355 500 произведений, 25 200 авторов.

Электронная библиотека книг » В. Новицкий » Патофизиология. Том 2 » Текст книги (страница 7)
Патофизиология. Том 2
  • Текст добавлен: 7 октября 2016, 01:04

Текст книги "Патофизиология. Том 2"


Автор книги: В. Новицкий


Жанр:

   

Медицина


сообщить о нарушении

Текущая страница: 7 (всего у книги 40 страниц)

вен, артериол и артерий путем формирования первичной гемостатической пробки, на

основе которой при активации вторичного (коагуляционного) гемостаза формируется

тромб. Ключевыми механизмами тромбообразования являются: повреждение сосудистого

эндотелия; локальный ангиоспазм; адгезия тромбоцитов к участку обнаженного

субэндотелия; агрегация тромбоцитов; активация свертывающей способности крови при

снижении ее литических свойств.

Стадии сосудисто-тромбоцитарного гемостаза (рис. 14-17):

1. Повреждение эндотелия и первичный спазм сосудов.

На повреждение микрососуды отвечают кратковременным спазмом, в результате чего

кровотечение из них в первые 20-30 с не возникает. Эта вазоконстрикция определяется

капилляроскопически при нанесении укола в ногтевое ложе и регистрируется по

начальной задержке появления первой капли крови при проколе кожи скарификатором.

Она обусловлена рефлекторным спазмом сосудов за счет сокращения гладкомышечных

клеток сосудистой стенки и поддерживается вазоспастическими агентами,

секретируемыми эндотелием и тромбоцитами – серотонином, ТхА2, норадреналином и др.

Повреждение эндотелия сопровождается снижением тромборезистентности сосудистой

стенки и обнажением субэндотелия,

Рис. 14-17.

Схема сосудисто-тромбоцитарного гемостаза. PG – простогландины, ТхА – тромбоксан

ФАТ – фактор активации тромбоцитов

который содержит коллаген и экспрессирует адгезивные белки – фактор Виллебранда, фибронектин, тромбоспондин.

2. Адгезия тромбоцитов к участку деэндотелизации осуществляется в первые секунды

после повреждения эндотелия посредством сил электростатического притяжения в

результате снижения величины поверхностного отрицательного заряда сосудистой стенки

при нарушении ее целостности, а также рецепторов тромбоцитов к коллагену (ГП Ia/IIa) с

последующей стабилизацией образовавшегося соединения белками адгезии – фактором

Виллебранда, фибронектином и тромбоспондином, образующих «мостики» между

комплементарными им ГП тромбоцитов (см. выше – 14.5.1.2.) и коллагеном.

3. Активация тромбоцитов и вторичный спазм сосудов.

Активацию вызывают тромбин, образующийся из протромбина под влиянием тканевого

тромбопластина, ФАТ, АДФ (высвобождаются одновременно с тромбопластином при

повреждении сосудистой стенки), Са2+, адреналин. Активация тромбоцитов является

сложным метаболическим процессом, связанным с химической модификацией

тромбоцитарных мембран и индукцией в них фермента гликозилтрансферазы, который

взаимодействует со специфическим рецептором на молекуле коллагена и обеспечивает

тем самым «посадку» тромбоцита на субэндотелий. Наряду с гликозилтрансферазой

активируются и другие мембраносвязанные ферменты, в частности фосфолипаза А2,

обладающая наибольшей аффинностью по отношению к фосфатидилэтаноламину.

Гидролиз последнего запускает каскад реакций, включающих высвобождение

арахидоновой кислоты и последующее образование из нее под действием фермента

циклооксигеназы короткоживущих простагландинов (PGG2, PGH2), трансформирующихся

под влиянием фермента тромбоксансинтетазы в один из самых мощных индукторов

агрегации тромбоцитов и вазоконстрикторов – ТхА2.

