355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Брайан Грин » Ткань космоса. Пространство, время и текстура реальности » Текст книги (страница 10)
Ткань космоса. Пространство, время и текстура реальности
  • Текст добавлен: 19 сентября 2016, 13:25

Текст книги "Ткань космоса. Пространство, время и текстура реальности"


Автор книги: Брайан Грин


Жанр:

   

Физика


сообщить о нарушении

Текущая страница: 10 (всего у книги 52 страниц)

Вероятность и законы физики

Если отдельный электрон является также волной, то что же колеблется? Эрвин Шрёдингер предложил первую догадку: возможно, субстанция, из которого сделаны электроны, может быть размазана в пространстве, и колеблется именно эта размазанная электронная субстанция. С этой точки зрения электрон как частица должен быть резким сгущением в электронном тумане. Однако было быстро осознано, что такое предположение не может быть верным, поскольку даже волна с резким пиком – подобная гигантской приливной волне – в конце концов расплывается. А если электронная волна расплывётся, то можно было бы обнаружить части заряда или массы одного и того же электрона в совершенно разных местах. Но такого никогда не наблюдается. Если мы обнаруживаем электрон, то всегда вся его масса и весь его заряд оказываются сконцентрированными в одной микроскопической области, практически в точке. В 1927 г. Макс Борн выдвинул другое предположение, оказавшееся решительным шагом, позволившим физикам войти в совершенно новую область. Он заявил, что волна – это не размазанный электрон или что-либо, с чем ранее сталкивались в науке. Эта волна, предположил Борн, является волной вероятности.

Чтобы понять, что это значит, представьте себе моментальный снимок волны на поверхности воды: на этом снимке видны области высокой интенсивности (вблизи гребней и впадин) и слабой интенсивности (вблизи плавного перехода от гребней к впадинам). Чем выше интенсивность, с тем большей силой волна может качнуть корабль или обрушиться на побережье. Волны вероятности в представлении Борна тоже имеют области сильной и слабой интенсивности, однако смысл, который он приписал такой волне, является неожиданным: амплитуда волны в данной точке пространства пропорциональна вероятности обнаружения электрона в этой точке пространства. Более всего вероятно обнаружить электрон в областях с большой амплитудой волны, менее вероятно – в областях с малой амплитудой. Если же амплитуда равна нулю в какой-то области пространства, то там электрон никогда не будет обнаружен.

На рис. 4.5 показан «моментальный снимок» волны вероятности с пометками, соответствующими интерпретации Борна. В отличие от случая волны на поверхности воды, однако, этот снимок не может быть сделан фотоаппаратом. Никто никогда непосредственно не видел волны вероятности, да и никогда не увидит, согласно представлениям общепринятой квантовой механики. Такая картинка получается в результате решения математических уравнений (выведенных Шрёдингером, Нильсом Бором, Вернером Гейзенбергом, Полем Дираком и другими физиками). Теоретические расчёты можно сравнить с экспериментальными данными следующим образом. Вычислив волну вероятности электрона в желаемых условиях, мы затем воспроизводим в эксперименте эти условия и измеряем положение электрона; затем этот же эксперимент мы повторяем снова и снова, каждый раз записывая измеренное положение электрона. В отличие от того, что ожидал бы Ньютон, идентичные эксперименты при идентичных начальных условиях не обязательно ведут к идентичным результатам.Вместо этого измерения дают самые разные положения электрона. Иногда мы обнаруживаем электрон здесь, иногда – там, и время от времени – совсем далеко. Если квантовая механика верна, то частота обнаружения электрона в данной точке пространства должна быть пропорциональна амплитуде (точнее, квадрату амплитуды) вычисленной нами волны вероятности в этой точке. За восемьдесят лет экспериментальных проверок предсказания квантовой механики сбывались с впечатляющей точностью.

Рис. 4.5.Волна вероятности частицы, такой как электрон, говорит о том, каковы шансы обнаружить эту частицу в том или ином месте

На рис. 4.5 показана только часть волны вероятности: согласно квантовой механике любая волна вероятности простирается по всему пространству, через всю Вселенную. {45} Однако во многих случаях волна вероятности быстро спадает практически до нуля вне некоторой малой области, указывая на подавляющую вероятность обнаружить частицу именно в этой области. В этом случае часть волны вероятности, не уместившаяся на рис. 4.5 (та часть, что простирается по всей Вселенной) похожа на волну возле краёв этого рисунка: она такая же плоская и близкая к нулю. Тем не менее, если волна вероятности где-то в галактике Андромеды не точно равна нулю, то всегда есть шанс – пусть даже исчезающее малый, но всё же реальный – обнаружить электрон именно там.

