355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Жак Пикар » Глубина 11 тысяч метров. Солнце под водой » Текст книги (страница 1)
Глубина 11 тысяч метров. Солнце под водой
  • Текст добавлен: 14 сентября 2016, 23:05

Текст книги "Глубина 11 тысяч метров. Солнце под водой"


Автор книги: Жак Пикар



сообщить о нарушении

Текущая страница: 1 (всего у книги 33 страниц)

Жак Пикар
Глубина 11 тысяч метров

Предисловие

Моя первая встреча с Жаком Пикаром весной 1955 года едва не стала последней. Позже Пикар рассказывал, что, взглянув мельком на мою визитную карточку, увидел там слово «атташе», мысленно дополнил – «пресс-атташе» и, естественно, тут же решил отделаться от меня, поскольку не имел ни времени, ни желания заниматься разглагольствованиями и саморекламой. На самом же деле я был «атташе лондонского отделения Управления морских исследований США», что в корне меняло дело.

По-английски Жак понимал лучше, чем я по-французски, поэтому мне удалось довольно толково изложить суть моей работы в Европе: «Американский военно-морской флот живо интересуется океанографией; мы внимательно следим за всем, что делается в этой области в Европе. В мои обязанности входит установление контактов между европейскими и нашими лабораториями. Я слышал о батискафе, и это изобретение в высшей степени интересует нас».

Мы беседовали, возвращаясь с лекции Роберта X. Дэвиса, известного английского специалиста по скафандрам, прочитанной в лондонском Королевском обществе искусств. Там же выступал Жак Пикар с коротким сообщением о батискафе. Лекции были организованы по случаю международной выставки подводного телевидения. Англия к тому времени добилась значительных успехов в этой области. Британская подводная лодка «Эфрей», затонувшая в Ла-Манше, и самолет британской авиакомпании «Йоук-Питер», упавший в Средиземном море, были обнаружены с помощью английских подводных телекамер.

Естественно, мне и раньше были известны имена Пикаров. Ребенком я с восторгом читал о полете в стратосферу на высоту 17 километров воздушного шара ФНРС, [1]1
  Здесь и далее комментарии, следовавшие в конце бумажной книги, перенесены в раздел «Примечания» – Примеч. оцифровщика.


[Закрыть]
построенного выдающимся швейцарским ученым Огюстом Пикаром. Герметичная гондола его конструкции стала прототипом кабин современных сверхвысотных самолетов. Позднее, уже будучи океанографом, я с увлечением следил за первыми испытаниями батискафа профессора Пикара ФНРС-2 и его преемника – французского аппарата ФНРС-3. Наконец, я знал о рекордном погружении батискафа «Триест», с борта которого впервые в истории человек своими глазами увидел морское дно на километровой, а в 1953 году на трехкилометровой глубине.

В тот вечер мы долго говорили о батискафах, о «Триесте». Военное руководство нашего Управления поначалу без особого энтузиазма отнеслось к идее этой совершенно новой конструкции подводного аппарата.

– От Неаполя, головной базы вашего Шестого флота, до Кастелламмаре, где испытываются швейцарские подводные лодки, всего тридцать километров, – сказал мне Жак. – Так вот, представьте себе, за два года ко мне оттуда приехал полюбопытствовать один-единственный офицер! Ваши научные круги тоже настроены весьма скептически. Год назад мы предлагали Национальному научному фонду в Вашингтоне провести совместное погружение в районе желоба Пуэрто-Рико на девятикилометровую глубину. Бог знает почему предложение было отвергнуто! А ведь Соединенные Штаты ведут широкую программу океанографических исследований…

Этот человек обладал удивительным обаянием. Короткие четкие фразы были пронизаны необыкновенной уверенностью. Во взгляде вдумчивых темных глаз таилась неотразимая страсть, которая мгновенно передавалась собеседнику. Я был уверен, что, если ему удастся лично поговорить с нашим руководством, мнение о батискафе изменится. «Триест» для Пикара был не просто глубоководный аппарат: это было его детище, его надежда, почти живое существо. Жак шел по пути отца. С детства он помогал ему и верил в него непререкаемо. Пикары делали все, чтобы вдохнуть жизнь в начатое дело, но они были скованы по рукам и ногам из-за отсутствия средств.