Простагландины способствуют накоплению в тромбоцитах цАМФ, регулируют

фосфорилирование и активацию белка кальмодулина, транспортирующего ионы Са2+ из

плотной тубулярной системы тромбоцитов (эквивалент саркоплазматического ретикулума

мышц) в цитоплазму. В результате происходит активация сократительных белков

актомиозинового комплекса, что сопровождается сокращением микрофиламентов

тромбоцитов с образованием псевдоподий. Это еще более усиливает адгезию тромбоцитов

к поврежденному эндотелию. Наряду с этим за счет Са2+-индуцированного сокращения

микротрубочек гранулы тромбоцитов «подтягивают-

ся» к плазматической мембране, происходит слияние мембраны депонирующих гранул со

стенкой мембраносвязанных канальцев, через которые происходит опорожнение гранул.

Реакция высвобождения компонентов гранул осуществляется в две фазы: первая фаза

характеризуется выбросом содержимого плотных гранул, вторая – α-гранул (см. табл. 14-18).

ТхА2 и освобождаемые из плотных гранул тромбоцитов вазоактивные вещества вызывают

вторичный спазм сосудов.

4. Агрегация тромбоцитов.

ТхА2 и высвобождаемые при дегрануляции тромбоцитов АДФ, серотонин, β-

тромбоглобулин, пластиночный фактор 4, фибриноген и др. компоненты плотных гранул

и α-гранул обусловливают слипание тромбоцитов друг с другом и с коллагеном. Кроме

того, появление в кровотоке ФАТ (при разрушении эндотелиоцитов) и компонентов

тромбоцитарных гранул приводит к активации интактных тромбоцитов, их агрегации друг

с другом и с поверхностью адгезированных на эндотелии тромбоцитов.

Агрегация тромбоцитов не развивается при отсутствии внеклеточного Са2+, фибриногена

(обусловливает необратимую агрегацию тромбоцитов) и белка, природа которого пока не

выяснена. Последний, в частности, отсутствует в плазме крови больных тромбастенией

Гланцмана.

5. Образование гемостатической пробки.

В результате агрегации тромбоцитов образуется первичная (временная) гемостатическая

пробка, закрывающая дефект сосуда. В отличие от сгустка крови тромбоцитарный агрегат

не содержит нитей фибрина. Впоследствии на поверхности агрегата из тромбоцитов

адсорбируются плазменные факторы свертывания и запускается «внутренний каскад»

коагуляционного гемостаза, завершающийся выпадением нитей стабилизированного

фибрина и формированием на основе тромбоцитарной пробки сгустка крови (тромба).

При сокращении тромбастенина (от греч. stenoo – стягивать, сжимать) тромбоцитов тромб

уплотняется (ретракция тромба). Этому также способствует снижение фибринолитической

активности крови, ответственной за лизис фибриновых сгустков.

Наряду с «внутренним каскадом» в процесс тромбообразования включается и «внешний

каскад» свертывания крови, связанный с высвобождением тканевого тромбопластина.

Кроме того, тромбоциты могут самостоятельно (при отсутствии контактных факторов) запускать свертывание крови путем взаимодействия экспони-

рованного на их поверхности фактора Уа с фактором плазмы Ха, катализирующим

превращение протромбина в тромбин.

Таким образом, тромбоциты выполняют роль поверхности, на которой формируется

тромб. При отсутствии этой поверхности тромбообразование в артериальной циркуляции

невозможно изза высокой скорости кровотока и связанного с ней разведения и удаления

активированных белков свертывания крови из области повреждения сосуда.

Для оценки сосудисто-тромбоцитарного гемостаза определяют:

• резистентность (ломкость) сосудов с помощью манжеточной пробы (в норме не более

10 петехий, образующихся в круге диаметром 5 см на ладонной поверхности предплечья

при дозированном повышении венозного давления);

• время кровотечения из прокола кожи на ладонной поверхности верхней трети

предплечья по методу Айви (в норме 5– 8 мин) или из мочки уха – проба Дьюка (норма 2-4

мин);

• количество, размеры, спонтанную и индуцированную (АДФ, адреналином, коллагеном, арахидоновой кислотой и др.) агрегацию тромбоцитов;

• уровень фактора Виллебранда в плазме крови (при использовании метода

фотоэлектроколориметрии – 80-120%, при использовании агрегометра – не менее 40%);

• ретракцию кровяного сгустка (в норме 48-60%).

