Текст книги "Глубина 11 тысяч метров. Солнце под водой"
Автор книги: Жак Пикар
сообщить о нарушении
Текущая страница: 11 (всего у книги 33 страниц)
– «Триест», «Триест», я – «Уэнденк», слышим вас хорошо, но тише обычного…
Завязался разговор со дна глубочайшей на земле впадины! Сообщили наверх, что выйдем к 17 часам, до наступления сумерек. Батискаф не отклонился от вертикали, и мы попадем в расположение наших кораблей. На дне оставалось пробыть полчаса, чтобы закончить предусмотренную программу наблюдений. Температура воды снаружи была 2,4 °C. Почти ледяная. Не мудрено: она же пришла с полюса. Но с какой скоростью? Может быть, «Наутилус» полтора года назад прошел сквозь эту воду под полярными льдами? Хотя вряд ли. Вода обновляется на дне гораздо медленнее. Виденная нами рыба была лишним подтверждением того факта, что кислород в море распространяется по всей толще от поверхности до дна. А поскольку кислород может идти только сверху, значит, через всю толщу проходят вертикальные течения, принося издалека, возможно из полярных районов, богатую кислородом воду. На поверхности волны насыщаются кислородом; примерно до глубины 300 метров водоросли также вырабатывают кислород, которым дышат морские животные. Виденная нами рыба была как бы живым воплощением оправданных тревог ряда ученых, протестовавших против намерения сбрасывать в глубоководные впадины радиоактивный «мусор» из атомных реакторов. Если обогащенные кислородом воды спускаются до дна, значит, происходит и обратное движение – от дна к поверхности, а это являет реальную угрозу. Наш необычайно чувствительный прибор для измерения горизонтального течения не улавливал, правда, ни малейшего движения на дне. Но что это означало? Только то, что в данный момент вблизи дна водные слои неподвижны.
Представляла интерес и температура: шкала показывала 2,4 °C. С начала погружения вода постепенно охлаждалась, вначале медленно, потом – после температурного скачка – довольно резко и, наконец, где-то на глубине 4 тысяч метров упала до 1,4 °C. Затем по мере спуска вода вновь становилась теплее и к моменту посадки на дно повысилась на целый градус. Чем вызвано потепление? Аналогичное явление было замечено и в других морях; его пытались трактовать нагревом идущих вверх течений и расширением воды.
При подъеме с 11 тысяч до 4 тысяч метров в результате адиабатического расширения бензина в поплавке батискафа его температура падает примерно на 15 градусов. Но вода не бензин. Другое объяснение данного феномена – близость земли; таким образом, дно всегда оказывается теплее воды. Эта теория тоже не вполне удовлетворительна, так что вопрос остается открытым.
Нам предстояло сделать еще одно важное измерение: по просьбе профессора Марко из бразильского университета Сан-Паулу я захватил с собой несколько чувствительных пластинок и поместил их так, чтобы они могли уловить возможное радиоизлучение. О результатах пока нельзя было сказать ничего. Забегая вперед, скажу, что после возвращения «Триеста» профессор Лаборатории радиоактивности в Беркли (Калифорния) X. Браднер не обнаружил на этих пластинках сколько-нибудь заметной радиации.
Двадцать минут мы провели на дне, сменяя друг друга у иллюминаторов. Облако осадков, вызванное приземлением аппарата, понемногу улеглось, и дно теперь было видно насколько хватало глаз. Оно было плоское, светло-серого цвета, с редкими складочками высотой в несколько сантиметров – их вполне могла оставить какая-нибудь рыба; никаких роющих животных, никаких нор, ничего похожего на то, что мы видели при других погружениях.
– Можно прибавить света на корме? – спросил Уолш.
– Разумеется, – ответил я, включая второй прожектор.
Не прошло и полминуты, как Уолш вскричал:
– Теперь ясно, что взорвалось на десяти тысячах метров!
