355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Брайан Грин » Ткань космоса. Пространство, время и текстура реальности » Текст книги (страница 50)
Ткань космоса. Пространство, время и текстура реальности
  • Текст добавлен: 19 сентября 2016, 13:25

Текст книги "Ткань космоса. Пространство, время и текстура реальности"


Автор книги: Брайан Грин


Жанр:

   

Физика


сообщить о нарушении

Текущая страница: 50 (всего у книги 52 страниц)

Составляющие пространства-времени

На протяжении всей книги мы периодически ссылались на ультрамикроскопические составляющие пространства-времени, но хотя мы и привели косвенные аргументы в пользу их существования, мы ещё ничего не сказали о том, чем на самом деле могут быть эти составляющие. И на то есть веская причина. На самом деле у нас нет ни малейшего представления о том, каковы они. Или, может быть, лучше сказать, что когда дело доходит до идентификации элементарных составляющих пространства-времени, у нас ни в чём нет уверенности. Это главный пробел в нашем понимании, но стоит взглянуть на эту проблему в историческом контексте.

Если бы вы спросили учёных в конце XIX-го в., каковы элементарные составляющие материи, то не получили бы единогласного ответа. Всего лишь столетие назад атомная гипотеза не была общепризнанной; были даже знаменитые учёные (Эрнст Мах – один из них), считавшие её неверной. Более того, даже после того как атомная гипотеза была широко принята в начале XX-го в., учёные постоянно обновляли рисуемую ею картину, находя всё более элементарные компоненты (например, сначала протоны и нейтроны, затем кварки). Теория струн – самый последний шаг на этом пути, но поскольку её ещё требуется подтвердить экспериментально (и даже после этого может появиться ещё более тонкая теория), то мы должны открыто признать, что поиск самых базисных компонентов материи всё ещё продолжается.

Включение пространства и времени в современный научный контекст восходит к работам Ньютона XVII-го в., но серьёзные размышления об их микроскопическом строении потребовали открытия общей теории относительности и квантовой механики, произошедших только в XX-м в. Таким образом, на историческом масштабе мы только начали анализировать пространство-время, так что отсутствие определённых предположений о его «атомах» – самых элементарных составляющих пространства-времени – не является «чёрной меткой». Это далеко не так. То, что мы открыли многочисленные характеристики пространства и времени далеко за пределами обычного опыта, свидетельствует о прогрессе, немыслимом ещё столетие назад. Поиск самых фундаментальных компонентов материи или пространства-времени является грандиозной задачей, которая, вероятно, будет занимать нас ещё немалое время.

Есть два многообещающих направления в поисках элементарных составляющих пространства-времени. Одно предположение исходит из теории струн, а второе – из теории, известной как петлевая квантовая гравитация.

Предложение, исходящее из теории струн, либо интуитивно притягивает, либо совершенно сбивает с толку – в зависимости от того, насколько глубоко вы раздумываете над этим. Поскольку мы говорим о «ткани» пространства-времени, то предположение состоит в том, что, возможно, пространство-время соткано из струн наподобие того, как рубашка соткана из нитей. То есть подобно тому как соединение должным образом многочисленных нитей порождает ткань рубашки, возможно, соединение должным образом многочисленных струн порождает то, что мы обычно называем тканью пространства-времени. Тогда материя (как вы и я) состоит из дополнительных агломераций вибрирующих струн, движущихся внутри среды, сотканной струнами пространства-времени – подобно звонкой музыке на фоне приглушённого гула или тонкому узору на однородном материале.

Это предположение кажется мне притягательным и неотразимым, но до сих пор никто не превратил эти слова в точное математическое утверждение. Насколько я могу судить, препятствия на этом пути далеко не пустяковые. Например, если ваша рубашка полностью распадётся на отдельные нити, то вы останетесь с грудой ниток – этот исход, в зависимости от обстоятельств, вы можете посчитать неловким или раздражающим, хотя, вероятно, и не глубоко загадочным. Но что действительно весьма напрягает разум (мой разум, по крайней мере), так это мысль об аналогичной ситуации со струнами пространства-времени. Что нам делать с «грудой» струн, выпавших из ткани пространства-времени или, что, возможно, ближе к делу, ещё не объединённых в ткань пространства-времени? Можно поддаться искушению думать о них как о нитях рубашки – как о сыром материале, который требуется соткать, – но сразу же видна несостоятельность такого подхода. Ведь мы представляем струны вибрирующими в пространстве и времени, но без ткани пространства-времени, образуемой самими этими струнами, нет пространства и времени. На этом пути концепция пространства и времени бессмысленна, пока не сплетаются неисчислимые струны, образующие само пространство и время.