При уменьшении количества тромбоцитов в крови, а также при ряде качественных дефектов

тромбоцитов эндотелий становится неполноценным, вакуолизируется, слущивается, повышается

ломкость микрососудов. Одновременно нарушается адгезивноагрегационная функция

тромбоцитов. Это приводит к удлинению и усилению кровоточивости из поврежденных

микрососудов. Исследование различных видов агрегации тромбоцитов (агрегатометрия), изучение их ультраструктуры (определение наличия плотных гранул и α-гранул), определение

структуры и функции основных рецепторов этих клеток и фактора Виллебранда позволяют

уточнить природу тромбоцитопатии.

С другой стороны, повышение количества тромбоцитов, их адгезивности и агрегации (так

называемый синдром вязких, или липких, тромбоцитов), содержания и мультимерности

фактора Виллебранда способствуют возникновению у больных тромбозов, ишемий и

инфарктов органов, облитерирующих заболеваний артерий конечностей (см. раздел

14.5.6).

Помимо тромбоцитов, в образовании внутрисосудистых тромбов принимают участие и

другие клетки крови, в частности эритроциты и лейкоциты. Способность указанных

клеток к индукции тромботического процесса связана не только с пассивным захватом их

фибриновой сетью, но и с активным воздействием на гемостатический процесс.

Последнее особенно наглядно выявляется при гемолизе эритроцитов, сопровождающемся

обильным «наводнением» плазмы АДФ и развитием необратимой агрегации тромбоцитов.

Нередко причиной развития артериального тромбоза являются эритроцитоз, приводящий

к увеличению вязкости крови и застою ее в системе микроциркуляции, сфероцитоз и

серповидно-клеточная анемия, при которой закупорка мелких сосудов может произойти

вследствие потери эритроцитами эластичности и деформируемости. Имеются

доказательства того, что эритроциты в силу крупных размеров оттесняют циркулирующие

рядом с ними в потоке крови тромбоциты к периферии и облегчают адгезию последних к

субэндотелию.

Роль лейкоцитов в механизмах тромбообразования изучена менее подробно, однако

известно, что в лейкоцитах активно синтезируются продукты липоксигеназного пути

метаболизма арахидоновой кислоты, и в частности лейкотриены, которые способны

оказывать существенное влияние на активность тромбоцитарной тромбоксансинтетазы с

образованием ТхА2. К тому же в нейтрофилах и других клетках гранулоцитарного ряда

синтезируется тромбоцитактивирующий фактор, который тоже может стимулировать

повышенную агрегацию тромбоцитов и развитие тромбоза.

Из других внутриклеточных компонентов лейкоцитов, высвобождение которых при

острых или хронических воспалительных процессах, а также сепсисе способно

активировать циркулирующие в крови интактные тромбоциты и запускать

внутрисосудистую агрегацию, наибольшее значение имеют супероксидные и

гидроксильные анионрадикалы, лизосомальные гидролазы, ферменты, расщепляющие

гепарин, протеиназы типа нейтрофилина и др.

К тромбогенным компонентам лимфоцитов относятся лимфокины, высвобождающиеся, к

примеру, из Т-эффекторов при реакциях замедленного типа.

14.5.2. Коагуляционный гемостаз

В процессе коагуляционного (вторичного) гемостаза на субэндотелии на основе

тромбоцитарного агрегата формируется сгусток

крови, который на завершающей стадии подвергается сжатию (ретракции). Таким

образом, первичная или временная гемостатическая пробка, представляющая собой

рыхлый тромбоцитарный агрегат, превращается во вторичную гемостатическую пробку

(тромб), в которой тромбоцитарный агрегат консолидируется фибрином и подвергается

дополнительному уплотнению. Вторичный гемостаз обеспечивает полную остановку

кровотечения из артериол, артерий и вен. Активации плазменного звена гемостаза в венах

при отсутствии предварительной активации сосудисто-тромбоцитарного гемостаза

благоприятствует гемодинамическая ситуация, создающаяся вблизи венозных клапанов и

в местах бифуркаций с замедленным турбулентным потоком крови.