И он показал на большой плексигласовый иллюминатор, находившийся в вестибюле: тот был весь покрыт паутиной трещин…
Дело ясное, иллюминатор не выдержал разницы давлений внутри и снаружи шахты. Плексигласовое окно позволяло нам обозревать корму, когда мы смотрели сквозь маленький иллюминатор в люке, выходящем в шахту. Большие иллюминаторы в гондоле были целы. Как же случилось, что лопнуло наружное окно, – ведь давление внутри и снаружи шахты должно было оставаться все время в равновесии?
Впоследствии оказалось, что плексиглас и металл шахты по-разному реагируют на сжатие: плексиглас уменьшился в толщину приблизительно на 1,7 процента, а металлическая рама не позволила ему вытянуться. Напряжение между металлом и плексигласом все возрастало, и в результате на глубине 10 тысяч метров плексиглас не выдержал. «Взрыв», слышанный нами, возвещал о восстановлении равновесия.
Что будет дальше? Трещины могли разойтись на несколько миллиметров. Для нас это не представляло никакой опасности – все произошло вне сферы обитания экипажа. Но, если во время подъема плексиглас не займет начального положения, шахта потеряет герметичность, и нам будет трудно откачать из нее воду собственными силами. Корабли сопровождения, правда, не заставят себя ждать, и водолазы быстро смогут поставить на треснувший иллюминатор защитный металлический колпак, – мы всегда брали его с собой, но до сих пор не приходилось им пользоваться. Однако шторм, бушующий сейчас наверху, плюс шныряющие акулы превратят это дело в сложную (если вообще выполнимую) операцию. Как подогнать колпак на такой волне?
Был еще один способ – затопить шахту и вылезти в аквалангах на палубу. Или оставаться в гондоле все три, четыре, а то и пять дней, пока буксир не доставит нас на Гуам, где сольют бензин и поставят «Триест» в сухой док… Шнорхелей, [38]38
Шнорхель – система, состоящая из шланга с поплавком и клапанного устройства, предотвращающего попадание в шланг воды. Используется для забора воздуха с поверхности на подводных лодках, идущих на небольшой глубине.
[Закрыть]которые позволяли бы получать воздух с поверхности, у нас не было. Конечно, в таких условиях мы бы выжили, но в официальном коммюнике вряд ли было бы сказано, что «экипаж не испытывал неудобств»!
…Нет, надо постараться непременно выбраться из гондолы сегодня до наступления ночи. Поэтому начнем подъем, чтобы вспомогательная группа смогла оказать содействие в случае необходимости. К тому же намеченное в программе время пребывания на дне практически истекло.
Я все глядел и не мог наглядеться на зрелище, которое мне вряд ли так скоро доведется увидеть вновь. Затем медленно повернул рубильник электромагнита; железный дождь забарабанил о дно. Снизу поднялось густое облако, на какое-то время мы ослепли; но вот батискаф оторвался от поверхности, покрытой толщей мельчайших диатомовых скелетов. [39]39
Диатомовые скелеты – см. диатомовые водоросли.
[Закрыть]Две мощные фары – на носу и корме «Триеста» – высветили на мгновение морское дно, клубившееся под нами грозовой тучей. С боков этой тучи появились насыпи, нарушившие монотонный рельеф глубочайшей на свете впадины.
Довольно быстро облако исчезло из поля зрения. Понадобилось несколько сот килограммов дроби, чтобы компенсировать утяжеление батискафа, вызванное охлаждением бензина.
20.50. Мы уже в 100 метрах над дном. Вода вновь стала удивительно прозрачной голубизны, дальний свет глубоко уходил вниз. Позади оставались вечная тишина, тьма и неподвижность, нарушенная голосами и светом фар, нашим прибытием – первым с тех пор как море стало морем, а человек появился на земле.
Стопятидесятитонный «Триест» медленно двинулся к поверхности.
