала остроумную систему, позволяющую ей подниматься с большой глубины. Каракатица имеет привычку проводить целые дни, зарывшись в песок на дне, а ночью всплывает на поверхность подкормиться. У нее есть своеобразная пористая «внутренняя раковина», служащая, как явствует из недавних работ англичан Эрика Дентона и Джона Гилпин-Брауна, в качестве образцового поплавка. Количество газа в этой кости может меняться сколько угодно; у каракатицы нет возможности продувать воду сжатым воздухом, поэтому она делает это осмосом: полупроницаемая мембрана гонит воду оттуда, где раствор соли слабее, туда, где он крепче. Когда каракатица хочет всплыть на поверхность, она растворяет соль внутри кости; вода вытекает из нее, и животное становится легче. Правда, данная осмотическая реакция не может идти при давлении, превышающем 25 атмосфер; большинство каракатиц живет на глубине 30–80 метров, и, видимо, ниже 235 метров они не встречаются вовсе.

Крупные спруты обитают гораздо ниже, и у них другая система регулирования плавучести. Она состоит из нескольких резервуаров значительного объема, наполненных раствором аммиака; жидкость эта легче воды (вспомним, что ее собираются использовать в Соединенных Штатах для постройки нового батискафа). Выталкивая аммиак, спрут становится тяжелее и уходит в глубину. Потом за несколько часов он восстанавливает запас. Средняя плотность аммиака равна единице, как у дистиллированной воды; а поскольку счастливец-спрут живет в морской воде со средней плотностью 1,03, то он, пользуясь разницей в 0,03, поднимается наверх. Разница эта, правда, столь невелика, что объем тела должен быть весьма значительным. У обычных рыб плавательный пузырь занимает 5 процентов общего объема; кость каракатицы —10 %, а у спрута резервуар занимает 66 процентов! Напомню, что у «Триеста» бензин занимал 92 процента объема аппарата. Дентон не случайно назвал гигантских спрутов семейством «батискафоподобных».

Из бывших обитателей континента в море живут не только костистые рыбы. Киты, ушастые тюлени, моржи, дельфины и ламантины тоже приспособились к водной жизни, хотя и сохранили связь с поверхностью: они дышат воздухом, их легкие еще не превратились в жабры. Это в общем-то не значит, что они не способны глубоко нырять: кашалот, например, опускается на 1000 метров. Но, ныряя, он расходует кислород, запасенный на поверхности. Необыкновенно медленный обмен позволяет ему задерживать дыхание, пока он ныряет, выискивает добычу, завязывать смертельный бой со спрутом, и в случае победы вновь подниматься наверх.

Китобои не раз замечали, как кашалот «камнем» – почти вертикально – уходит вниз. После прокладки подводных телефонных кабелей удалось точно установить, на какую глубину ныряют эти животные: оказалось, что глубже 1000 метров. Сплошь и рядом кашалоты в слепой ярости накидываются на кабели, принимая их, должно быть, за щупальца спрутов. А может быть, кабель попросту застревает у них в пасти, когда они роются на дне в поисках лакомой пищи. Почувствовав вдруг, что он не в силах высвободить зажатые челюсти, в тревоге, что времени до подъема на поверхность за живительным глотком воздуха остается мало, кашалот начинает бешено метаться. Иногда кабель рвется, но животное успевает окончательно запутаться. Когда кабели поднимали для ремонта, в их кольцах находили останки кашалотов. Отмечено 14 подобных случаев: шесть на глубине 900 метров, а один даже на 1100.

Интересно отметить, опять-таки в связи с китами, как природа изящно обошла воздвигнутое ею же самой препятствие: чтобы плавать в холодных водах, китам нужен толстый слой сала и солидное количество жиров. Эти жиры имеют большую сжимаемость, чем вода. Если бы кит пользовался той смазкой, что мы на батискафе, на глубине 1000 метров он настолько бы отяжелел из-за компрессии, что уже не смог бы подняться. Чтобы избежать такой неприятности, кит обзавелся жиром с коэффициентом сжимаемости, практически равным воде. В результате ка глубине в один километр кашалот сохраняет тот же вес, что и на поверхности…

Способность ориентироваться на дне – еще одна волнующая загадка обитателей водного царства. На суше такой проблемы не существует. Сила тяжести дает нам инстинктивно почувствовать, где «верх», а где «низ»; мы знаем, что горизонт всегда впереди. Поэтому, если нам случается удалиться от хорошо знакомых ориентиров, путь указывают солнце и звезды. А созданная человеком техника – компас, радио, гирокомпас – дополняет чувства, данные нам от природы.

Но как ориентируются живые существа в море?

Они явно наделены незаурядным чувством гравитации, хотя в отдельных случаях оно и обманывает их. Крабы, к примеру, разрешили проблему ориентировки в вертикальной плоскости так: у них в ухе есть песчинка, которая действует наподобие жидкости в человеческом ухе. При каждой линьке крабы сбрасывают панцирь вместе с песчинкой, но тут же восстанавливают ее. Если поместить краба в аквариум и заменить песок мельчайшей железной дробью, в ухе у него окажется дробинка. А что если теперь на аквариум положить сильный магнит? Краб перевернется, уверенный что центр Земли находится над ним.