Вторичный (коагуляционный) гемостаз – многоступенчатая реакция, в которой принимает участие

ряд белков, обозначаемых как факторы свертывания крови (см. табл. 14-19). Одни из этих белков

являются протеазами (факторы II, VII, IX, X,XI, XII, XIII), другие – акцелераторами (ускорителями) ферментных реакций (факторы У и VIII), третьи – конечным субстратом процесса (фактор I, или

фибриноген). Взаимодействие факторов свертывания крови, их активация, а затем и инактивация

практически на всем протяжении процесса происходят на фосфолипидных мембранах (ФЛМ) клеток (тромбоциты, эритроциты и др.). При этом способностью к фиксации и активации

плазменных факторов свертывания, а также инактивирующих их факторов антисвертывающей

системы обладают только обращенные к наружной стороне мембраны головки отрицательно

заряженных фосфолипидов – фосфатидилсерина, фосфатидилэтаноламина и др.

Синтез большинства факторов свертывания (см. табл. 14-19), а также двух основных

физиологических антикоагулянтов – протеинов С и S – осуществляется паренхиматозными

клетками печени – гепатоцитами. При этом для того, чтобы факторы II, VII, IX, X и

протеины С и S могли участвовать в гемостазе, они должны подвергнуться γ-

карбоксилированию витамин К-зависимой карбоксилазой.

14.5.2.1. Механизм коагуляционного гемостаза

Различают три этапа процесса свертывания крови (рис. 14-18). Первый этап завершается

образованием активного протромбиназного комплекса на ФЛМ, в состав которого входят

факторы X, У

Рис. 14-18.

Схема коагуляционного гемостаза (по З.С. Бар кагану, А.П. Момоту, 1999-2001) АРС -

активированный протеин С; ВМК – высокомолекулярный кининоген; ППК – плазменный

прекалликреин; TFPI – ингибитор внешнего пути свертывания; t-PA – тканевой активатор

плазминогена; PAI – ингибитор активатора плазминогена; ПДФГ – продукты деградации

фибриногена; ПДФ – продукты деградации фибрина; VII – фактор неактивный; Vila -

фактор активный

и Са2+. Второй этап характеризуется образованием тромбина – активной формы фактора

II. На третьем этапе (конечная фаза свертывания крови) происходят формирование и

стабилизация сгустка фибрина.

Первый этап каскадно-комплексной схемы свертывания крови включает активацию

коагуляционного гемостаза по внутреннему и внешнему механизмам.

Внутренний (контактный) механизм характеризуется последовательной активацией

факторов XII, XI, IX, VIII, X. В результате повреждения сосудистой стенки на

поверхности тромбоцитарного агрегата образуется комплекс из трех белков – фактора XII (фактор Хагемана), плазменного прекалликреина (ППК) и высокомолекулярного

кининогена (ВМК). После связывания с ВМК и калликреином (образуется из ППК под

влиянием ВМК) фактор XII превращается в активную протеазу – XIIa, которая

взаимодействует с неактивным фактором XI на ФЛМ и активирует его – образуется

фактор XIa. Далее фактор XIa комплексируется с неактивным фактором IX и Ca2+ на

ФЛМ, что в условиях вспомогательной активации фактором VIIa сопровождается

формированием IXa, последующее взаимодействие которого с активной формой фактора

VIII-VIIIa (ее образование происходит под действием тромбина – IIa) и Ca2+ на ФЛМ

приводит к активации фактора Х.

Внутренний механизм первого этапа свертывания протекает намного медленнее, чем

внешний. Он определяется:

• временем свертывания крови (5-11 мин в норме);

• каолиновым временем – временем свертывания рекальцифицированной цитратной

плазмы в условиях контактной (каолин) активации факторов XII и XI (77-116 с при

использовании нефракционированного каолина и 60-98 с при применении легкой фракции

каолина);

• активированным парциальным тромбопластиновым временем (АПТВ) – временем

свертывания рекальцифицированной цитратной плазмы в условиях контактной (каолин) и

фосфолипидной (кефалин) активации факторов XII, XI, IX, VIII (в норме соответствует

30-42 с).

Внешний механизм активации гемостаза предполагает наличие в крови внешнего (в

обычных условиях не присутствующего в крови) фактора III (тканевого фактора – ТФ, или

тканевого тромбопластина), высвобождающегося из эндотелиоцитов и гладкомышечных

клеток поврежденных сосудов. Под его влиянием происходит

активация фактора VII c образованием VIIa. Реакция стимулируется следовыми

количествами плазменных протеиназ – IIa, VIIa, IXa, Xa, циркулирующих в крови.