В гондоле по-прежнему было холодно, меньше 10 градусов. Теснота не позволяла разогреться физзарядкой. Теперь, когда нам оставалось лишь стоять и ждать выхода к солнцу, холод пробирал до костей. Перед спуском нам предлагали взять одежду с подогревом, но мы отказались: во-первых, это увеличило бы расход электроэнергии, а во-вторых, в гондоле и так нельзя было повернуться. У меня возникла идея согреться фильтрами из коробок со щелочью, призванной поглощать углекислый газ, – реакция идет с выделением тепла, и щелочные фильтры успели нагреться до 50 °C! Мы с Уолшем заменили фильтры в двух коробках и засунули их под пуловеры. Это было существенное подспорье на оставшиеся три с половиной часа пути. В запасе имелся шоколад, но мы решили его приберечь на случай, если сегодня не удастся выйти из гондолы.
Едва оторвавшись от дна, мы увидели, как вокруг белыми хлопьями закружились отставшие от гондолы кусочки краски. Краска лупилась под действием давления. На глубине 11 тысяч метров диаметр гондолы уменьшился, сократив наше жизненное пространство на целых 20 литров!
При подъеме не произошло ничего, достойного внимания. Бензин в поплавке расширялся, вытесняя набранную за время спуска морскую воду. Скорость соответственно возрастала. Сразу после старта мы шли со скоростью 50 см/сек; на глубине 10 000 она была уже 75 см/сек; на 6000 метров – 1 м/сек; на 3000–1,2 м/сек; и, наконец, на глубине 1000 метров достигла 1,5 м/сек. Мы мчались, как на гонках, увеличивая темп перед финишем. В гондоле, правда, этого не чувствовалось, все было так же спокойно. Никакой вибрации, никакой качки. «Триест» проявлял поразительную остойчивость.
Большую часть пути шли с одной фарой, но не заметили ничего. Правда, наше внимание было поглощено контрольными измерениями. В частности, меня очень интересовала температура бензина, за которой я следил по электротермометру. Не буду вдаваться в подробности, тем более что мне приходилось говорить об этом выше, скажу только, что расчеты и экстраполяции на основе предыдущих погружений показывали: температура должна упасть до минимума к концу подъема, возле самой поверхности. Иногда она падает намного ниже нуля. Дело в том, что во время спуска холодные воды Тихого океана вполне компенсируют так называемое адиабатическое нагревание бензина (тепло, образующееся в результате сжатия). Температура бензина, бывшая около 20 °C на поверхности, упала на дне до 15 °C. На дне мы пробыли не очень долго, и бензин не успел охладиться до температуры окружающей воды. Зато теперь при быстром подъеме температура должна была опуститься гораздо ниже.
Бензин не замерзает – этого я не боялся. Опасно было другое: могла превратиться в лед вода во внутренних трубках поплавка, находящаяся в окружении холодного бензина. Мы, правда, приняли дополнительные меры предосторожности: на всех критических участках покрыли трубки толстым слоем асбеста, прекрасного изоляционного материала. Если бы трубки замерзли, батискаф лопнул бы, как детский воздушный шарик…
С физической точки зрения было необыкновенно интересно наблюдать за этим явлением. В 16.15, за три четверти часа до выхода на поверхность, температура бензина упала до 0 °C. На поверхности было, как я уже говорил, плюс 29 °C, а бензиновый термометр показывал минус 5°! Выбираясь из шахты, я обратил внимание, что стенки поплавка в буквальном смысле ледяные…
При подъеме Уолш пытался связаться с нашими кораблями. Но они, должно быть, слишком отклонились от вертикали. Это было сделано нарочно, чтобы мы случайно не столкнулись с ними при выходе. Кому сообщить точное время появления на поверхности? Кого попросить приготовить на всякий случай аварийный колпак? Неожиданно на глубине 4 тысяч метров Уолш услыхал попискивание гидролокатора «Льюиса», а вслед за тем чей-то голос. Очевидно, это был «Уэнденк», но установить с ним связь не удалось.