Таким образом, чтобы сделать осмысленным это предложение, для описания струн нам требуются рамки, которые с самого начала не предполагали бы, что струны вибрируют в предсуществующем пространстве-времени. Нам требуется полностью беспространственная и безвременна́я формулировка теории струн, в которой пространство-время возникало бы из коллективного поведения струн.

И хотя на этом пути имеется прогресс, никто ещё не предложил такую беспространственную и безвременну́ю формулировку струнной теории – нечто, что физики называют формулировкой, независимой от фона(этот термин возник из популярного представления о пространстве-времени как о фоне, на котором происходят физические явления). Вместо этого, по сути, во всех подходах струны представляются движущимися и вибрирующими в пространстве-времени, введённом в теорию «вручную»; пространство-время не возникает из теории, как должно быть в «независимой от фона» концепции, а вводится в теорию самим теоретиком. Многие исследователи считают разработку «независимой от фона» формулировки единственной наиболее значительной нерешённой проблемой теории струн. Её решение не только привело бы к пониманию основ пространства-времени, но независимые от фона рамки, возможно, дали бы инструмент для решения основной «загвоздки», описанной в конце главы 12, – неспособности теории выбрать геометрическую форму дополнительных измерений. Как только базисный математический формализм теории будет отделён от любого частного пространства-времени, так теория струн могла бы оказаться в состоянии охватить все возможные геометрические формы дополнительных измерений и, возможно, выбрать одну из них.

Другой трудностью, с которой сталкивается предположение о «струнной структуре» пространства-времени, является то, что теория струн имеет и другие компоненты помимо струн (мы видели это в главе 13). Какую роль играют эти другие компоненты в фундаментальном строении пространства-времени? Этот вопрос становится особенно острым в модели мира на бране. Если трёхмерное пространство нашего опыта является 3-браной, то является ли сама эта брана неделимой или же она состоит из других компонентов теории? Например, состоят ли браны из струн или же как струны, так и браны – элементарные сущности? Или же следует допустить ещё одну возможность – что браны и струны состоят из ещё более тонких ингредиентов? Эти вопросы находятся на переднем крае текущих исследований, но поскольку в данной главе мы говорим о намёках и путеводных нитях дальнейших исследований, то позвольте мне рассказать об одной важной идее, привлёкшей большое внимание.

Ранее мы говорили о разнообразных бранах теории струн / M-теории: 1-бранах, 2-бранах, 3-бранах, 4-бранах и т. д. Хотя я и не подчёркивал это ранее, но в теории также существуют 0-браны– компоненты, не имеющие пространственных измерений подобно точечным частицам. Это может показаться противоречащим всему духу струнной теории / M-теории, отошедшей от представления о точечных частицах, дабы укротить необузданные флуктуации квантовой гравитации. Однако 0-браны, как и их собратья с бо́льшим количеством измерений на рис. 13.2, появляются буквально с прикреплёнными к ним струнами, и, следовательно, их взаимодействие управляется струнами. Поэтому неудивительно, что 0-браны ведут себя совсем не так, как обычные точечные частицы, и, что важнее всего, они полностью принимают участие в разглаживании и ослаблении ультрамикроскопических флуктуаций пространства-времени; 0-браны не вносят фатальных изъянов, проявляющихся при попытках объединить квантовую механику с общей теорией относительности в рамках представлений о точечных частицах.

В действительности Том Бэнкс из университета Ратгерса, Вилли Фишлер из Техасского университета в Остине вместе с Леонардом Сасскиндом и Стивеном Шенкером (оба теперь в Стэнфорде), сформулировали версию теории струн / M-теории, в которой 0-браны являются фундаментальными ингредиентами, из которых могут состоять струны и прочие браны более высокой размерности. Их предположение, известное также как матричная теория(вот и ещё один вариант расшифровки буквы «M» в «M-теории»), вызвало лавину исследований, но математические трудности до сих пор препятствуют учёным разработать этот подход до конца. Тем не менее те вычисления, которые удалось провести в рамках этого подхода, подтверждают выдвинутое предположение. Если матричная теория верна, то это может означать, что всё (струны, браны и, возможно, даже само пространство и время) состоит из соответствующих агрегатов 0-бран. Это захватывающая перспектива, и исследователи проявляют осторожный оптимизм по поводу того, что в этом направлении в ближайшие несколько лет будет достигнут существенный прогресс.