Таким образом, успехи квантовой механики заставляют нас принять, что электрон – составляющая материи, которую мы обычно рассматриваем как занимающую ничтожно малую область пространства (практически точку) – описывается также на языке волны, простирающейся, напротив, на всю Вселенную. Более того, согласно квантовой механике этот корпускулярно-волновой дуализм присущ всем составляющим частям природы, не только электронам: протоны и нейтроны также имеют как корпускулярное, так и волновое описание, а в экспериментах, проведённых в самом начале XX в., было установлено, что даже свет (который явно ведёт себя как волна, на что указывает рис. 4.1) также может быть описан в терминах частиц, «маленьких сгустков света», названных фотонами, которые уже упоминались ранее. {46} Привычные электромагнитные волны, испускаемые, например, стоваттной лампочкой, могут быть с равным успехом описаны в терминах примерно ста миллиардов миллиардов фотонов, испускаемых лампочкой ежесекундно. Мы усвоили, что в квантовом мире любой объект имеет как корпускулярные, так и волновые свойства.

За последние восемь десятилетий вездесущность и полезность представления о квантово-механических вероятностных волнах для предсказания и объяснения экспериментальных результатов была установлена с полной несомненностью. Однако до сих пор ещё нет общего согласия в том, что же в действительности представляют собой квантово-механические волны вероятности. Следует ли нам говорить, что волна вероятности электрона и естьсам электрон, или же она связанас электроном, или же она является математическим приёмомдля описания движения электрона, или же она отражает то, что мы можем знатьоб электроне – всё это ещё обсуждается. Ясно лишь то, что посредством этих волн квантовая механика вводит понятие вероятности в законы физики, причём таким способом, который никто не мог предвидеть. Метеорологи взяли на вооружение вероятность для предсказания возможности дождя. Казино используют вероятности для предсказания возможности выброса комбинации «глаза змеи» при игре в кости. В этих примерах вероятность задействована лишь постольку, поскольку мы не имеем всей информации, необходимой для точного предсказания. Согласно Ньютону, знай мы полностью все погодные условия (положения и скорости всех объектов, влияющих на погоду), мы смогли бы точно предсказать (если бы хватило вычислительной мощности), будет ли дождь завтра в 16:07; если бы мы знали все физические детали, относящиеся к игре в кости (точную форму и материал игральных костей, их скорость и ориентацию в момент их выброса, материал стола и его поверхности и т. д.), мы смогли бы точно предсказать, как лягут кости. Но поскольку на практике мы не можем собрать всю эту информацию (а даже если бы и могли, то всё равно наши компьютеры ещё не достаточно мощны, чтобы справиться с вычислениями, необходимыми для таких предсказаний), то мы опускаем планку наших притязаний и предсказываем только вероятность реализации какой-то погоды или определённого исхода в казино, делая правдоподобные предположения о данных, которых у нас нет.

Вероятность, введённая в квантовой механике, носит иной, более фундаментальный характер. Согласно квантовой механике, независимо от качества сбора данных или повышения мощности компьютеров, самое лучшее, что мы можем сделать, – это предсказать только вероятность того или иного исхода. Самое лучшее, что мы когда-либо сможем сделать, – это предсказать только вероятность того, что электрон или протон или нейтрон или любой другой объект микромира будет обнаружен здесь или там. В микрокосмосе царит вероятность.

В заключение вернёмся к нашему примеру, отражённому на рис. 4.4. Теперь ясно, как с точки зрения квантовой механики объяснить картину интерференции, даваемую одиночными электронами. Каждый электрон описывается своей волной вероятности. При испускании электрона его волна вероятности проходит через обе щели. И подобно световым волнам и волнам на поверхности воды, волны вероятности, испускаемые двумя щелями, накладываются друг на друга. В некоторых точках экрана эти две волны вероятности усиливают друг друга, и результирующая интенсивность велика. В других точках волны частично гасятся, и поэтому интенсивность мала. В третьих точках гребни и впадины волн полностью гасят друг друга, так что итоговая амплитуда в точности равна нулю. В соответствии с этим экран разбивается на точки, куда электрон попадёт с очень высокой вероятностью, на точки, где его ждут меньше, и на точки, попасть в которые у электрона совсем нет шансов. С течением времени попадающие в экран электроны формируют картину, отвечающую распределению вероятности, так что на экране некоторые области получаются более яркими, другие – менее, а третьи – совсем тёмными. Математический анализ показывает, что эти светлые и тёмные области будут выглядеть в точности так, как на рис. 4.4.