Быстрее, еще быстрее – мы мчимся наверх. Это настоящие гонки! 10 тысяч метров промелькнули так быстро, что мы едва-едва успели прибрать в гондоле и несколько раз взглянуть в иллюминатор. Ага, вот и первые отблески солнца – морская заря вставала для нас в час, когда солнце катилось к закату. Трещины в плексигласе, похоже, закрылись сами собой. В 30 метрах от поверхности впервые дали себя почувствовать волны. Океан разошелся не на шутку. Но для нас качка означала возвращение в мир людей после девяти часов отсутствия. Никогда еще мы не проходили 10 километров на такой скорости!
В 16.56, почти точно в срок, названный нами по телефону, «Триест» вырвался на поверхность океана. Погружение закончилось.
Сейчас узнаем, можем ли выбраться из гондолы собственными силами или придется ждать, пока водолазы наденут колпак. А что если предстоит провести три-четыре дня в этом шаре? Шоколада хватит, если экономно откусывать по одному грамму каждый час… Чтобы не повредить плексиглас изнутри, шахту решили продувать крайне осторожно. Приникнув к дверному окошку, я смотрел, как поднимается воздух, а Уолш открывал баллоны. Воздух проходил нормально, давление в шахте не менялось. Значит, вода выходила наружу. Но вот вопрос: выходит ли она целиком через сливное отверстие, или часть ее выливается прямо через трещины в иллюминаторе? Точно на этот вопрос ответить пока нельзя. Пытаюсь рассмотреть в окно уровень. Пока не видно. Но через трещины как будто не вырывается ни один пузырек.
Внезапно вода в шахте забурлила – остаток ее всегда бурлит, смешиваясь с вырывающимся наружу воздухом. Да, теперь уже никаких сомнений, – через секунду шахта будет свободна, и мы сможем вылезти из своего добровольного заточения! Все встало на свои места. Все как обычно – в иллюминаторы уже видна поверхность, батискаф мерно вздымался и опускался на груди океана, появились знакомые звуки и шумы. Шахту заволок туман, вызванный резкой декомпрессией и охлаждением. Все. Можно отдраивать люк.
Мы с облегчением переглядываемся. Теперь погружение для нас завершено окончательно.
Выбрались на палубу. Качка еще больше усилилась, но мы с наслаждением подставляли себя волнам, окатывавшим «Триест»: теплая тропическая вода возвращала нам калории, потерянные на дне на глубине 11 тысяч метров.
Возле рубки неожиданно раздался страшный грохот. Почти сразу же я увидел пронесшийся над нами реактивный истребитель военно-морского флота. За ним, покачивая в знак приветствия крыльями, второй. Сверхзвуковые самолеты поднялись с базы на Гуаме полчаса назад и ровно в 17.00 прошли над районом, где мы должны были появиться. И мы появились. Секундой позже над нами проревел спасательный самолет ВВС, груженный резиновыми плотиками, противоакульим порошком и витаминизированными консервами. Что говорить, флот явно не желал ударить лицом в грязь! Узнав время выхода на поверхность, штаб гуамской базы выслал на место целую эскадрилью, чтобы обнаружить нас и в случае, если кораблям не удастся быстро подойти, оказать неотложную помощь. Но ни самолеты, ни витамины, ни даже бортовая рация «Триеста» не были нужны. Нас сразу же заметили с «Льюиса». Тем не менее мы были благодарны военным властям, со всей серьезностью отнесшимся к операции.
Ну а корабли?
«Уэнденк» был еще далеко, он то появлялся, то исчезал в волнах, а «Льюис» описывал теперь большой круг.
Бедные пассажиры «Льюиса» пережили немало волнений. Позже мне рассказали, что к назначенному часу все сумевшие подняться на палубу начали высматривать нас, кто-то забрался даже на мачту. Едва «Триест» всплыл, его засек наметанным глазом фотограф Джон Пфлаум.
– Вот они! – закричал он, указывая пальцем. – Надо же, точно в срок!
По всему «Льюису» разнеслось эхом: «Вот они! Вот они!» Да, «Триест» закончил свой большой путь и вернулся с глубины 11 тысяч метров целый и невредимый. Через одну-две минуты появятся батинавты, их можно будет увидеть на палубе батискафа.