До сих пор мы говорили о пути, которым в поисках ингредиентов пространства-времени следуют приверженцы теории струн, но, как я упомянул, есть и второй путь, которого придерживаются последователи теории петлевой квантовой гравитации – основного конкурента теории струн. Теория петлевой квантовой гравитации, появившаяся в середине 1980-х гг., является другим многообещающим кандидатом на объединение квантовой механики с общей теорией относительности. Я не буду подробно говорить об этой теории (если она вас интересует, прочтите превосходную книгу Ли Смолина «Три дороги к квантовой гравитации»), а вместо этого укажу на несколько основных моментов, относящихся к нашему обсуждению.

Теория струн и теория петлевой квантовой гравитации заявляют, что они могут достигнуть долгожданной цели создания квантовой теории гравитации, но сделают это совсем разными путями. Теория струн возникла из десятилетних поисков наиболее элементарных компонентов материи; в самом начале для сторонников теории струн гравитация была, в лучшем случае, вторичным вопросом. В противоположность этому, теория петлевой квантовой гравитации выросла на традициях общей теории относительности; для большинства приверженцев этого подхода гравитация всегда была в центре внимания. Если в одном предложении сформулировать различие подходов, то можно сказать, что теория струн идёт от малого (квантовая теория) к большому (гравитация), тогда как теория петлевой квантовой гравитации идёт от большого (гравитация) к малому (квантовая теория). {217} В самом деле, как об этом говорилось в главе 12, теория струн изначально разрабатывалась как квантовая теория сильного ядерного взаимодействия; и только позже, почти по счастливой случайности, было обнаружено, что эта теория в действительности включает гравитацию. Теория петлевой квантовой гравитации, напротив, исходит из общей теории относительности Эйнштейна и стремится включить квантовую механику.

Этот старт с противоположного конца пространственных масштабов отражается в путях развития обеих теорий. Основные достижения одной теории оказываются, до некоторой степени, изъянами другой. Например, теория струн объединяет всю материю и все силы, включая гравитацию (такое полное объединение ускользает от теории петлевой квантовой гравитации), описывая всё на языке вибрирующих струн. Гравитационная частица – гравитон – представляет собой всего лишь одну из колебательных мод струны, и, стало быть, эта теория естественным образом описывает, как эти элементарные сгустки гравитации движутся и взаимодействуют на уровне квантовой механики. Однако, как только что было отмечено, основной изъян текущих формулировок теории струн состоит в том, что они предполагают наличие «фонового пространства-времени», в котором струны движутся и вибрируют. В противоположность этому, основное (и впечатляющее) достижение теории петлевой квантовой гравитации состоит в том, что она непредполагает наличие «фонового пространства-времени». Теория петлевой квантовой гравитации является конструкцией, «независимой от фона». Однако получение обычного пространства и времени, как и достижение известных результатов общей теории относительности на крупных масштабах (что относительно легко получается в рамках существующих формулировок теории струн), когда за стартовую точку берётся необычная беспространственная/безвременна́я концепция, является далеко нетривиальной проблемой, которую пытаются решить исследователи. Более того, по сравнению с теорией струн, теория петлевой квантовой гравитации достигла гораздо меньших успехов в понимании динамики гравитонов.