Эйнштейн и квантовая механика

Из-за своей неотъемлемой вероятностной природы квантовая механика резко отличается от любого из предшествовавших фундаментальных описаний Вселенной, как качественных, так и количественных. Всё последнее столетие с момента появления квантовой механики физики старались соединить эту странную и неожиданную теорию с общепринятыми взглядами на мир; эти попытки всё ещё продолжаются. Проблема заключается в согласовании макроскопического опыта повседневной жизни с микроскопической реальностью, вскрытой квантовой механикой. Мы привыкли жить в мире, в котором, как это общеизвестно, не исключены превратности экономического или политического рода, но который выглядит стабильным и надёжным, по крайней мере пока речь идёт о его физических свойствах. Вы не тревожитесь о том, что молекулы воздуха, которым вы сейчас дышите, внезапно исчезнут, проявляя свои квантовые волновые свойства, и материализуются, скажем, на обратной стороне Луны. И вы правильно делаете, что не беспокоитесь о таком исходе, поскольку согласно квантовой механике вероятность такого исхода смехотворна мала, хотя и не в точности равна нулю. Но из-за чего она столь мала?

Грубо говоря, на это есть две причины. Во-первых, по меркам микромира Луна чудовищно далека, а, как уже говорилось, во многих случаях (хотя и не во всех) квантовые уравнения показывают, что волна вероятности обычно имеет заметную амплитуду в некоторой малой области пространства и быстро стремится к нулю при удалении от этой области (как на рис. 4.5). Так что вероятность того, что даже отдельный электрон, находящийся с вами в одном помещении (например, один из тех, что вы только что выдохнули), будет обнаружен через одну-две секунды на обратной стороне Луны, хотя и не нулевая, но чрезвычайно мала. Настолько мала, что у вас гораздо больше шансов заключить брак с Николь Кидман или Антонио Бандерасом. Во-вторых, воздух вашей комнаты состоит из уймыэлектронов, равно как и протонов и нейтронов. Вероятность того, что всеэти частицы сделают то, что чрезвычайно маловероятно даже для одной из них, настолько мала, что и не стоит думать об этом. Вы скорее не только женитесь на любимой кинозвезде, но и будете выигрывать каждую недельную лотерею в течение такого промежутка времени, по сравнению с которым текущий возраст Вселенной покажется лишь мигом.

Это как-то объясняет то, почему в повседневной жизни мы непосредственно не сталкиваемся с вероятностными аспектами квантовой механики. Тем не менее, поскольку эксперименты подтверждают, что квантовая механика действительно описывает фундаментальную физику, то это прямо затрагивает наши представления о реальности. Эйнштейн, в частности, был глубоко обеспокоен вероятностным характером квантовой теории. Он подчёркивал снова и снова, что делом физики является точное определение того, что происходило, что происходит и что произойдёт в мире вокруг нас. Физики не букмекеры, и не дело физики просчитывать шансы. Но Эйнштейн не мог отрицать, что квантовая механика поразительно успешна в объяснении и предсказании того, что экспериментально наблюдается в микромире, пусть даже на статистическом уровне. Поэтому вместо того чтобы пытаться показать несостоятельность квантовой механики, что выглядело бы глупой затеей в свете беспрецедентных успехов теории, Эйнштейн потратил много усилий на попытки показать, что квантовая механика не является последним словом в том, как работает Вселенная. Хотя Эйнштейн и не мог произнести это последнее слово, но он хотел убедить всех, что должно быть более глубокое и менее странное описание Вселенной, и это описание ещё должно быть найдено.

