Текст книги "Ткань космоса. Пространство, время и текстура реальности"
Автор книги: Брайан Грин
Жанр:
Физика
сообщить о нарушении
Текущая страница: 8 (всего у книги 52 страниц)
В специальной теории относительности Эйнштейн показал, что каждый наблюдатель нарезает пространство-время на параллельные слои, которые он считает срезами всего пространства в последовательные моменты времени; неожиданный поворот состоит в том, что наблюдатели, двигающиеся друг относительного друга с постоянными скоростями, нарезают пространство-время под разными углами. Если бы такой наблюдатель начал ускоряться, он мог бы предположить, что ежесекундные изменения его скорости и/или направления движения отражаются на ежесекундных изменениях угла нарезки и ориентации его слоёв. Грубо говоря, так и происходит. Эйнштейн (используя геометрические представления, сформулированные Карлом Фридрихом Гауссом, Георгом Бернхардом Риманом и другими математиками девятнадцатого столетия), преодолевая трудности, развил эту идею и показал, что из-за изменения углов нарезки пространства-времени слои получаются искривлёнными, но они прекрасно подогнаны друг к другу, как ложки в серебряном футляре, что схематически проиллюстрировано на рис. 3.8. Ускоряющийся наблюдатель нарезает пространство на искривлённые слои.
Рис. 3.8.Согласно общей теории относительности блок пространства-времени не только будет нарезаться под разными углами в разные моменты времени (наблюдателями в относительном движении), но и сами слои будут деформированы или искривлены в присутствии материи или энергии
Поняв это, Эйнштейн смог весьма эффективно использовать принцип эквивалентности. Поскольку гравитация и ускорение эквивалентны, Эйнштейн понял, что сама гравитация есть ни что иное, как искривление ткани пространства-времени. Посмотрим, что это значит.
Если вы толкнёте металлический шарик на гладком деревянном полу, то он покатится по прямой линии. Но если вы недавно пережили ужасный потоп, из-за чего покорёжился весь ваш пол, то шарик не покатится по прямой. В своём движении он теперь будет следовать искривлениям пола. Эйнштейн применил эту простую идею к ткани Вселенной. Он представил, что при отсутствии материи или энергии (нет ни Солнца, ни Земли, ни звёзд, ни прочих объектов) пространство-время, подобно гладкому деревянному полу, не имеет ни впадин, ни искривлений. Оно плоское. Это схематически проиллюстрировано на рис. 3.9 а, где мы обратим внимание на сетку, введённую в пространстве. Конечно, пространство на самом деле трёхмерно, так что более адекватен рис. 3.9 б, но двумерные схемы проще понять, чем трёхмерные, поэтому мы будем продолжать их использовать. Затем Эйнштейн представил, что присутствие материи и энергии оказывает такое же воздействие на пространство, как потоп на деревянный пол. Материя и энергия, например Солнце, вызывают искривление пространства (и пространства-времени [21]21
Легче представить искривление пространства, но время, из-за тесной связи с пространством, также искривляется материей и энергией. И подобно тому как искривление пространства означает сжатие или растяжение пространства (как на рис. 3.10), точно также искривление времени означает сжатие или растяжение времени. Таким образом, часы, испытывающие разное гравитационное притяжение (например, одни часы – на Солнце, а другие – в глубоком пустом космосе), отсчитывают время по-разному. В действительности оказывается, что искривление пространства, вызываемое обычными космическими объектами наподобие Земли и Солнца (в отличие от чёрных дыр), гораздо менее выражено, чем вызываемое ими искривление времени. {220}
[Закрыть]), как это проиллюстрировано на рис. 3.10 а, б. И Эйнштейн показал, что подобно тому как шар на покоробленном полу катится по кривой линии, так и любой объект, движущийся в искривлённом пространстве (например, Земля в окрестностях Солнца), описывает кривую траекторию, как проиллюстрировано на рис. 3.11 а, б.