Но две минуты истекли…
Что там происходит? «Триест» уже пять минут на поверхности, а людей все нет. Ни малейшего признака жизни, никакого сигнала. Шесть, семь минут… По-прежнему никого. Страшная тревога охватила очевидцев этой сцены. Все подозрительные признаки мгновенно были обсуждены, проанализированы, сведены к одному. Почему телефон молчал во время подъема? Последний вызов прозвучал 4 часа назад. Может быть, открылась течь, гондола лопнула и поплавок доставил на поверхность два тела, раздавленных адским давлением? Но в таком случае взрыв был бы слышен на поверхности. Правда, попробуй улови что-нибудь сквозь грохот волн и свист ветра! С другой стороны, если бы гондолу раздавило, поплавок погиб бы тоже… Восемь, девять минут. Ничего! По-прежнему ничего. Торопливо, дрожащими руками пытаются спустить катер, но море яростно сопротивляется. Сбрасывают за борт спасательную резиновую шлюпку, – море вынуждено уступить, но ни за что не дает экипажу ступить за борт. Все же четыре человека по очереди прыгают в лодку – офицер, матрос и двое фотографов. Официальные представители прессы в такие минуты пользуются всеми привилегиями… Мотор запущен, четверо направляются к «Триесту».
Батискаф уже десять минут на поверхности. Все это время из шахты выходила тоненькая струйка воды, но ее никто не мог заметить, а если бы и заметил, вряд ли понял, в чем дело. Запустив на полную мощность мотор, шлюпка кругами приближалась к «Триесту». Вздымаясь на гребне и зарываясь в волну, люди не решались ни подойти вплотную, ни уйти…
– Помашите! Да помашите же! – заорали вдруг в два голоса фотографы. В голосе у них была странная нервозность, причину которой мы поняли потом.
Подскакивая на шестиметровых гребнях, шлюпка стремительно приближалась. Фотографы приступили к своим обязанностям: «Помашите!»
Помахать? Пожалуйста, с удовольствием. Нет, не ради фотографов и не для рекламы. Мы приветствовали солнце, свет, свежий воздух, даже волны и ветер, которые понапрасну теперь ярились, ибо глубина Челленджер была взята!..
Потом было возвращение на Гуам на борту «Льюиса», проделавшего за одну ночь путь, отнявший у нас раньше четыре дня. На Гуам флотское начальство прислало специальный самолет, доставивший нас в Сан-Диего, а оттуда в Вашингтон, где состоялись приличествующие традиции приемы и торжества. Нас тепло приняли в Белом доме. Президент Эйзенхауэр в своей речи подчеркнул значение проекта «Нектон» для американского флота, равным образом как и для мировой океанографии. Несколько дней спустя я получил следующее письмо:
«Дорогой мистер Пикар!
Вручая Вам в прошлый четверг правительственную награду, я с особым удовольствием отметил значительный вклад, внесенный Вами в усилия, которые Соединенные Штаты предпринимают для развития океанографии.
Позвольте выразить Вам, гражданину Швейцарии, страны, известной всему миру своим свободолюбием и независимостью, всю меру признательности американского народа. Благодаря Вам сделан еще один значительный шаг в этой важной области науки.
С наилучшими пожеланиями дальнейших успехов,
искренне Ваш Дуайт Эйзенхауэр 9.2.1960».
«Сделан еще один значительный шаг в этой важной области…» Да, мы сделали его. Некоторые считали, что железный груз, оставленный «Триестом» на одиннадцатикилометровой глубине, ставил точку под программой больших погружений. Но в науке нет финальных точек. Наоборот, это погружение открывало путь дальнейшим исследованиям. Батискаф «Триест» проторил дорогу в глубины океана другим батискафам, прочим подводным аппаратам. Глубоководное погружение перестало практически быть проблемой, отныне ученые могли пользоваться добытыми плодами. В этом, собственно, и заключалась наша цель. [40]40
Несколько месяцев спустя «Триест» осуществил близ Гуама новую серию погружений. Ряд океанографов, среди них Рехницер и Макензи, провели несколько спусков, в том числе на 6 тысяч метров, и собрали солидный урожай новых научных данных. – Прим. автора.