В течение многих лет Эйнштейн ставил всё более изощрённые вопросы, нацеленные на то, чтобы вскрыть пробелы в структуре квантовой механики. Один из таких вопросов, поставленный в 1927 г. на Пятой физической конференции Сольвеевского института, {47} опирался на тот факт, что даже хотя вероятностная волна электрона и может выглядеть так, как на рис. 4.5, но когда бы мы ни определяли местонахождение электрона, мы всегда обнаруживаем его в определённом месте, хотя это место всякий раз меняется. Эйнштейн задал вопрос: не означает ли это, что волна вероятности является просто вре́менной заменой более точного описания, которое ещё предстоит открыть и которое будет точно предсказывать местоположение электрона? В конце концов, если электрон обнаружен в точке X, не означает ли это в действительности, что он был вточке Xили очень близкок ней перед своим обнаружением? И если это так, – продолжал Эйнштейн, – не означает ли это, что зависимость квантовой механики от волны вероятности – волны, которая говорит, что с некоторой вероятностью электрон мог находиться далеко от точки X, – свидетельствует о неадекватности теории для описания истинной фундаментальной реальности?

Позиция Эйнштейна проста и убедительна. Что может быть более естественным, чем ожидать, что частица находилась именно там, где она была обнаружена мгновением позже, или по крайней мере близко от этого места? Если это так, то более глубокое понимание физики должно предоставить этуинформацию и тем самым покончить с более грубым вероятностным описанием. Но датский физик Нильс Бор и окружавшие его защитники квантовой механики не были согласны с этим. Подобные аргументы, – парировали они, – основаны на привычном мышлении, в рамках которого каждый электрон должен придерживаться своей определённой траектории движения, по которой он скитается туда и обратно. Но это утверждение полностью противоречит рис. 4.4, ведь если каждый электрон действительно придерживается одной определённой траектории – как в классическом образе пули, выпущенной из ружья, – то чем же объяснить наблюдаемую интерференционную картину: что и с чем будет интерферировать? Отдельные пули, выстреливаемые одна за одной из одного ружья, не могут, несомненно, интерферировать друг с другом, так что если электроны движутся как пуля, то чем объяснять картину на рис. 4.4?

Согласно Бору и Копенгагенской интерпретации квантовой механики, которую он яростно отстаивал, до измерения положения электрона бессмысленно даже спрашивать, где он находится. Он не имеет определённого положения. В волне вероятности закодирована вероятность того, что в ходе опыта электрон будет обнаружен здесь или там, и это действительновсё, что можно сказать о его положении. Больше сказать нечего. Электрон имеет определённое положение в обычном интуитивном смысле только в момент, когда мы «смотрим» на него – т. е. когда измеряем его положение, – точно определяя, где он находится. Но до (и после) этого всё, что электрон имеет, – это возможные положения, описываемые волной вероятности, которая, как и всякая волна, подвержена интерференционным эффектам. Дело обстоит не так, как будто электрон имеет определённое положение, но мы его не знаем, пока не проведём свои измерения. Вопреки тому, что вы ожидали, электрон просто не имеетопределённого положения до проведения измерения.

Это очень странная реальность. С этой точки зрения, измеряя положение электрона, мы не измеряем объективную, независимо ни о чего существующую характеристику реальности. Скорее, акт измерения глубоко сплетён с созданием самой реальности, которая наблюдается. Перенося это утверждение с электронов на повседневную жизнь, Эйнштейн саркастически заметил: «Вы действительно верите в то, что Луны нет на небе, пока мы не взглянем на неё?» Адепты квантовой механики ответили на это парафразом старой пословицы про дерево, падающее в лесу: [25]25
  Старая английская загадка-парадокс: «Если в лесу падает дерево и нет никого, кто мог бы это услышать, то издаёт ли оно грохот?» (Прим. ред.)


[Закрыть]
если никто не смотрит на Луну – если никто не «измеряет её положение, глядя на неё» – то для нас нет способа узнать, есть ли она на месте, так что вопрос теряет смысл. Эйнштейн нашёл это глубоко неудовлетворительным. Это в корне расходилось с его концепцией реальности; он твёрдо верил, что Луна всегда на своём месте, независимо от того, смотрит ли на неё кто-нибудь или нет. Но сторонники квантовой механики остались при своих убеждениях.

Второй вопрос Эйнштейна, поставленный в 1930 г. на Сольвеевской конференции, вплотную примыкал к первому. Эйнштейн описал гипотетический прибор, который (через хитроумную комбинацию линейки, часов и устройства, напоминающего затвор фотоаппарата), как казалось, устанавливал, что частица вроде электрона должнаиметь определённые характеристики – ещё до их измерения, – чего не может быть согласно квантовой механике. Детали механизма несущественны, но исход спора очень ироничен. Изучив возражение Эйнштейна, Бор был совершенно выбит из колеи – сначала аргументы Эйнштейна показались ему безукоризненными. Но за считанные дни Бор оправился и полностью опроверг аргументы Эйнштейна. И самым удивительным оказалось то, что опровержение Бора основывалось на общей теории относительности! Бор понял, что Эйнштейн упустил из вида собственное открытие искажения времени гравитацией – что показания часов зависят от гравитационного поля, в котором они находятся. С учётом этой поправки Эйнштейн вынужден был признать, что его выводы ложатся прямо в русло ортодоксальной квантовой теории.