Рис. 3.9.( а) Плоское пространство (двумерное), ( б) Плоское пространство (трёхмерное)
Рис. 3.10.Пространство, деформированное Солнцем: ( а) двумерное; ( б) трёхмерное
Рис. 3.11.Земля остаётся на орбите вокруг Солнца, поскольку она движется по искривлённой линии ткани пространства-времени, и это искривление вызвано присутствием Солнца: ( а) двумерная картина; ( б) трёхмерная картина
Материя и энергия словно накладывают сеть холмов и долин, по которой объекты направляются невидимой рукой ткани пространства-времени. Вот так, согласно Эйнштейну, гравитация передаёт своё воздействие. Та же идея применима и к нашей повседневной жизни. Прямо сейчас ваше тело соскользнуло бы вниз по прогибу в ткани пространства-времени, вызванному присутствием Земли. Но ваше движение блокируется поверхностью, на которой вы сидите или стоите. Направленное вверх давление, которое вы чувствуете почти в каждый момент своей жизни (находитесь ли вы на земле, на полу своего дома, в уютном кресле или на своей широченной кровати), препятствует вашему соскальзыванию вниз в прогиб пространства-времени. Напротив, если вы взлетите высоко на скейтборде, то на какое-то мгновение отдадитесь гравитации, позволив ей свободно двигать ваше тело вдоль одного из склонов пространства-времени.
Рисунки 3.9, 3.10 и 3.11 схематично иллюстрируют триумф десятилетней борьбы Эйнштейна. Его основные усилия в течение тех лет были направлены на определение точной формы и величины деформаций, вызванных данным количеством материи или энергии. Математический результат, полученный Эйнштейном, отражён в так называемых полевых уравнениях Эйнштейна(на основе этого результата и сделаны упомянутые выше рисунки). Как свидетельствует название, Эйнштейн счёл деформацию пространства-времени проявлением – геометрическим воплощением – гравитационного поля. Чтобы ввести в игру геометрию пространства, Эйнштейн смог найти уравнения, играющие для гравитации ту же роль, что уравнения Максвелла для электромагнетизма. {31} С помощью этих уравнений затем были рассчитаны орбиты различных планет и даже траектория света, испущенного далёкой звездой и проходящего через искривлённое пространство-время. Полученные результаты были не только подтверждены с высокой степенью точности, но, в конкуренции с теорией Ньютона, теория Эйнштейна оказалась точнее.
Более того, поскольку общая теория относительности описывает детальный механизм действия гравитации, она позволяет ответить на вопрос: как быстро передаётся воздействие гравитации? Вопрос о скорости передачи сводится к вопросу о том, насколько быстро форма пространства может меняться во времени. Иными словами, как быстро могут деформации и рябь – рябь, подобная той, что возникает на поверхности пруда от брошенного камня, – бежать через пространство? Эйнштейн смог ответить на этот вопрос, и ответ, к которому он пришёл, был чрезвычайно радующий. Он установил, что деформации и рябь – т. е. гравитация – распространяются не мгновенно, как в теории Ньютона, а точно со скоростью света. [22]22
Ситуация не столь проста. Константа c(скорость света) в действительности входит в уравнение Эйнштейна двумя разными способами. В левой части уравнения она связана с геометрией пространства-времени и не имеет прямого отношения к электромагнетизму, в правой части уравнения связана с полями материи и, в частности, с электромагнитным полем. Заранее не очевидно, что это одна и та же постоянная, что позволяет отдельно говорить о скорости распространения гравитации c g. Проверка того, что c g= c, потребовала проведения специальных наблюдений, интерпретация которых оказалась не совсем простой. См. по этому поводу: Kopeikin S. M. The Speed of Gravity in General Relativity and Theoretical Interpretation of the Jovian Deflection Experiment.Class. Quant. Grav. 2004. № 21. P. 3251–3286 (arXiv:gr-qc/0310059). (Прим. ред.)
[Закрыть]Ничуть не медленнее или быстрее, полностью согласуясь с ограничением скорости, наложенным специальной теорией относительности. Если инопланетяне утащат Луну с её орбиты, прилив начнёт спадать на полторы секунды позже, точно в тот момент, когда мы увидим, что Луна исчезла. Общая теория относительности Эйнштейна торжествует там, где теория Ньютона терпит крах.
Помимо того что общая теория относительности дала миру математически элегантную, концептуально мощную и, наконец, полностью непротиворечивую теорию гравитации, она также основательно изменила наш взгляд на пространство и время. Как в ньютоновской концепции, так и в специальной теории относительности пространство и время предоставляли неизменную сцену для событий Вселенной. Хотя нарезка космоса на слои пространства в последовательные моменты времени придавала специальной теории относительности гибкость, немыслимую в ньютоновские времена, пространство и время никак не реагировали на происходящее во Вселенной. Пространство-время в образе «буханки», как мы его называли, представляется заданным раз и навсегда. В общей теории относительности всё изменилось. Пространство и время стали игроками в эволюционирующем космосе. Они ожили. Материя заставляет пространство искривляться, это заставляет материю двигаться, материя в своём движении искривляет пространство по-другому и т. д. Общая теория относительности обеспечивает хореографию для причудливого космического танца пространства, времени, материи и энергии.