Жак откинулся на спинку кресла и по привычке крепко сцепил пальцы.

– Хотите взглянуть на «Триест» в Кастелламмаре? – бросил он вдруг, стрельнув в меня взглядом.

Хочу ли я? Еще бы…

Несколько недель спустя, как классический турист-американец, я вышел на вокзале в Неаполе. Жак ждал меня. Мы с трудом выбрались из сумасшедшей круговерти площади Гарибальди: такси, юркие малолитражки, автобусы, троллейбусы, фиакры, велосипеды, мотороллеры, прохожие, продавцы, зазывалы, чистильщики обуви, полицейские – все смешались в кучу, оспаривая друг у друга если не приоритет, то по крайней мере свое место под жгучим неаполитанским солнцем. Тридцать километров невообразимого шоссе, торжественно именуемого автострадой, привели нас к облюбованному Пикарами уголку на склоне горы Фаито; это был бывший королевский замок «Квисисана», построенный несколько веков назад и окруженный каштановой рощей. Когда-то он служил летней резиденцией неаполитанских Бурбонов, потом его переделывали в казарму, больницу, школу, а во время немецкой оккупации он служил военным лагерем. Теперь здесь разместился отель, с террасы которого открывается незабываемый вид на Неаполитанский залив. Вдали вырисовывался белый силуэт «Триеста».

Сидя за рулем своего малолитражного «фиата», Жак продолжал рассказ:

– Как вы знаете, мой отец ученый. Годами он не выходит из лаборатории, отрываясь только на время испытаний. Свой первый воздушный шар он сконструировал для изучения космических лучей в стратосфере. Однако подняться так высоко можно было только в специальной герметической гондоле, которую он сконструировал, открыв эпоху высотного воздухоплавания. Сейчас тот же принцип положен нами в основу погружения на подводном шаре-батискафе.

Выходило все очень просто: желаете отправиться в неведомые сферы, в мир, где до вас никто не был? Извольте: изобретите себе аппарат и поезжайте!

Да, «Триест» в самом деле был шар, я теперь видел это собственными глазами. Повинуясь послушно закону Архимеда, он погружался в воду, когда становился тяжелее ее, и поднимался на поверхность, когда терял в весе. Гондола защищала наблюдателей от давления толщи воды. Но в таком случае кабина тяжелее окружающей среды и неминуемо должна утонуть. Как быть? А вот как. Гондола соединена с «поплавком» – большим резервуаром, который наполняется жидкостью, подобно тому как в воздушный шар нагнетается газ. В данном случае жидкостью стал бензин. «Триест», таким образом, представлял собой дирижабль, наполненный 100 тысячами литров бензина, – такого количества хватило бы автомобилю среднего класса на то, чтобы 25 раз обогнуть земной шар… На поверхности батискаф держался, когда вода выкачивалась из отсеков поплавка. При погружении в них впускали 14 тонн воды. При подъеме же, как и на воздушном шаре, освобождаются от балласта. Балластом служит железная дробь, удерживаемая электромагнитом. В любом случае достаточно выключить электропитание, чтобы шар поднялся на поверхность со дна моря. При поломке или аварии вы, таким образом, автоматически «падали вверх»… Система гениальная по своей простоте.

По соседству с «Триестом» я обратил внимание на пару оригинальных алюминиевых лыж. Жак уловил мое любопытство и с улыбкой сказал:

– Это вспомогательное приспособление – понтонные лыжи; на них удобно добираться до батискафа с берега. Будет время, постараюсь довести их до совершенства.