[Закрыть]
Давняя мечта профессора Пикара, зародившаяся пятьдесят лет назад, полностью осуществилась. Благодаря батискафу – придуманному, построенному и испытанному им – богатства и тайны моря можно было изучать на любой глубине.
Батискафы и подводные лодки будущего
За кромкой пляжей континенты незаметно соскальзывают в море. Скрывшись под водой, берег отлого тянется иногда на десятки и даже на сотни километров. Континентальные шельфы вполне можно назвать «морским огородом»: обилие солнца позволяет здесь произрастать водорослям, кормиться рыбе. Затем склон становится круче и устремляется в бездну глубиной в четыре, пять и даже шесть километров. Море меняется, исчезают привлекательные пейзажи, радовавшие глаз у поверхности; начинается абиссальное царство. Это и есть владения батискафа.
«Триест» и ФНРС явились только прототипами: батискаф был задуман как универсальный аппарат для достижения любых глубин, позволяющий взять на борт несколько тонн научного снаряжения. Но ему уже пошел десятый год – и это в эпоху, когда боевые самолеты устаревают за один-два года! Во времена, когда строился «Триест», нам приходилось затягивать пояс и экономить каждый сантим своего тощего бюджета. В принципе при всем желании мы не могли воспользоваться лучшими достижениями техники тех дней. Представьте себе, какое превосходное судно можно построить за половину или даже одну четверть стоимости современного бомбардировщика! Когда изготовление таких аппаратов будет поставлено на промышленные рельсы, уже не два-три, а десятки, сотни батискафов смогут опускаться на морское дно.
Без батискафов нельзя обойтись при исследовании полутора миллиардов кубических километров объема морей и океанов. Один Тихий океан занимает площадь в девять раз больше, чем видимая часть Луны, и, хотя это самый глубокий океан, он представляется мне тоненькой пленкой – его ширина в три тысячи раз превосходит глубину!
Но сколько несметных богатств хранит эта пленка! Я думаю сейчас не о золотых слитках, лежащих в трюмах легендарных испанских галионов рядом с прикованными узниками, но о залежах марганца, меди, кобальта, никеля, фосфатов и других ископаемых. Фотосъемки возле берегов Южной Америки показали наличие марганцевых конкреций на площади, превосходящей в двадцать раз Францию. На морском дне имеется также нефть, количество которой трудно даже подсчитать. Уже сейчас нефть качают с разной глубины на континентальном шельфе и, как свидетельствует осуществление проекта «Мохол», техника бурения глубинных скважин в открытом море стремительно совершенствуется.
Однако прежде всего нужно обеспечить доступ на дно ученому-естествоиспытателю. Чисто лабораторная работа и взятие проб с поверхности больше не могут удовлетворить растущих потребностей. Мировая океанография достигла больших успехов с помощью классических средств – забрасывания сетей, прочесывания дна, запуска бутылок по течениям. Но чтобы как следует понять и уяснить среду, которую он изучает, человеку нужно самому послушать, пощупать, посмотреть. Наверное, во всех языках выражение «я вижу» означает также «я понимаю»…
Итак, чтобы понять море, океанограф должен попасть в него (достаточно посмотреть на очередь желающих погрузиться на батискафе)! Биолог должен посмотреть на рыб в естественной среде обитания, геолог – взять пробы грунта, акустик – проверить загадочное поведение звуковых импульсов, в частности в глубоководных звукорассеивающих слоях. Биолога, забрасывающего сеть с поверхности, справедливо сравнивают с «марсианином»: словно инопланетный житель сачком для бабочек водит над облаками и по результатам своего улова делает выводы о населении Земли!
В 1912 году норвежский океанограф профессор Бьорн Хелланд-Хансен опустил аппарат с фотографическими пластинами на 1 час 20 минут в море на глубину 1000 метров. Проявив пластинки, он обнаружил на них полосы света, из чего заключил, что солнечный свет доходит до этой глубины. Его теория имела хождение в течение двадцати лет.