Этот вывод ошеломляет. Но давайте теперь вернёмся к нашему старому вопросу: как насчёт ведра? Обеспечивает ли общая теория относительности физическую основу для реляционистских идей Маха, на что надеялся Эйнштейн?
На протяжении многих лет этот вопрос вызывал немало споров. Сначала Эйнштейн полагал, что общая теория относительности полностью включает в себя точку зрения Маха, причём он считал эту точку зрения настолько важной, что окрестил её принципом Маха. Действительно, в 1913 г., интенсивно работая над завершением общей теории относительности, Эйнштейн написал Маху воодушевлённое письмо, в котором описал, как его теория могла бы подтвердить анализ Маха ньютоновского эксперимента с ведром. {32} И в 1918 г., при написании статьи, перечисляющей три важнейшие идеи, лежащие в основании общей теории относительности, третьим пунктом Эйнштейн указал принцип Маха. Однако общая теория относительности весьма тонка и содержит некоторые аспекты, в которых физикам, включая самого Эйнштейна, удалось полностью разобраться лишь спустя многие годы. Всё больше разбираясь в этих тонкостях, Эйнштейн обнаружил, что ему всё труднее полностью включить принцип Маха в общую теорию относительности. Мало-помалу он расстался с иллюзиями по поводу идей Маха, и в последние годы своей жизни отказался от них совсем. {33}
Имея за плечами дополнительный опыт пятидесяти лет исследований и размышлений, мы можем с современной точки зрения оценить, до какой степени общая теория относительности согласуется с рассуждениями Маха. И хотя всё ещё остаются некоторые разногласия, я думаю, правильнее всего будет сказать, что в некоторых аспектах общая теория относительности имеет отчётливый привкус махианства, но она не совпадает с полностью реляционистскими взглядами, которые защищал Мах. Вот что я имею в виду.
Мах утверждал, {34} что когда поверхность вращающейся воды становится вогнутой, или когда вы чувствуете, что ваши руки растягивает в стороны, или когда натягивается верёвка, связывающая два камня, это не имеет никакого отношения к некоторому гипотетическому – и, с его точки зрения, полностью вводящему в заблуждение – понятию абсолютного пространства (или абсолютного пространства-времени, согласно нашим более современным представлениям). Вместо этого он считал, что явление ускоренного движения связано со всей материей, рассеянной по космосу. Не будь материи, не было бы и понятия ускорения, и не было бы ни одного из перечисленных выше физических эффектов (вогнутой поверхности воды, разброса рук, натяжения верёвки).
Что об этом говорит общая теория относительности?
Согласно общей теории относительности о всяком движении и, в частности, об ускоренном движении следует судить по отношению к свободно падающим наблюдателям – наблюдателям, которые полностью отдались гравитации и не подвергаются воздействию никаких других сил. Теперь подчеркнём ключевой момент: гравитационная сила, которой подчиняется свободно падающий наблюдатель, возникает из-за наличия всей материи (и энергии), рассеянной в космосе. Земля, Луна, удалённые планеты, звёзды, газовые туманности, квазары и галактики – все они вносят свой вклад в гравитационное поле (на геометрическом языке – в кривизну пространства-времени) прямо там, где вы сейчас сидите. Более массивные и более приближённые тела оказывают большее гравитационное воздействие, но гравитационное поле, ощущаемое вами, представляет совокупное влияние всей материи. {35} Траектория, которой вы бы последовали, полностью отдавшись гравитации и начав свободное падение (и, тем самым, точка зрения, по отношению к которой можно судить об ускоренном движении), зависела бы от всей материи в космосе, как от звёзд в небесах, так и от соседского дома. Таким образом, когда в общей теории относительности какой-либо объект называют ускоряющимся, это означает, что объект ускоряется по отношению к системе отсчёта, определяемой материей, рассеянной по всей Вселенной. Это заключение сродни тому, что отстаивал Мах. В этом смысле общая теория относительности включает в себя что-то от идей Маха.