Осмотрев эту экипировку новоявленного Христа, вознамерившегося шествовать по воде, я спустился за Жаком в кабину «Триеста». Первое ощущение, будто я очутился внутри громадных швейцарских часов. Стены были сплошь покрыты приборами – вольтметрами, амперметрами, хронометрами, термометрами; висели какие-то баллоны, под ними – рубильники, сопротивления, электрические кабели; все было в образцовом порядке. Я попал в сердце «Триеста» – миниатюрную океанографическую лабораторию. Вид всех этих бесчисленных приборов придавал гондоле какую-то таинственность. Любой посторонний человек потерялся бы среди них. Но Жак с отцом сделали все это собственными руками; они знали, что где расположено и в каком порядке. На борту не было никаких обозначений, никаких надписей: в глубинном мраке изобретатели, строители и пилоты батискафа могли безошибочно вести это пузатое чудовище простым мановением руки.

«Если когда-нибудь „Триесту“ доведется попасть в Штаты, – подумал я, – в тот же час его обвешают предупреждениями: „Помните, что…“, „Перекройте этот клапан, если…“, „Не стойте возле…“ и т. д.». (Кстати сказать, именно так оно и случилось в дальнейшем!)

В батискафе меня поражало все. Во-первых, то, что его построила бригада, состоящая всего из двух человек – отца и сына. Отец, физик, инженер-воздухоплаватель, дал идею и разработал проект. Сын осуществил его. Вдвоем они опустились вначале на 1000, а затем на 3000 метров в Средиземном море. Вернувшись затем в Швейцарию, отец заперся в своем доме в Шексбре, на высоком берегу Женевского озера, где занялся расчетами новых подводных аппаратов. А теперь Жак под руководством отца готовил в Италии к спуску батискаф «Триест».

В области погружений на большие глубины, насколько мне было известно, с Пикарами соперничал только французский флот. Ему достались в наследство первый пикаровский батискаф ФНРС-2, все теоретические расчеты и даже техническая документация. С помощью швейцарского профессора французы переоборудовали старый ФНРС-2 в новый аппарат ФНРС-3, причем главная деталь – гондола осталась без изменений. Французский флот располагал значительными кредитами, в то время как Пикары вынуждены были экономить каждый сантим: Жак до сих пор не мог купить эхолот, крайне необходимый при спуске на дно.

Я с радостным волнением думал о том, что вот нашлись двое людей, придумавшие и построившие удивительную подводную лодку, что они уже достигли на ней глубины, в 30 раз превышающей возможности обычной подводной лодки… Как правило, такая титаническая работа оказывается под силу только военному ведомству морской державы. Подводные лодки строят правительственные организации, обладающие практически неограниченными возможностями, имеющие в своем распоряжении людей, материалы, квалифицированных специалистов, – все, включая электронные компьютеры… Нет, Жак в самом деле был анахронизмом: никаких секретарей, ассистентов, практически без лаборатории и без денег. И тем не менее именно Пикары лидировали в этой области. Более того – они опередили на 10 лет соответствующие ведомства крупнейших морских держав!

Их выручали блестящая методика и постановка дела; как одержимые они работали по 16 часов в сутки, ни на йоту не отклоняясь от распорядка. Наградой для них была возможность проникнуть в новый для человека подводный мир. Парадоксально, что время – решающий фактор для глубоководного корабля – теряло смысл под толщей воды; если на дне остановить часы, ориентироваться больше не по чему: не видно солнца, нет времен года, нет ничего, за что можно было бы зацепиться!

В своем кратком описании батискафа, отправленном в Вашингтон Национальному научному фонду, Жак отмечал: «Батискаф – единственное средство, позволяющее человеку проводить непосредственные наблюдения на больших глубинах». И это бесспорный факт. Простая, лишенная всяческой демагогии фраза Жака заключала в себе перспективу исследования нового пространства. В послевоенные годы ведущие державы мира потратили миллиарды на освоение космоса. А двое предельно «сухопутных» швейцарцев на скудные пожертвования, опираясь только на железную волю и самодисциплину, проложили человечеству путь в абиссальные глубины.