Теперь ясно, что, если бы он производил опыт не с помощью каната, а на батискафе, он сразу бы понял, что на пластинках были отпечатки фосфоресцирующего зоопланктона.
Проблема подводной навигации, равным образом как и космических полетов, заключается в том, чтобы обеспечить выживание человека во враждебной среде. В космосе это – низкое давление, отсутствие кислорода, резчайшие скачки температур. В глубоководных впадинах это – высокое давление и сама водная среда. В обоих случаях необходима герметичная кабина и система регенерации воздуха. Стратосферный шар с гондолой, созданной моим отцом, после первых же полетов 1931–1932 годов дал в руки ученым надежную систему. Батискаф, строительство которого началось вскоре после упомянутых полетов, основан на том же принципе герметичности гондолы. Другой системы для морских погружений пока нет и вряд ли предвидится.
Я не буду останавливаться на разборе достоинств водолазных костюмов и аквалангов. Совершенно очевидно, что они, не защищая человека от давления окружающей среды, лимитируют тем самым глубину погружений. Как известно, ныряльщик может без ущерба опускаться в море не глубже 40–50 метров. Аквалангист, используя особую смесь газов, способен опуститься в отдельных случаях до 100 метров. Швейцарский математик Ганс Келлер, о котором мы упоминали, кажется, нашел способ отодвинуть границу еще ниже и избежать декомпрессии…
До какой глубины может опускаться водолаз? Сейчас на это вряд ли кто сможет ответить. Не будем забывать, что с «Триеста» мы наблюдали живую рыбу на глубине 11 тысяч метров, где давление равно 1156 килограммам на квадратный сантиметр.
При современном уровне знаний и развития техники мыслимо пока одно решение: батинавты должны находиться в герметической кабине, выдерживающей давление абиссальных глубин. Важно начать строительство аппаратов целевого назначения, предназначенных для конкретных глубин. Море можно разделить на зоны глубин, подобно тому как атмосфера разделена на зоны высоты. Спортивный «пайпер» никогда не поднимется на 11 тысяч метров в высоту, а реактивный самолет не заставляют летать на бреющем полете. Не следует считать, что подводный аппарат, способный опуститься на 11 тысяч метров, будет рационален при работах на глубине 5 тысяч метров. Это было оправдано при постройке первых батискафов, скажем того же «Триеста», который должен был разом охватить все морские слои. Настало время делать специальные батискафы; едва ли не на каждый километр глубины можно иметь особый тип подводного аппарата. ФНРС-3, например, настолько перегружен аппаратурой, что не способен в данное время опускаться ниже 2 тысяч метров. Это тот случай, когда диспропорция не оправдана.
Резюмируя, можно сказать следующее: чем глубже предстоит опускаться гондоле, тем она будет тяжелее и неповоротливее. Выход из положения надо искать в атомном двигателе.
Первопроходец Биб в своей книге «Глубина полмили» предсказывал день, когда море заполнят батисферы. Одни будут подниматься, другие опускаться, словно «мобили» [41]41
Легкие конструкции, подвешенные под потолком и приводимые в движение током воздуха.
[Закрыть]в американских универмагах или марионетки на ниточках. На самом же деле единственная батисфера, построенная в Америке после Биба, опустилась один-единственный раз на 1360 метров возле калифорнийского берега. Ее изобретатель Бартон назвал свой аппарат «бентоскопом».
Биб проложил дорогу в море, и океанографы обязаны ему многим. Но средство, которое он предложил для подводных исследований, оказалось бесперспективным: на смену батисфере пришел автономный аппарат батискаф. Батисферу подвешивали на тросе, что в общем-то очень опасно. Во-первых, привязанная гондола, как правило, сильно раскачивается; если же к этому добавляется качка на поверхности, которую не может не испытывать корабль-матка, трос рискует в любой момент оборваться. Такой случай нельзя предусмотреть никакими предварительными выкладками, причем опасность, естественно, возрастает с глубиной. Было предложено использовать вместо стального троса нейлоновый, велись также испытания с полиэтиленовым и полипропиленовым тросами – они легче воды. Пока опускали только приборы, но сразу же обнаружили на тросах следы укусов рыб. Кто же может поручиться, что акула одним щелчком своей челюсти, усаженной острыми зубами, не отправит навечно на дно тех, кто посмел забраться в ее владения!