А глубоководные рыбы? В кромешной тьме безбрежных просторов у них нет ориентиров. Они обречены на беспрерывное плавание. Как они находят место, служащее им домом? Как они находят друг друга?

Море часто называют «миром безмолвия». Понятие это весьма относительно. Конечно, ныряльщик, оказавшись впервые в водной стихии, удивлен, что больше не слышит криков товарищей, оставшихся на поверхности. Но если он внимательно прислушается, то, несомненно, обратит внимание на очень характерные звуки. Как мы знаем, море способно передавать слабые шумы на громадные расстояния.

Было бы странно, если бы рыбы не пользовались удивительной способностью морской воды передавать звуки. Сейчас точно известно, что их «боковая линия» является прекрасным приемником ультразвуковых колебаний, преобразовывая их в нервные импульсы. Когда рыба приближается к другой рыбе, они начинают интенсивно обмениваться этими импульсами. Когда рыба плывет, впереди ее головы образуется волна. Встречая препятствие, волна отражается, и рыба, мгновенно улавливая ее, сворачивает в сторону.

Не исключено, что те же ультразвуковые импульсы помогают рыбам прокладывать маршрут в море подобно тому, как это делают летучие мыши. Гидрофоны океанографического судна «Атлантис», совершавшего плавание в 1949 году, уловили в воде звуки рыб, находившихся на глубине 4 тысячи метров. За каждым призывным звуком следовало эхо, отраженное от дна, и этот интервал позволил высчитать расстояние между дном и рыбой. Возможно, с помощью той же системы рыба во время миграции находит путь, таинственным образом завещанный ей предками?

Не полностью еще раскрыты секреты угрей. Существуют два основных гида угря – европейский и американский. Оба они часть времени проводят в глубинах моря, а часть – на континенте, в речках и мелких озерах. С началом весны американские угри, величиной примерно со спичку, миллионами подходят к западному побережью Атлантики, а в скором времени оставленный ими восточный берег заполняют европейские угри. Самцы остаются в солоноватых устьях рек, самки же продолжают путь по континенту. При этом с невиданным упорством, вопреки элементарному здравому смыслу, движимые исключительно семейными традициями, они борются с течением, карабкаются на берег, плывут по крохотным речушкам, миллионами устремляются туда, где есть хотя бы лужица воды или простой влажный мох, пока не добираются до любимых болот и полувысохших прудиков, у которых единственное сходство с морем то, что в них есть немного влаги! Маленькие угри быстро растут, они уже не прозрачны, как стекло, они стали темными. Голова напоминает хищную птицу. По странному атавизму угри боятся солнечного света, поэтому днем они отлеживаются, зарывшись в ил, и вылезают за пищей только в сумерках. Так они живут пять долгих лет, постепенно меняя окраску: спинка обычно становится темной, а брюшко – красивого серебристого оттенка. В длину они достигают больше метра.

Но вот, пробыв положенные пять лет на суше, они вдруг вспоминают, что оставили своих самцов в устьях рек! Да и что им делать в этих болотах? Пищеварительный тракт у них атрофировался, а половые железы созрели. Как им отыскать своих будущих супругов? Те тоже подросли за это время, хотя и не так, как их дражайшие половины, – сантиметров на пятьдесят, не больше. Внезапно, словно повинуясь чьему-то властному приказу, самки решают все разом уйти. Это зов крови. Дрожа от нетерпения и возбуждения, они выходят на дорогу, которую успели давным-давно забыть за пять лет новой жизни. Ничто не в силах остановить их, они ползут, в основном ночью, по росе, извиваются, прыгают, заполняют ручейки, оттуда вплывают в речки, из них в большие реки и наконец достигают устья. Здесь их ждут самцы. Вместе они уходят в глубины Атлантики и доплывают до Саргассова моря, до Бермуд, где через короткое время появляются на свет божий личинки, плоды этой встречи. А родители? Все говорит за то, что новый праздник не для них. Они больше не показываются на поверхности, но их не находят и на дне…

Эти личинки известны с давних пор, но их ошибочно принимали за особый вид морских существ. Благодаря работам двух итальянцев – Грасси и Каланбруччо теперь известно, что это личинки угря.

Прежде чем задать вопрос, почему угри выбрали столь сложный и авантюрный путь развития, спросим себя: с помощью какого сверхчувствительного органа они находят дорогу? Выдвигалась теория, согласно которой они ориентируются по температуре и солености воды, но этого объяснения недостаточно. Вероятно, тут подключаются иные «детекторы», в том числе обоняние и ультразвуковые импульсы, о которых мы говорили выше. Как бы то ни было, в разгадке секретов угря еще не сказано последнее слово. Были обнаружены экземпляры очень больших размеров, из чего сделали заключение, что речь идет о совершенно особом виде «сверхугрей», чьи взрослые особи и есть те самые знаменитые «морские змеи», о которых мы все наслышаны, но которых никто до сих пор не видел.