Взаимодействие факторов III и VIIa на ФЛМ в присутствии ионов Са2+ сопровождается

активацией фактора Х с образованием Ха.

Свертывание крови по внешнему пути, который в пробирке имитируется добавлением к

рекальцифицированной плазме тканевого тромбопластина, обозначается как

протромбиновый (тромбопластиновый) тест. Нормальное время свертывания плазмы в

присутствии тканевого тромбопластина (протромбиновое время – ПВ) колеблется в

пределах 12-15 с. На основе ПВ рассчитываются протромбиновое отношение – ПО

(отношение ПВ исследуемой плазмы к ПВ нормальной плазмы; в норме 0,7-1,1) и

международное нормализованное отношение – МНО (ПОМИЧ, где МИЧ – международный

индекс чувствительности тромбопластина; в норме от 1,0 до 1,4).

Таблица 14-19. Плазменные факторы свертывания крови

Номер, наименование и

Место образования.

Факторы активации и

природа фактора

Содержание в плазме

механизм действия

Под действием тромбина

превращается в фибрин (Ia -

I

Гепатоциты 1,8-4,0 г/л (80-120% основное вещество тромба)

Фибриноген (структурный активности)

Участвует в агрегации

белок)

тромбоцитов Способствует

репарации тканей

II

Гепатоциты (в присутствии

Под действием активной

витамина К) Около 0,1 г/л

протромбиназы

Протромбин (профермент

превращается в тромбин

сериновой протеазы

(IIa)

тромбина)

Активирует фибриноген с

образованием фибрина

III

Эндотелиоциты, макрофаги Не Кофактор фактора VII,

Тканевой тромбопластин

содержится (высвобождается призапускает внешний путь

или апопротеин III

повреждении стенки сосуда,

свертывания крови

(трансмембранный белок)

тканей)

Продолжение табл. 14-19

Участвует в образовании комплексов

плазменных факторов и липидов

Гранулы

Входит в состав активной

тромбоцитов

IV

протромбиназы Способствует

(плотные тельца),

агрегации тромбоцитов Связывает

Ионы кальция – Са2+

всасывается из

гепарин Принимает участие в

кишечника 1,1-1,4

образовании первичной

ммоль/л

гемостатической пробки и ретракции

тромба Тормозит фибринолиз

V

Гепатоциты,

Проакцелерин

мегакариоциты,

Активируется фактором IIа

или лабильный фактор

тромбоциты

Входит в состав активной

протромбиназы Создает оптимальные

(церулоплазмино-

Около 0,01 г/л

условия для взаимодействия факторов

Ха и II

подобный

(70-150%

связывающий белок)

активности)

VII

Гепатоциты (в

Активируется фактором

присутствии

Проконвертин

витамина К) Около III

0,005 г/л

или стабильный фактор

Активирует факторы IX, Х (участвует

(80-120%

(профермент сериновой

в образовании протромбиназы по

внешнему пути)

активности)

протеазы)

VIII:C

Гепатоциты 0,01-0,02 Активируется тромбином Создает

Антигемофильный глобулин г/л (60-250%

оптимальные условия для

(церулоплазминоподобный активности)

взаимодействия факторов Ка и X

связывающий белок)

VIII:ΒΦ

Эндотелиоциты,

Стабилизирует фактор VIII

Фактор Виллебранда

мегакариоциты 80-

Способствует адгезии тромбоцитов

(структурный белок)

120% активности

Окончание табл. 14-19

IX

Фактор Кристмаса

или компонент

Гепатоциты (в

плазменного

Активируется факторами

присутствии витамина XIa, VIIa

К) Около 0,003 г/л (70-

тромбопластина,

130% активности)

Активирует фактор X

РТС-фактор

(профермент сериновой

протеазы)

Гепатоциты (в

присутствии витамина Активируется факторами

X

К) Около 0,01 г/л

VIIIа и VIIа Входит в состав

Фактор Стюарта-Прауэра

активной протромбиназы

(профермент сериновой протеазы)