Жак Пикар, этот капитан Немо наших дней, заразил меня своей страстью. Я организовал ему поездку в Соединенные Штаты. Вместе мы отстаивали будущее батискафа в кабинетах Управления морских исследований. Я сделал все возможное, чтобы заинтересовать наш флот идеей подводного корабля нового типа. Меня связала с капитаном «Триеста» крепкая дружба; я с нетерпением ждал того дня, когда сам смогу погрузиться в пучину и сквозь панорамные иллюминаторы батискафа заглянуть в таинственный подводный мир…

«Триест» был сугубо мирным кораблем. Малая скорость, крохотный экипаж из двух человек – пилот и наблюдатель, незначительный запас хода (в сравнении, например, с атомной подводной лодкой) – все это делало его непригодным для военных целей. Но наш флот активно проводит и чисто научные изыскания, а в данном случае он получал возможность осуществить океанографические работы первостатейной важности. Однако военно-морской флот – это не один человек и даже не один отдел. Нам пришлось убеждать десятки людей, отводить сотни доводов против, завлекать и заинтересовывать. Не знаю, сумели ли мы быть достаточно убедительными, но военно-морской флот в конечном итоге ухватился за наше предложение. Научные сотрудники его лабораторий совершили серию погружений в Средиземном море, у берегов Калифорнии и, наконец, опустились в Марианскую впадину. Флот из двухмерного пространства шагнул наконец в трехмерное! А развитие океанографии, несомненно, вступило в новую фазу.

Роберт С. Дитц

Условия задачи

Посвящаю эту книгу отцу – человеку, который изобрел, построил и испытал батискаф, а также матери и жене, своим мужеством и жертвенностью позволившим нам осуществить эту работу.

Море издавна влекло человека. Биологи усматривают в этом влечении инстинктивное желание познать тайну происхождения жизни. В самом деле, ведь наша кровь по составу схожа с морской водой, а утробное развитие повторяет эволюцию жизни на нашей планете. Первые живые клетки скорее всего зародились в океане. И кто знает, быть может, подводный вулкан, извергая пламя, высек в море искру жизни, а колоссальное давление глубин послужило катализатором великому процессу. Сможем ли мы когда-нибудь с уверенностью ответить на это? Человек стремится познать все, но до сих пор не ведает истоков зарождения жизни. [2]2
  В настоящее время установлено с достаточной достоверностью, что возникновение жизни возможно было только в море. Только слой воды в эпохи, когда отсутствовал озоновый экран, мог защитить организмы от ультрафиолетового излучения. Однако происхождение жизни в глубинах спорно и вряд ли возможно; спорно и само существование больших глубин в эпоху возникновения жизни.


[Закрыть]

Вслед за рыбаками, поэтами, философами, воинами, естествоиспытателями морем заинтересовались сейчас экономисты и демографы. Количество людей на планете превышает три миллиарда, но питается досыта меньше половины населения. Как сумеют прокормиться люди, могущие рассчитывать только на себя? Их судьбами озабочены политические деятели, теоретики, лабораторные исследователи, выпускники университетов. Если бы мировая экономика была организована на разумной основе, ресурсов Земли вполне хватило бы не только на всех живущих, но и на большее число людей. Однако экономика строится не на основе разумности и целесообразности, да и равновесие между числом населения и пищевыми ресурсами наступит только после того, как мы сумеем взять максимум от нашей планеты, если только атомная катастрофа или грандиозная эпидемия не обезлюдит ее. Не случайно столько ученых сегодня обращают свой взор к морю: нам надо научиться использовать его.

Есть и другие соображения. Море оказывает огромное влияние на атмосферу: масса воды – это своего рода гигантский термостат. Можно ли серьезно предсказывать погоду, не зная досконально правил, которым подчиняются морские течения, изменения температуры, циклоны?