Есть и другая опасность: когда гондола ляжет на дно, длинный трос может запутаться между камнями и подводными скалами. Такое уже случилось однажды в Калифорнии с бентографом, близким родственником бентоскопа Бартона. К счастью, он был предназначен только для автоматической подводной съемки. Когда судно «Валеро», к которому был привязан бентограф, захотело поднять своего подопечного на борт, трос сопротивлялся так, словно корабль встал на якорь! «Валеро» понапрасну маневрировал несколько часов. В конце концов трос оборвался, и аппарат со всем своим содержанием остался на дне, где и покоится до сих пор. В годы между первой и второй мировыми войнами на одном из озер в Италии аналогичное происшествие стоило наблюдателю жизни…
Во избежание подобных случаев для небольших глубин теперь делают легкие гондолы, легче воды: их опускают с помощью прицепленного груза. Среди них следует назвать водолазные колоколы конструкции Галеации, где и груз, и трос можно сбросить при возникновении опасности. Множество этих замечательных итальянских аппаратов вот уже несколько лет с успехом действуют во Франции и Италии.
С точки зрения безопасности водолазные колоколы представляли шаг вперед по сравнению с батисферой. Но они предназначены для операций на небольших глубинах, от силы несколько сот метров; к тому же они буквально прикованы к поверхности. Колокол напоминает шарик на ниточке в сравнении с дирижаблем или подводным самолетом. Японские конструкторы предложили свой вариант колокола, дающий большую автономию. В их системе «Куросио» к гондоле добавлен гребной винт – его приводит в действие электромотор, получающий питание по кабелю от корабля-матки. Такая подводная лодка на привязи способна передвигаться в пределах досягаемого кабеля.
Но для свободного плавания на сверхглубинах нужен совершенно иной аппарат. Даже обычная подводная лодка – своего рода пленница под надзором: проведя примерно сутки под водой, она вынуждена подняться на поверхность и запустить дизели для зарядки батарей. К тому же ее предел 100–150 метров глубины.
Атомные лодки получили куда большую свободу, но и они лимитированы относительно небольшой глубиной. Атомный двигатель легче дизельного. Сэкономленный таким образом вес пошел на увеличение толщины корпуса. Предельная глубина для атомных подводных лодок неизвестна, но можно предполагать, что она составляет примерно 300 метров. То есть едва ли тридцать шестая часть больших океанских впадин! Разумеется, если с лодки снять торпеды, пушки, мины, боеприпасы и прочий бесполезный, с точки зрения океанографа, груз, предел глубины можно будет легко удвоить, усилив за счет сэкономленного веса корпус.
ГОНДОЛА БАТИСКАФА «ТРИЕСТ» В РАЗРЕЗЕ.
1. Пульт управления прожекторов.
2. Пульт управления балластом и другим оборудованием.
3. Пульт управления двигателями.
4. Разное оборудование.
5. Запасная щелочь.
6. Бортовой хронометр.
7. Прибор, регистрирующий количество израсходованного балласта.
8. Манометры.
9. Контроль уровня углекислоты внутри гондолы.
10. Устойчивая к высокому давлению труба.
11. Ввод электрических кабелей.
12. Телефон.
13. Кинокамера.
14. Фотоаппараты.
15. Различные океанографические приборы.
16. Многоканальный магнитофон.
17. Указатель подводных течений.
18. Электрический термометр.
19. Маятник для определения отклонения гондолы.
20. Аккумуляторные батареи.
21. Баллоны со сжатым воздухом.
22. Кислород для дыхания.
23. Щелочь.
24. Распределительный щит.
25. Беспроволочный акустический телефон.
26. Ультразвуковой эхолот.
27. Океанографические приборы.