(80-120%

Переводит протромбин в

тромбин (IIa)

активности)

XI

Гепатоциты

Плазменный предшественник

Около 0,005 г/л (70-

Активируется фактором

тромбопластина или PTA– фактор,

130%

Активирует фактор IX

фактор Розенталя (профермент

сериновой протеазы)

активности)

Активируется калликреином

XII

и ВМК Запускает

Гепатоциты Около

Фактор Хагемана или контактный

внутренний путь

0,03 г/л (70-150%

фактор (профермент сериновой

свертывания крови

активности)

протеазы)

Активирует ППК, систему

фибринолиза

XIII

Гепатоциты,

Фибринстабилизирующий

мегакариоциты 0,01-

Активируется тромбином и

0,02 г/л

Ca2+

фактор

Стабилизирует фибрин

(70-130%

Способствует репарации

(профермент

тканей

активности)

трансглутаминазы)

Активируется ВМК,

Плазменный прекалликреин (ППК) Гепатоциты Около

фактором XIIa Активирует

или фактор Флетчера (профермент

0,05 г/л (60-150%

факторы VII, XII, ВМК,

плазменного калликреина)

активности)

плазминоген

Высокомолекулярный кининоген

Гепатоциты Около

Активирует факторы XI, XII,

(ВМК) или фактор Фитцджеральда 0,06 г/л (80-130%

плазминоген, ППК

(гликопротеин)

активности)

Внутренний и внешний механизмы гемостаза тесно взаимосвязаны, их разделение

является в некоторой степени условным. Так, фактор VIIa активирует факторы

свертывания XII и (в присутствии тканевого тромбопластина и ионов кальция) IX (рис.

14-18). В свою очередь, фактор VII может быть активирован факторами XIIa и XIa.

Предполагается, что внешний механизм обеспечивает фоновое свертывание крови.

Инициация внешнего пути гемостаза протекает быстрее (12-15 с), чем внутреннего

механизма (30-42 с). Это приводит к формированию базового количества тромбина,

достаточного для последующей активации факторов внутреннего каскада

гемокоагуляции.

После активации фактора X внутренний и внешний пути имеют одинаковое (общее)

развитие, и поэтому дальнейшие превращения факторов свертывания крови обозначают

как общий путь свертывания крови.

Второй этап характеризуется активацией фактора V и образованием активного

протромбиназного комплекса (активной протромбиназы) на ФЛМ из факторов Vа, Ха и

Са2+, способствующего превращению протромбина (фактор II) в тромбин (фактор IIa).

Третий этап – конечная фаза свертывания крови, характеризующаяся трансформацией

растворенного в плазме фибриногена в фибрин, образующий каркас сгустка крови. На

этом этапе происходит отщепление тромбином от молекулы фибриногена двух

фибринопептидов А и двух фибринопептидов В с образованием фибрин-мономеров,

полимеризующихся в димеры и далее – в тетрамеры и более крупные олигомеры,

трансформирующиеся в волокна фибрина, образующие сгусток (см. рис. 14-19).

Стабилизация сгустка фибрина осуществляется фактором XIII, активирующимся под

действием тромбина (IIa) в присутствии ионов кальция, в результате чего водородные

связи между мономерами фибрина трансформируются в ковалентные связи, и

образующиеся сгустки фибрина становятся более прочными и устойчивыми к различным

растворителям (мочевине, монохлоруксусной кислоте и др.).

Повышенное содержание в плазме крови промежуточных продуктов превращения

фибриногена в фибрин служит показателем активации системы свертывания крови и

наличия тромбинемии.

• Для оценки конечного этапа свертывания крови используются: тромбиновый тест, с

помощью которого определяют время свертывания цитратной плазмы под влиянием

стандартизи-

рованного на

контрольной (нормальной) плазме тромбина (в норме 14-16 с);

• определение содержания фибриногена в плазме крови хронометрическим методом (по Клаусу -

с помощью коагулометра) или гравиметрическим методом (по Рутбергу – по весу сгустка крови). У

здорового человека концентрация фибриногена в плазме составляет 2,0-4,0 г/л.