Одной из возможностей для гармонизации является то, что последователи теории струн и приверженцы теории петлевой квантовой гравитации на самом деле строят одну и ту же теорию, но с совершенно разных стартовых позиций. На это указывает то обстоятельство, что обе теории включают петли, – в теории струн это петли, образуемые замкнутыми струнами; в теории петлевой квантовой гравитации петли труднее описать без использования математики, но, грубо говоря, эти петли суть элементарные петли пространства. Эта возможность подкрепляется и тем фактом, что теории полностью согласуются друг с другом в тех немногих задачах (таких как определение энтропии чёрной дыры), которые можно решить в рамках обоих подходов. {218} И, что касается вопросов составляющих пространства-времени, обе теории предполагают существование некой атомизированной структуры. Мы уже видели намёки на это в рамках теории струн; аналогичные намёки в рамках теории петлевой квантовой гравитации ещё более настоятельные и даже более явные. Исследователи показали, что многочисленные петли теории петлевой квантовой гравитации могут соединяться (в чём-то подобно тому, как петли шерсти сплетаются в свитер), образуя структуры, которые на крупных масштабах выглядят приблизительно как области знакомого нам пространства-времени. Более того, исследователи подсчитали допустимое значение площади поверхности таких областей пространства. И оказалось, что площадь поверхности может составлять лишь целое число клеток площадью в планковскую единицу длины в квадрате, т. е. одна планковская клетка, две планковских клетки, 202 планковских клетки, но недопустимо дробное число клеток – подобно тому как может быть 1 электрон, 2 электрона, 202 электрона, но не может быть 1,6 электрона или любое дробное число электронов. Опять же, это является сильным аргументом в пользу того, что пространство, как и электроны, дискретно и состоит из неделимых элементов. {219}

Если бы я рискнул сделать предсказание, то в качестве наиболее вероятного пути развития предположил бы, что «независимые от фона» методы, развитые в теории петлевой квантовой гравитации, будут приспособлены к теории струн, что даст дорогу для создания «независимой от фона» формулировки теории струн. И я полагаю, что от этой искры возгорится пламя третьей революции теории суперструн, в ходе которой будут разгаданы (я оптимист) многие из оставшихся глубоких тайн. На этом пути, вероятно, могла бы завершиться долгая история дебатов о пространстве-времени. С первых глав мы следили за «маятником мнений», раскачивающимся между релятивистским и абсолютистским взглядами на пространство, время и пространство-время. Мы спрашивали: представляет ли пространство собой нечто? Является ли чем-то пространство-время? И, следя за ходом мысли на протяжении нескольких столетий, мы знакомились с различными точками зрения. Я думаю, что экспериментально подтверждённый, «независимый от фона» союз между общей теорией относительности и квантовой механикой приведёт к удовлетворительному решению этой проблемы. Благодаря «независимости от фона» ингредиенты теории могут оказаться в определённой связи друг с другом, но при отсутствии пространства-времени, изначально введённого в теорию, не будет никакой «фоновой арены», в которую они были бы встроены. Имели бы значения только относительные связи – это решение было бы во многом в духе Лейбница и Маха. Затем, по мере того как ингредиенты теории (будь то струны, браны, петли или что-либо ещё, что будет открыто в ходе будущих исследований) соединяются, образуя известное нам крупномасштабное пространство-время (либо наше реальное пространство-время, либо гипотетические примеры, полезные для мысленных экспериментов), они снова начинают быть «чем-то», во многом подобным тому, что было в нашем раннем обсуждении общей теории относительности: в совершенно пустом, плоском, бесконечном пространстве-времени (один из полезных гипотетических примеров) поверхность воды во вращающемся ведре Ньютона примет вогнутую форму. Самое существенное то, что при таком описании почти совсем исчезнет различие между пространством-временем и более ощутимыми материальными элементами, поскольку и то, и другое будет возникать как совокупность более элементарных ингредиентов в фундаментально реляционной, беспространственной и безвременно́й теории. Вот как Лейбниц, Ньютон, Мах и Эйнштейн могли бы провозгласить общую победу.

Внутреннее и внешнее пространство

Спекуляции о будущем науки являются увлекательным и конструктивным опытом. Они помещают наши текущие исследования в более широкий контекст и выделяют высшие цели, для достижения которых мы неторопливо и вдумчиво работаем. Но когда такие рассуждения касаются будущего самого пространства-времени, они обретают почти мистический характер, поскольку мы рассматриваем участь тех самых вещей, которые господствуют над нашим ощущением реальности. Опять же, нет сомнений в том, что независимо от наших будущих открытий пространство и время будут продолжать обрамлять наш индивидуальный опыт; пространство и время, как и всё происходящее в жизни, останутся на своём месте. А то, что будет продолжать изменяться и, вероятно, радикально изменится, так это наше понимание предоставляемого ими каркаса, т. е. арены экспериментальной реальности. После столетий размышлений мы можем охарактеризовать пространство и время только как самых знакомых незнакомцев. Они невозмутимо держат путь через наши жизни, но умело скрывают своё фундаментальное строение от тех самых ощущений, которые они так наполняют и на которые они влияют.