Мы живем на суше, поэтому своей планете мы дали имя Земля. На самом деле ее следовало бы называть Морем. Больше двух третей поверхности заняты водой, и, если к нам явятся пришельцы из космоса, они ее так и назовут. Даже если срезать все горы и континенты и попытаться заполнить ими океан, он все равно сохранит среднюю глубину 2500 метров. Обилие воды в жидком состоянии делает нашу планету уникальной в солнечной системе: на Меркурии скорее всего нет воды – там слишком жарко; на Юпитере – слишком холодно; Луна слишком мала, любая молекула воды, попав на ее поверхность, улетучивается, поскольку лунное притяжение много меньше ее молекулярной скорости. Биологи говорят, что наличие воды на Земле еще более удивительно, чем присутствие жизни. Не хотелось бы забираться в такие дебри таинств матери-Природы, но возникает вопрос, откуда взялась жизнь, не менее логично спросить себя: откуда взялась вся эта вода? Здесь, как и на всякий кардинальный вопрос, наука может дать только частичный ответ.

В центре Земли находится ядро в виде жидкой кипящей массы, состоящей, по всей вероятности, из расплавленного железа и никеля. Ядро окружает базальтовая оболочка-мантия толщиной около 3 тысяч километров. А она в свою очередь покрыта неровной коркой «окалины» – материками. Похоже, что вода с течением времени заполнила пустоты между возвышающимися континентами – образовались океанские бассейны. Библейская «Книга Бытия» по крайней мере описывает дело именно таким образом.

Долгие века человек знал только поверхность моря. В его воображении не укладывалась мысль о том, что может существовать «нечто» в его пучине. Коль скоро природа сделала глубины невидимыми для глаз, то, наверное, хотела скрыть свои тайны… Потом стало ясно, что в океане водятся живые существа. Но рыбы плавали на небольшой глубине. Кто же тогда обитал в пучине? Должно быть, кровожадные чудища.

Когда по берегам возникли первобытные цивилизации, море продолжало оставаться одномерным. Мало-помалу течением рек к прибрежным селениям выносило стволы деревьев, из которых люди выдалбливали первые лодки. С этого момента море стало двухмерным. Таким ему суждено было оставаться тысячи и тысячи лет. В средние века – по крайней мере в Западной Европе – морская пучина еще внушала страх. Человек, правда, изобрел подобие скафандров, он даже создал ласты – прототип тех, что были вновь «открыты» много лет спустя. Но никто не отваживался спускаться в эту стихию зла и опасностей, где, по словам Александра Македонского, [3]3
  По свидетельству хроникеров, царь Александр Македонский совершил погружение в Персидском заливе.


[Закрыть]
«свирепые рыбины пожирают несчастных утопленников».

В XIX веке царило твердое убеждение, что на больших глубинах жизнь отсутствует. Шотландский биолог профессор Эдвард Форбс считал, что жизнь под большим давлением столь же немыслима, как в огне и безвоздушном пространстве. «Последние искорки жизни, – писал он в 1840 году, – угасают на пятисотметровой глубине». Даже Мэтью Фонтейн Мори, основоположник американской океанографии, автор первых научных трудов об океане, и тот разделял эту концепцию как «наиболее соответствующую Моисеевым заветам».

Экспедиция английского судна «Поркьюпайн» в 1869 году опрокинула эти воззрения. Уайвилл Томсон выловил множество живых существ на куда больших глубинах, чем предрекал Форбс. Тем не менее надо было еще доказать, что жизнь существует в больших океанских впадинах, на «адских» глубинах, как недавно предложил их называть копенгагенский профессор Антон Брюн.

В начале нашего столетия князь Альберт Монакский поднял с глубины 6 тысяч метров одну рыбу, несколько морских звезд и других обитателей.