Несмотря на свои поражения в споре, Эйнштейн остался глубоко неудовлетворён квантовой механикой. В последующие годы он продолжал атаковать Бора и его коллег, выдвигая один за другим новые контраргументы. Особенным нападкам он подвергал так называемый принцип неопределённости, прямое следствие квантовой механики, сформулированный в 1927 г. Вернером Гейзенбергом.

Гейзенберг и принцип неопределённости

Принцип неопределённости даёт количественную меру того, насколько тесно вероятность вплетена в ткань квантовой Вселенной. Чтобы понять это, представим себе комплексные обеды, предлагаемые по одинаковой цене в некоторых китайских ресторанах. Перечень блюд разбит на две колонки, Aи B, и если, например, вы заказали первое блюдо из колонки A, вы уже не можете заказать первое блюдо из колонки B; если вы заказали второе блюдо из колонки A, вы уже не можете заказать второе блюдо из колонки Bи т. д. Таким путём ресторан устанавливает диетический дуализм, кулинарную дополнительность (нацеленную в данном случае на то, чтобы вы не выбрали все самые дорогие блюда). Заказывая комплексный обед, вы можете выбрать либо утку по-пекински, либо лобстера по-кантонски, но не то и другое вместе.

Принцип неопределённости Гейзенберга работает сходным образом. Он утверждает, грубо говоря, что физические характеристики объектов микромира (положения частиц, их скорости, энергии, моменты импульса и т. д.) можно разделить на два списка, Aи B. И, как установил Гейзенберг, знание первой характеристики из списка Aв корне ограничивает вашу возможность установить величину первой характеристики из списка B; знание второй характеристики из списка Aв корне ограничивает вашу возможность установить величину второй характеристики из списка Bи т. д. Более того, подобно тому как если можно было бы заказывать обеды, содержащего немного утки по-пекински и немного лобстера по-кантонски, но не превышая при этом установленной цены комплексного обеда, точно так же чем точнее вы знаете какую-то характеристику из первого списка, тем менее точно вы будете знать величину соответствующей характеристики из второго списка. Принципиальная невозможность определить одновременно все характеристики из обоих списков (т. е. точно определить величины всех характеристик микромира) и есть та неопределённость, что вскрывается принципом Гейзенберга.

Например, чем точнее вы знаете, где находится частица, тем менее точно вы можете установить её скорость. Аналогично, чем точнее вы знаете, с какой скоростью движется частица, тем с меньшей точностью вы можете определить, где она находится. Таким путём квантовая теория устанавливает собственный дуализм: вы можете точно определить некоторые физические характеристики микромира, но тем самым вы лишаетесь возможности точно установить ряд других характеристик, дополнительных первым.

Чтобы понять, почему это так, посмотрим, какую картину рисовал сам Гейзенберг; эта картина достаточно груба и неполна в отдельных аспектах, но полезна с точки зрения интуитивного понимания. Когда мы измеряем положение любого объекта, мы тем или иным образом взаимодействуем с ним. Если мы ищем выключатель в тёмной комнате, то узнаём о своей находке на ощупь. Когда летучая мышь охотится, она испускает ультразвуковые волны и по их отражению судит об окружающем её пространстве. Чаще всего мы определяем положение объекта, глядя на него – воспринимая свет, отражённый от объекта и попадающий на сетчатку наших глаз. Самое главное в этих примерах заключается в том, что эти взаимодействия влияют не только на нас, но и на объект, положение которого определяется. Даже свет, отражаясь от объекта, немного толкает его. Конечно, на вещи, с которыми мы сталкиваемся в повседневной жизни, вроде книги в ваших руках или часов на стене, микроскопический толчок от отражённого света не оказывает сколько-нибудь заметного влияния. Но когда свет сталкивается с элементарной частицей вроде электрона, он оказывает на неё большое воздействие: отскакивая от электрона, свет изменяет его скорость примерно так же, как ваше движение меняется под порывом сильного ветра, налетевшего из-за угла улицы. В действительности, чем точнее вы хотите определить положение электрона, тем более сфокусированным и мощным должен быть луч света и тем большее влияние он окажет на движение электрона.