14.5.3. Противосвертывающие механизмы и система фибринолиза

В свертывающей системе крови действуют силы как аутокатализа, или самоускорения, так

и самоторможения. Жидкое со-

стояние крови поддерживается за счет ее движения (снижающего концентрацию

реагентов), адсорбции факторов свертывания эндотелием и, наконец, самостоятельно

синтезируемых и постоянно находящихся в крови естественных (первичных)

антикоагулянтов (табл. 14-20).

Таблица 14-20. Первичные (физиологические) антикоагулянты и механизмы их действия

* Серпины,

ингибирующие сериновые протеазы – тромбин и (в меньшей степени) другие факторы

свертывания; ** – на долю а1-антитрипсина приходится 90-92% общей антипротеазной

активности плазмы.

Многие факторы свертывания крови и их фрагменты, образующиеся в процессе

гемокоагуляции, выступают в роли вторичных антикоагулянтов. В частности, противосвертывающим действием обладают фибрин и продукты расщепления

фибриногена плазмином, тормозящие конечную фазу свертывания крови.

В патологических условиях в крови могут появляться в высоком титре иммунные

ингибиторы факторов свертывания крови – антитела к факторам VIII, IX и другим, а также

к ФЛМ, на которых взаимодействуют и активируются факторы свертывания крови

(антифосфолипидный синдром – см. ниже).

Фибринолитическая (плазминовая) система, как и система свертывания крови, активируется как по внешнему, так и по внутреннему механизму. Основным внешним

активатором этой системы является продуцируемый в эндотелии, а также в ряде тканей тканевой

активатор плазминогена (t-PA), на долю которого приходится около 70% всего активаторного

эффекта. Еще около 15% внешнего механизма активации приходится на фермент урокиназу, который вырабатывается в почках и в наибольшей своей части выделяется с мочой, а в кровь

попадает в значительно меньшем количестве. При патологии в роли дополнительных активаторов

фибринолиза могут выступать тканевые и лейкоцитарные протеазы, бактериальные ферменты

(стрептокиназа, стафилокиназа и др.), экзогенные протеолитические ферменты (протеазы

змеиных и грибных ядов, ядов насекомых и др.).

Внутренний механизм активации фибринолиза осуществляется в основном комплексом

«фактор ХПа + калликреин + ВМК» (так называемый ХНа-калликреинзависимый

фибринолиз) и протеинами C и S.

Внешний и внутренний механизмы активации фибринолиза замыкаются на плазминогене, который трансформируется в активный фермент – плазмин (ранее он обозначался как

фибринолизин).

Плазмин фиксируется в основном на сгустках фибрина в тромбах, в связи с чем лизис

фибрина преобладает над лизисом растворенного в плазме фибриногена. Кроме того, действию плазмина на фибриноген препятствует содержащийся в плазме мощный

ингибитор этого фермента – a2-антиплазмин. Однако при чрезвычайно сильной активации

плазминогена происходит истощение a2-антиплазмина, и в плазме крови обнаруживается

большое количество продуктов как фибринолиза, так и фибриногенолиза. Как видно из

схемы на рис. 14-20, эти продукты не идентичны друг другу. В результате расщепления

фибриногена в плазме нарастает количество конечного продукта этого процесса -

фрагмента D, тогда как при расщеплении фибрина увеличивается концентрация

фрагментов D-D (димера) и D-E-D.

Путем раздельного определения концентрации в плазме фрагментов D и D-димеров

можно получить представление, в какой степени у больного активированы фибринолиз и

фибриногенолиз. Более того, при проведении таких анализов учитывается, что для

нарастания в крови продуктов фибринолиза, т.е. D-димера, должно раньше произойти

свертывание крови – образование фибрина,

Рис. 14-20.

Схема расщепления плазмином фибриногена (А) и фибрина (Б)

а затем его расщепление до фрагмента D-D. Поэтому увеличение концентрации в плазме D-

димера служит ценным показателем как интенсивного внутрисосудистого свертывания крови, так

и сопряженного с этим процессом фибринолиза. Нарастание содержания в крови D-димера

является важным маркером массивного тромбоза кровеносных сосудов, тромбоэмболии, диссеминированного внутрисосудистого свертывания крови.