Тем не менее общая теория относительности подтверждает не все заключения Маха, в чём можно прямо убедиться, снова рассмотрев ведро, вращающееся в совершенно пустой Вселенной. В пустой неизменной Вселенной, где нет ни звёзд, ни планет, где нет вообще ничего, – нет и гравитации. {36} А без гравитации пространство-время не деформировано – оно принимает простую неискривленную форму, показанную на рис. 3.9 б, – и это значит, что мы вернулись к условиям специальной теории относительности. (Вспомним, что при создании специальной теории относительности Эйнштейн игнорировал гравитацию. Общая теория относительности устраняет этот недостаток путём включения гравитации, но когда Вселенная пуста и неизменна, нет и гравитации, так что общая теория относительности сводится к специальной теории относительности). Если в эту пустую Вселенную мы теперь введём ведро, то из-за своей малой массы оно едва ли вообще повлияет на форму пространства. Так что ход рассуждений, проведённых нами для ведра в рамках специальной теории относительности, равным образом справедлив и в общей теории относительности. В противоречии с утверждением Маха общая теории относительности приходит к тому же выводу, что и специальная теория относительности, утверждая, что даже в пустой Вселенной вы будетечувствовать давление со стороны внутренней стенки вращающегося ведра; в пустой Вселенной ваши руки будеттянуть в стороны, когда вы вращаетесь; в пустой Вселенной верёвка, связывающая два вращающихся камня, будетнатягиваться. Мы приходим к выводу, что даже в общей теории относительности пустое пространство-время даёт систему отсчёта для определения ускоренного движения.
Следовательно, хотя общая теория относительности и включает в себя некоторые идеи Маха, она не полностью отвечает концепции относительности движения, которую отстаивал Мах. {37} Принцип Маха является примером идеи, вдохновившей на революционное открытие, хотя само открытие в конечном счёте не полностью согласуется с этой идеей.
Пространство-время в третьем тысячелетииВращающееся ведро имело долгую историю. От ньютоновского абсолютного пространства и абсолютного времени к реляционным концепциям Лейбница и Маха, затем к осознанию Эйнштейном в специальной теории относительности, что пространство и время относительны и лишь в своём единстве дают абсолютное пространство-время, а затем к последующему открытию Эйнштейном общей теории относительности, в которой пространство-время является активным игроком в раскрывающемся космосе – ведро Ньютона всегда было с нами. Крутясь в нашем воображении, ведро служило простым ясным тестом, позволяющим судить, является ли невидимая, абстрактная, неощутимая ткань пространства – и пространства-времени в более общем случае – достаточно реальной, чтобы предоставлять окончательную систему отсчёта для определения движения. Каков же вердикт? Хотя проблема всё ещё обсуждается, но наиболее прямое прочтение Эйнштейна и его общей теории относительности, как мы теперь видим, говорит о том, что пространство-время может предоставить такую систему отсчёта: пространство-время есть нечто. {38}
Однако отметим, что этот вывод также является поводом для торжества последователей более широко определённого реляционного взгляда. С точки зрения Ньютона и с точки зрения специальной теории относительности пространство и пространство-время являются сущностями, по отношению к которым можно определить ускоренное движение. И поскольку с этих точек зрения пространство и пространство-время абсолютно неизменны, то и понятие ускорения абсолютно. Однако в общей теории относительности характер пространства-времени совсем иной. Пространство и время в общей теории относительности динамичны: они изменчивы и реагируют на присутствие массы и энергии; они не абсолютны. Пространство-время своими деформациями и искривлениями воплощает гравитационное поле. Так что в общей теории относительности ускорение по отношению к пространству-времени далеко от абсолютной, непоколебимо нереляционной концепции предыдущих теорий. Вместо этого, как ярко высказался Эйнштейн за несколько лет до своей смерти, {39} ускорение по отношению к пространству-времени общей теории относительности относительно. Это не есть ускорение относительно материальных объектов вроде камней или звёзд, но относительно чего-то столь же реального, ощутимого и меняющегося: относительно поля – гравитационного поля. [23]23
В специальной теории относительности – особом случае общей теории относительности, когда гравитационное поле равно нулю, – это суждение остаётся справедливым; нулевое гравитационное поле всё ещё является полем, которое может быть измерено и может измениться, а потому оно предоставляет нечто, по отношению к чему может быть определено ускорение.