Было время, когда считали (даже надеялись), что в абиссальных глубинах под большим давлением сохранились в неприкосновенности живые особи, не подвергшиеся мутации, а также останки их, не разрушенные бактериями. Многократно забрасывали сеть в надежде, что она принесет на поверхность «живую окаменелость». И действительно, сети доставили кое-какие диковины; первой из них была выловленная в 1775 году возле Мартиники криноида, а последней – нашумевший мадагаскарский целакант, чей возраст исчисляется в 300 миллионов лет. Казалось, что они остались на обочине большой эволюционной дороги. Но легенду о живых окаменелостях развеяли еще в 1872 году ученые-океанографы, участвовавшие в экспедиции на «Челленджере». Они доказали, что между морской фауной глубин и поверхности существует тесное родство.

Целакант – действительно редкая рыба, и, хотя она и живет «в подвале», ничто не доказывает, что за это время она не изменилась и не приспособилась к жизни под большим давлением.

Принято считать, что мутации [46]46
  Мутации – передающиеся по наследству изменения, то есть изменения в наследственном аппарате.


[Закрыть]
– решающий фактор всей эволюции – происходят под воздействием космического излучения; чем сильнее бомбардировка частиц, тем больше шансов на то, что появятся новые формы и разновидности. Но ведь космические лучи не только не проникают в глубинную толщу, но и вообще не проходят дальше, чем на несколько метров, в воду. Чтобы космическая частица дошла до абиссального царства и к тому же оказала воздействие на живое существо в надлежащих благоприятных условиях, для этого требуется поистине астрономический срок. Во время погружений на «Триесте» нам не удалось зарегистрировать ни малейшего космического радиоизлучения, хотя это вовсе не означает, что время от времени туда не проникают отдельные лучи. Не надо забывать, кроме того, что на дне моря земная радиоактивность в принципе может компенсировать космическое излучение.

Несколько лет назад было установлено также, что на больших глубинах обитают многие бактерии. Поэтому приходится навсегда отбросить надежду в один прекрасный день найти нетронутое тело морского животного – неважно, гигантского или нет, – которое обитало на свете миллионы лет назад…

Что представляют собой глубоководные течения, с которыми придется столкнуться подводным аппаратам? Довольно долго считалось, что течения эти относительно медленные, едва нескольких метров в день. При такой скорости полярные воды успевают восполнить испарение в тропических зонах. Но здесь за последние десять лет также был достигнут большой прогресс. Используя дрейфующие буи, менее подверженные сжатию, чем вода, удалось получить данные о наличии заметных течений на средних глубинах. Буи опускали на заранее рассчитанную глубину, и они двигались по течению, а корабль с поверхности следил за их курсом, улавливая звуковые сигналы. Для этой цели на буях были смонтированы миниатюрные электронные приспособления. Благодаря им было обнаружено, к примеру, мощное противотечение под Гольфстримом – почти столь же сильное, как он сам. Таким образом, можно смело предположить, что непосредственно на дне также есть течения, напоминающие реки или воздушные потоки в стратосфере.

Подобное явление было замечено еще в XVIII веке в Гибралтарском проливе. Известно, что в Средиземном море мимо Геракловых столбов идет сильное океанское течение, которое компенсирует испарение с поверхности Средиземного моря. Но один голландский корабль, затонувший в 1712 году, был, к всеобщей неожиданности, обнаружен к западу от места крушения. Выявилось, таким образом, мощное противотечение. Сейчас оно хорошо изучено. В частности, его использовали во время второй мировой войны. Итальянские подводные лодки выходили из Средиземного моря с выключенными моторами, и англичане, прослушивавшие пролив из своей гибралтарской крепости, не могли их обнаружить.

Как видим, в тайны моря проникнуть не легче, чем в тайны космоса. Здесь, как и во всех науках, задача исследователя заключается не в том, чтобы постараться все объяснить, а отодвинуть подальше границу вечных вопросов. Ведь в науке каждое новое решение, каждое новое объяснение само по себе рождает новую проблему и новые вопросы. Море очень обширно; проблемы, которые око ставит перед океанографами, геологами, биологами, физиками, а также перед поэтами и философами, напоминает игру, всякий раз начинающуюся сначала, подобно тому как у лернейской гидры [47]47
  В греческой мифологии – стоглавый водяной змей, у которого на месте срубленных голов вырастали новые.


[Закрыть]
всякий раз заново отрастали головы… С той лишь разницей, что у нас нет надежды в один прекрасный день окончательно разрубить клубок проблем.

В море ведет множество путей; есть множество подступов и к проблемам, о которых мы упоминали. По каждому из них предстоит сделать немало шагов. Мы приоткрыли одну дверь, испробовали один только путь. Возможно, сделанный нами шаг канет, словно капля, в безбрежных глубинах моря. Но со временем из таких капелек составится река знаний. А разве не эта река, как верили древние, опоясывает мир, в котором мы живем?


    Ваша оценка произведения:

Популярные книги за неделю