Понадобилось еще полвека, прежде чем этот рекорд был побит. В 1951 году датская глубоководная экспедиция на «Галатее», совершив беспримерное океанографическое плавание вокруг света, извлекла со дна Филиппинского желоба, с десятикилометровой глубины, великолепный улов: двадцать пять морских анемон, семьдесят пять морских огурцов, пять двустворчатых моллюсков, одного ракообразного, полихету (многощетинкового червя) [4]4
  Морские анемоны – актинии, представители кишечнополостных, сидячие морские животные. Венчик часто ярко окрашенных щупалец является причиной того, что их назвали морскими анемонами. Морские огурцы – голотурии, представители иглокожих, так же как и морские звезды. По форме напоминают огурцы. Представитель голотурий – трепанг, съедобное животное, объект специального промысла на Дальнем Востоке.


[Закрыть]
и еще несколько существ. Множество беспозвоночных было найдено в других впадинах, особенно в желобе Сандра, где на глубине 7 тысяч метров «Галатея» обнаружила рыбу, которой целое десятилетие предстояло числиться самой глубоководной рыбой мира. Мы расскажем дальше, как «Триест» окончательно разрешил эту проблему: нам удалось увидеть своими глазами живую рыбу на глубине 10 900 метров на дне Марианской впадины. Таким образом, стало ясно, что даже самые неблагоприятные обстоятельства – давление, холод и тьма, вместе взятые, – не в силах преградить путь жизни.

У любого самого хрупкого организма внутреннее давление соответствует давлению окружающей среды. Однако в некоторых случаях оно задает загадки биохимикам: скажем, протоплазма яйца морского ежа [5]5
  Протоплазма яйца морского ежа свертывается под давлением – речь идет, очевидно, о яйце мелководного морского ежа. Глубоководные представители обладают, по-видимому, биохимическими приспособлениями для жизни на глубине. Есть данные, что эти приспособления заключаются в особой структуре ферментов.


[Закрыть]
под абиссальным давлением свертывается. Какие мутации обеспечивают выживание на сверхглубинах?..

Точная глубина морского дна оставалась неведомой долгое время после того, как уже были вычислены расстояния от Земли до Луны, Солнца и остальных планет. Некий астроном – к счастью для него, имя успело забыться, – рассчитав приливные волны, пришел к выводу, что океанское дно лежит примерно на сорокакилометровой глубине. Еще в середине XIX века господствовало убеждение, что океан бездонен. Кстати сказать, среди жителей гор до сих пор есть немало людей, уверенных, что их маленькие озера «не имеют дна». И это несмотря на то, что с лодки им не раз случалось веслом зачерпывать ил! Сто лет назад получила распространение гипотеза о «соответствии» высоты гор глубинам океанов; это была чистой воды интуиция, основанная на некоем законе «постоянства» или «компенсации» природы. (Любопытно, что впоследствии этот закон «почти» подтвердился.)

Не меньшим заблуждением было и мнение о том, что морское дно представляет собой пустынную равнину типа Сахары или сибирской тундры. Как теперь стало известно, под гладью воды лежат горные хребты, пики, вулканы, долины, ущелья, не отличающиеся от своих собратьев на надводных континентах.

Нынешние методы промеров глубин несколько усовершенствовались со времени Магеллана, который, опустив в воду линь длиной в 200 саженей и не достигнув дна, решил, что находится в самом глубоком месте океана. Классические промеры с помощью каната с привязанным пушечным ядром долгое время давали удивительно путаные результаты; гидрографические бюро получили кучу уведомлений о том, что в разных местах достигнута глубина, превышающая 15 километров! Достаточно было течению или ветру отнести корабль в сторону, как длина линя существенно увеличивалась. Проще было просто измерять линь, не опуская его в воду! В конце концов Мори несколько укротил фантазию капитанов, установив свое «правило свинцового лота».