[Закрыть]В этом смысле пространство-время, будучи воплощением гравитации, настолькореально в общей теории относительности, что предоставляемый им критерий для определения движения могут спокойно принять многие реляционисты.
Споры по вопросам, обсуждавшимся в этой главе, несомненно, будут продолжаться, по мере того как мы нащупываем понимание, чем на самом деле являются пространство, время и пространство-время. С развитием квантовой механики краски только сгущаются. Концепции пустого пространства и пустоты обретают совершенно новый смысл, когда на сцену выходит квантовая неопределённость. Действительно, с 1905 г., когда Эйнштейн покончил с концепцией светоносного эфира, идея, что пространство наполнено невидимыми субстанциями, упорно боролась за своё возвращение. Как мы увидим в последующих главах, ключевые достижения современной физики возродили различные формы эфироподобной сущности, ни одна из которых не установила абсолютный критерий движения подобно оригинальному варианту светоносного эфира, но все они бросают вызов наивному представлению о том, что означает для пространства-времени быть пустым. Более того, как мы увидим, самая главная роль, которую пространство играет в классической Вселенной, – роль посредника, разделяющего объекты друг от друга, роль промежуточной субстанции, позволяющей определённо утверждать, что один объект отделён и независим от другого, – основательно пересматривается из-за существования поразительных квантовых связей.
Глава 4. Запутывание пространства
Что значит быть разделённым в квантовой Вселенной?
Принять специальную и общую теории относительности – означает отказаться от ньютоновского абсолютного пространства и абсолютного времени. Поскольку это нелегко, вы можете с этой целью потренировать ум. Всякий раз, когда вы перемещаетесь, представляйте себе, что ваше понятие «сейчас»отличается от «сейчас», ощущаемого всеми, кто не двигается вместе с вами. Разогнавшись на автостраде, представляйте себе, что ваши часы тикают с другой скоростью по сравнению с часами в домах, мимо которых вы проноситесь. Взобравшись на вершину горы, представляйте себе, что из-за деформации пространства-времени время течёт для вас быстрее, чем для тех, кто подвержен действию более сильной гравитации на земле далеко внизу. Я говорю «представьте», поскольку в обычных условиях, подобных перечисленным, релятивистские эффекты настолько мизерны, что их совершенно невозможно заметить. Таким образом, повседневный опыт не может вскрыть, как на самом деле работает Вселенная, и именно поэтому спустя столетие после Эйнштейна никто, не исключая и профессиональных физиков, не ощущает на себе релятивистские эффекты. Это и не удивительно; нужно попасть в очень экстремальные условия, чтобы жёсткая хватка относительности дала какие-нибудь преимущества в борьбе за существование. Неверные ньютоновские концепции абсолютного пространства и абсолютного времени просто великолепно работают при малых скоростях и умеренной гравитации, с которыми мы сталкиваемся в повседневной жизни, поэтому наши ощущения не находились под давлением эволюционного отбора, который бы развил в нас релятивистские чувства. Поэтому для глубокого осознания и верного понимания того, как устроена Вселенная, нам требуется использовать интеллект, восполняющий недостатки наших органов чувств.
В то время как теория относительности полностью разрушила наши традиционные представления об устройстве Вселенной, другая революция, произошедшая между 1900 и 1930 гг., тоже перевернула физику вверх дном. Она началась на рубеже XX в. с пары статей о свойствах излучения, одна из которых принадлежала Максу Планку, а другая – Эйнштейну; эти статьи и привели после тридцати лет интенсивных исследований к формулировке квантовой механики. Как и теория относительности, эффекты которой становятся существенными при экстремальной скорости или гравитации, так и новая физика квантовой механики проявляется в полной мере только в другой экстремальной ситуации: в области чрезвычайно малых расстояний. Однако есть глубокое различие между революциями, вызванными теорией относительности и квантовой механикой. Странность теории относительности происходит от того, что наши личные ощущения пространства и времени отличаются от ощущений других наблюдателей. Эта странность порождена сравнением. Мы вынуждены признать, что наш взгляд на реальность является лишь одним из многих – в сущности, из бесконечно многих – взглядов, которые все прекрасно встраиваются в картину целостного пространства-времени.
С квантовой механикой всё по-другому. Её необычность очевидна без сравнения. Развить в себе квантово-механическую интуицию гораздо труднее, поскольку квантовая механика рушит наше собственное, личное представление о реальности.