За последнее столетие благодаря двум теориям относительности Эйнштейна и квантовой механике мы близко познакомились с некоторыми ранее скрытыми чертами пространства и времени. Замедление времени, относительность одновременности, альтернативное «нарезание на куски» пространства-времени, гравитация как искажение и искривление пространства и времени, вероятностная природа реальности и квантовое дальнодействие – даже самые лучше физики XIX го в. не ожидали, что всё это обнаружится буквально за углом. И всё же, это всё есть – подтверждённое как экспериментальными результатами, так и теорией.

В наш век мы столкнулись со множеством неожиданных идей:

• тёмная материя и тёмная энергия несомненно являются основными составляющими Вселенной;

• гравитационные волны – рябь ткани пространства-времени, – которые были предсказаны общей теорией относительности Эйнштейна и которые когда-нибудь смогут позволить нам заглянуть ещё дальше в прошлое, чем когда-либо ранее;

• океан Хиггса, который пронизывает всё пространство и который, возможно, поможет нам понять, как частицы обретают массу;

• инфляционное расширение, которое может объяснить форму космоса и решить загадку его однородности на больших масштабах, а также установить направление стрелы времени;

• теория струн, которая постулирует петли и отрезки энергии вместо точечных частиц и обещает реализовать мечту Эйнштейна об объединении всех частиц и сил в рамках единой теории;

• дополнительные пространственные измерения, которые возникли из математики теории струн и которые могут быть обнаружены в экспериментах на новых ускорителях в следующем десятилетии;

• мир бран, в котором наши три пространственных измерения могут соответствовать лишь одной Вселенной среди множества Вселенных, плавающих в пространстве-времени более высокой размерности;

• и, возможно, даже новое понятие о пространстве-времени, когда сама ткань пространства и времени состоит из более фундаментальных беспространственных и безвременны́х элементов.

В следующем десятилетии более мощные ускорители дадут так необходимые экспериментальные данные, и многие физики уверены, что результаты, полученные из наблюдений высокоэнергетических столкновений, подтвердят ряд кардинальных теоретических построений. Я разделяю этот энтузиазм и с нетерпением жду результатов. Пока наши теории не соприкоснутся с наблюдаемыми, проверяемыми явлениями, они будут подвешены в состоянии неопределённости, оставаясь обещающим набором идей, который может иметь или не иметь отношение к реальному миру. Новые ускорители значительно расширят поле перекрытия между теорией и экспериментом и, как надеются физики, переведут многие из этих идей в область признанной науки.

Но есть и другой подход, наполняющий меня несравненным изумлением, хотя у этого подхода не так много шансов. В главе 11 мы говорили о том, как эффекты крошечных квантовых флуктуаций могут быть видны на ясном ночном небе, поскольку они были грандиозно растянуты в ходе космического расширения, что привело к образованию сгущений материи, давших начало звёздам и галактикам. (Вспомним аналогию с мелкими каракулями на оболочке воздушного шара, которые растягиваются, когда этот шар надувают.) Это яркий пример того, как можно получить доступ к квантовой физике через астрономические наблюдения. Возможно, это ещё не предел. Не исключено, что космическое расширение может растягивать отпечатки ещё более мелкомасштабных процессов или характеристик – физики струн, или вообще квантовой гравитации, или ультрамикроскопической атомизированной структуры пространства-времени – и распространять их влияние по небесам неким тонким, но наблюдаемым образом. Возможно, Вселенная уже растянула микроскопические нити ткани космоса и распустила их по небу, так что всё, что нам нужно, – это научиться их увидеть.

Чтобы добраться до проверки самых последних идей, касающихся фундаментальных физических законов, вполне может потребоваться и чрезвычайная мощь ускорителей частиц, способных воссоздать экстремальные условия, невиданные с момента Большого взрыва. Но, по моему мнению, нет ничего более поэтичного, результата более изысканного, объединения более полного, чем получить подтверждение наших теорий об ультрамалом – теорий об ультрамикроскопическом строении пространства, времени и материи, – обратив к небу самые мощные телескопы и молчаливо всматриваясь в звёзды.


    Ваша оценка произведения:

Популярные книги за неделю