В годы между двумя мировыми войнами появился новый прибор – эхолот, сконструированный на основе простейшего принципа улавливания эха. Прибор посылает звуковой импульс в направлении морского дна со скоростью 1500 метров в секунду и регистрирует его отражение. Время засекается хронометром, а расстояние автоматически вычисляется в морских саженях или метрах. С помощью этого звукового «глаза» удалось вычертить довольно точный рельеф морского дна. Теперь за время, которое раньше уходило на один промер лотом, можно было сделать несколько тысяч зондирований. Постепенно на карту был нанесен рельеф дна Мирового океана. Более того, усовершенствованные эхолоты смогли дать ценные сведения о строении дна и толщине покрывающих его отложений. Достаточно было взглянуть на движущуюся ленту, чтобы составить представление о характере рельефа. Наконец, акустический метод позволил так же точно установить местонахождение сверхглубоких впадин.

Эти гигантские желоба лежат не в центре океанских бассейнов, как можно было ожидать, а опоясывают континенты. В Тихом океане крупнейшие впадины тянутся с небольшими интервалами с севера на юг от Камчатки, вдоль Курильских островов до Японии. На широте Японии они расходятся двумя ветвями; западная идет вдоль Тайваня, Лусона и Минданао (Филиппинский желоб), восточная же спускается к югу в район Марианских островов (глубина Челленджера) и встречается с первой ветвью возле Новой Гвинеи. В Атлантическом океане самый глубокий желоб (свыше 9 километров) расположен у Антильских островов, севернее Пуэрто-Рико.

Районы эти очень неспокойны. Здесь часты извержения подводных вулканов и землетрясения. По всей видимости, часть желобов появилась сравнительно недавно и процесс образования продолжается. Некоторые геологи считают, что желоба появились при боковом сжатии в результате движения «блоков» морского дна. Сходный процесс привел к образованию на суше Альп и большинства других горных цепей. Однако многие геофизики полагают, что гигантские желоба на дне моря – результат растяжения земной коры.

Глубочайшее место в Филиппинском желобе обнаружило в самом начале первой мировой войны немецкое судно «Эмден», тезка знаменитого в свое время корсарского корвета. Во все школьные учебники этот желоб вошел как самая глубокая впадина на Земле. Во время второй мировой войны она была «углублена» до 10 200 метров экипажем американского транспорта «Кейп Джонсон». К сожалению, промеры были прерваны атакой японских самолетов-торпедоносцев. Однако другое американское океанографическое судно – «Хорайзн», принадлежащее Институту Скриппса, развенчало Филиппинскую впадину, открыв в желобе Тонга место глубиной в 10 600 метров. И наконец, в 1951 году английский корабль «Челленджер-2» зафиксировал в Марианском желобе, в 400 километрах юго-западнее острова Гуам, глубину 10 800 метров. Цифра была с небольшими поправками подтверждена затем советскими [6]6
  В августе 1957 года советское исследовательское судно «Витязь» обнаружило в Марианской впадине глубину 11 034 метра (по последним уточненным расчетам). Ныне она является максимальной из известных глубин Мирового океана.


[Закрыть]
и американскими океанографами. Таким образом, котловине Челленджер принадлежит пальма первенства.

Параллельно с промерами все более ощущалась насущная необходимость узнать побольше об этих глубинах. Ясно было, что нельзя двигаться дальше, не взглянув собственными глазами на морское дно, его флору и фауну. Только как это сделать?

На рубеже нашего столетия, в 1905 году, Огюст Пикар изобрел аппарат, названный батискафом. Он состоял из герметической гондолы и поплавка, наполненного легким углеводородом. В то время отец был еще только студентом Высшей политехнической школы в Цюрихе и осуществить погружение ему не удалось. В дальнейшем Пикар увлекся исследованиями радиоактивности, тогда совсем молодой отрасли науки. Для «ловли» космического излучения он в 1931 и 1932 годах поднимался на своем воздушном шаре в стратосферу. В эти же годы два американских пионера подводных погружений – Биб и Бартон построили подобие батисферы и, преодолев тысячу опасностей, отважились погрузиться на глубину 904 метра. Наградой им явились ценнейшие данные. С первых же шагов, пишет в своей книге «На глубину 900 метров» Уильям Биб, океанавты столкнулись с множеством технических трудностей: лопались иллюминаторы (к счастью, во время пробных погружений пустой батисферы), вода проникала сквозь дверную изоляцию, электрический кабель вдавливало внутрь кабины, и он, словно гигантский осьминог, опутывал наблюдателей. Но все это удалось преодолеть, и факт остается фактом: Биб и Бартон первыми достигли глубин, куда никогда не проникает солнечный свет, и добыли уйму сведений.