Значит, если вы с высокой точностью измеряете положение электрона, вы неизбежно портите собственный эксперимент: акт точного измерения положения сильно изменяет скорость электрона. Поэтому вы можете точно узнать, где находится электрон, но не можете точно узнать, с какой скоростью он в этот момент двигается. И наоборот, вы можете точно измерить, с какой скоростью движется электрон, но, делая это, вы неизбежно лишаете себя возможности точно определить его положение в тот же момент времени. Природа имеет свой предел точности, накладывающий ограничение на точность определения дополнительных друг другу характеристик. И хотя мы всё время говорили об электронах, принцип неопределённости носит всеобщий характер: он применим ко всему.

В повседневной жизни мы запросто говорим о том, к примеру, что автомобиль проехал дорожный знак (положение) на скорости 90 км/ч (скорость), одновременно определяя две эти характеристики. В действительности квантовая механика говорит о том, что такое утверждение не имеет точного смысла, поскольку невозможно одновременно измерить и определённое положение и определённую скорость. Причина, по который мы не считаемся с такой неточностью, состоит в том, что на повседневном уровне степень неопределённости ничтожна и практически всегда незаметна. Принцип Гейзенберга не просто декларирует неопределённость, но и точно определяет минимальную величинунеопределённости в любой ситуации. Если вы примените формулу Гейзенберга к определению скорости вашего автомобиля в тот момент, когда он проезжает мимо дорожного знака, положение которого известно с точностью до сантиметра, то неопределённость в скорости не выйдет за пределы одной миллиардной от миллиардной от миллиардной от миллиардной километра в час. Слова автоинспектора будут полностью соответствовать законам квантовой физики, если он заявит, что вы пронеслись мимо дорожного знака на скорости между 89,999999999999999999999999999999999999 и 90,000000000000000000000000000000000001 км/ч – принцип неопределённости накладывает только такое ограничение на определение скорости, если положение автомобиля определяется с точностью до сантиметра. Но если вместо массивного автомобиля рассмотреть единственный электрон, чьё положение вы знаете с точностью до одной миллиардной метра, то неопределённость его скорости составит чудовищную величину порядка 300 000 км/ч. Неопределённость есть всегда, но становится действительно существенной только в микромире.

Объяснение неопределённости как проявления неизбежного возмущения, возникающего в ходе измерений, даёт полезное интуитивное понимание и мощное средство объяснения явлений в конкретных ситуациях. Но это объяснение может и вводить в заблуждение. Оно может породить впечатление, что неопределённость возникает только когда наши неуклюжие эксперименты вмешиваются в происходящее. Это неверно. Неопределённость присуща волновой природе квантовой механики и существует независимо от того, проводим ли мы свои грубые измерения. В качестве примера взглянем на совсем простую вероятностную волну частицы, аналог мягко перекатывающейся океанской волны, показанную на рис. 4.6. Поскольку все гребни этой волны одинаково двигаются в одном направлении, можно предположить, что эта волна описывает частицу, двигающуюся с постоянной скоростью, равной скорости гребней волны; эксперимент подтверждает это предположение. Но где же находится частица? Поскольку волна однородно распределена по всему пространству, то нет никаких выделенных точек, и у нас нет никаких оснований утверждать, что электрон находится где-то здесьили там. В результате измерения он может быть найден буквально где угодно. Итак, хотя мы точно знаем, с какой скоростью двигается частица, мы совершенно не ведаем о том, где она находится. И, как видно, это заключение не зависит от того, что своими измерениями мы повлияли на частицу. Мы к ней даже не прикоснулись. Так что неопределённость зависит от фундаментальных свойств волн: они являются протяжёнными в пространстве.

Рис. 4.6.Волна вероятности с точно повторяющейся последовательностью одинаковых гребней и впадин соответствует частице с точно определённой скоростью. Но поскольку все гребни и впадины совершенно одинаковы, то положение частицы оказывается совершенно неопределённым. С равной вероятностью она может быть где угодно

Аналогичное рассуждение применимо ко всем другим формам волн, хотя конкретные детали могут быть более сложными. В целом урок понятен: в квантовой механике неопределённость просто существует, и всё.


    Ваша оценка произведения:

Популярные книги за неделю