14.5.4. Геморрагические диатезы и синдромы

К геморрагическим диатезам и синдромам относят все те виды патологии, для которых

характерна склонность к кровоточивости системного характера.

14.5.4.1. Типы кровоточивости

В настоящее время выделяют 5 типов кровоточивости, связанных с патологией гемостаза: 1. Петехильно-синячковый (микроциркуляторный) тип характеризуется появлением

безболезненных точечных (петехии) или мелкопятнистых (экхимозы) кровоизлияний в

кожу и «синяков» при незначительных ушибах, в местах давления и трения одежды, в

местах инъекций, при измерении артериального давления (по нижнему краю манжеты и в

локтевом сгибе) и т.д. Часто сочетается с повышенной кровоточивостью слизистых

оболочек (носовые кровотечения, меноррагии). Петехиально-синячковая кровоточивость

характерна для тромбоцитопений, тромбоцитопатий, болезни Виллебранда,

гиповитаминоза С, дисфункций тромбоцитов эндокринного (дизовариального) генеза. В

связи с вторичной патологией тромбоцитов и их дефицитом отмечается также при острых

лейкозах, гипо– и апластических анемиях, уремии.

2. Гематомный тип характеризуется обширными, болезненными кровоизлияниями в

подкожную клетчатку, мышцы, суставы, под надкостницу, отсроченными геморрагиями

после травм и хирургических вмешательств, в том числе при порезах, после экстракции

зубов, а также носовыми, почечными и желудочнокишечными кровотечениями. Особенно

характерно поражение опорно-двигательного аппарата – деформация суставов,

ограничение подвижности в суставах, атрофия мышц конечностей и т.д. Такой тип

кровоточивости типичен для гемофилий.

3. Смешанный (петехиально-гематомный) тип характеризуется петехиально-синячковыми

высыпаниями, сочетающимися с обширными кровоизлияниями и гематомами (чаще в подкожную

и забрюшинную клетчатку, нередко с парезом кишечника) при отсутствии поражений суставов и

костей (в отличие от гематомного типа) либо с единичными геморрагиями в суставы. Отмечается

при дефиците факторов протромбинового комплекса (факторов II, V, VII, Х), передозировке

антикоагулянтов непрямого действия, передозировке гепарина и препаратов

фибринолитического действия (стрептокиназа и др.), болезни Виллебранда и синдроме

диссеминированного внутрисосудистого свертывания (ДВС) крови.

4. Васкулитно-пурпурный тип проявляется симметричной папулезно-геморрагической

сыпью диаметром до 0,5-1 см на нижних или (реже) верхних конечностях и в области

нижней части туловища (ягодицы), формирующейся в результате диапедеза эритроцитов

через стенку сосуда в связи с повышенной проницаемостью последней. Одновременно

могут возникать крапивница, артралгии, острая боль в животе с кишечным кровотечением

– меленой (абдоминальная форма), признаки гломерулонефрита. Такой тип

кровоточивости специфичен для геморрагического васкулита (болезни Шенлейна-Геноха) и некоторых других системных васкулитов иммунного и инфекционного генеза.

Характерной чертой является длительно сохраняющаяся на месте геморрагий синюшно-

коричневая пигментация. При других типах кровоточивости остаточной

гиперпигментации нет.

5. Ангиоматозный тип характеризуется рецидивирующей кровоточивостью постоянной

несимметричной локализации из телеангиэктазов (ангиом мелких сосудов). Такой тип

кровоточивости отмечается при телеангиэктазиях (болезнь Рандю-Ослера), при которых

сосудистая стенка утрачивает способность к активации факторов гемокоагуляции и

тромбообразованию in vivo. При этом сохраняется способность крови к образованию

сгустков при контакте с чужеродной поверхностью in vitro.

Выделяют также типы кровоточивости, не связанные с патологией гемостаза:

1. Невритический – кровоточивость из строго определенных областей тела (кровавые

слезы, кровавые «очки»), возникающая после тяжелого стресса либо вследствие

самовнушения.

2. Имитационный – кровоточивость, связанная с преднамеренным приемом


    Ваша оценка произведения:

Популярные книги за неделю