В штурме океанских глубин участвовали и другие энтузиасты. Еще в 1866 году два французских инженера – Рукайроль и Денайруз создали оригинальный тип автономного скафандра, позволявшего находиться в воде до тех пор, пока хватало воздуха в резервуаре. Аппарат превосходно зарекомендовал себя и в дальнейшем был усовершенствован другими конструкторами, в частности капитаном Леприером. С развитием техники в акваланге появились новые аксессуары и приспособления, однако принцип оставался прежним на протяжении многих лет. Аппарат получил признание, и публика сейчас пользуется им, пожалуй, так же хорошо, как велосипедом.

Акваланг позволяет достичь глубины 40–80 метров в зависимости от тренированности пловца и степени допустимого риска в каждом отдельном случае. Не так давно швейцарский математик Ганс Келлер из Винтертура разработал систему принципиально нового акваланга, позволившего самому автору выдержать во время испытаний давление, соответствующее глубине 300 метров! Этот аппарат замечателен тем, что позволяет избежать долгой декомпрессии. Ганс Келлер еще не сказал своего последнего слова и покамест не раскрыл своего секрета. В момент, когда пишутся эти строки, появились сообщения о том, что он намерен погрузиться глубже 300 метров. [7]7
  В 1964 году Ганс Келлер погиб во время испытания своего акваланга. – Прим. пер.


[Закрыть]
От всей души пожелаем ему удачи, хотя я знаю, что он полагается не на удачу, а на строгие расчеты и разработанную методику.

Человек пока что не научился добывать кислород непосредственно из воды подобно существам, обитавшим в море в незапамятные времена; у человека есть только один путь в глубины океана – водонепроницаемая кабина.

Результаты Биба разом обнадеживали и разочаровывали. Обнадеживали тем, что приоткрыли окно в морскую пучину; а разочаровывали потому, что подводный дирижабль мог в любой момент оказаться опасной ловушкой. Кроме того, он не позволял садиться на дно, да и техника управления никак не могла удовлетворить поставленным задачам. Было очевидно, что в будущем придется изыскивать иные варианты.

Никто из моряков не отнесся тогда всерьез к этой проблеме. Дело в том, что конструктор-профессионал считал вполне достаточным, если его подводная лодка могла спуститься на 10 метров глубже подлодки потенциального противника. Двигаясь в этом направлении, флотские специалисты выигрывали каждый год по нескольку метров, но принцип соревнования не менялся.

И вот швейцарский инженер-физик, к тому же в прошлом аэронавт, предлагает совершенно иное решение, найденное, как мы уже сказали, в начале века, но тем не менее остающееся и теперь пока единственным путем к сверхглубинам. Профессор Пикар переделал свой стратосферный воздушный шар в подводный дирижабль: легкая алюминиевая гондола превратилась в тяжелую стальную кабину; гигантский шар, вмещавший 14 тысяч кубических метров углеводорода, превратился в маленький поплавок объемом всего в несколько десятков кубических метров, наполненный бензином; канатный гайдроп был заменен стальной цепью; иллюминаторы во много раз утолщены; система же регенерации воздуха оставлена прежней. Так родился батискаф.

Поиск начался в ноябре 1848 года, когда первый батискаф, названный ФНРС-2, совершил свое первое погружение на 1380 метров.


    Ваша оценка произведения:

Популярные книги за неделю