355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Брайан Грин » Ткань космоса. Пространство, время и текстура реальности » Текст книги (страница 7)
Ткань космоса. Пространство, время и текстура реальности
  • Текст добавлен: 19 сентября 2016, 13:25

Текст книги "Ткань космоса. Пространство, время и текстура реальности"


Автор книги: Брайан Грин


Жанр:

   

Физика


сообщить о нарушении

Текущая страница: 7 (всего у книги 52 страниц)

Срезы под разными углами

Можно расширить аналогию между сетью улиц/авеню и «срезов по времени». Подобно тому как проекты Мардж и Лизы можно совместить друг с другом путём вращения, так и «срезы по времени» Апу и Мартина (страницы их книжек с бегущими картинками) можно совместить путём вращения, но вращения, включающего как пространство, так и время. Это иллюстрируется на рис. 3.4 аи б, где видно, что «срезы по времени» Мартина повёрнуты по отношению к срезам Апу, из-за чего Мартин и заявил, что дуэль была проведена нечестно. Однако между этими случаями есть важное различие: в то время как угол вращения между планами Мардж и Лизы определяется выбором проектировщиков, угол вращения между срезами Апу и Мартина определяется скоростью их относительного движения. И нетрудно понять, почему это так.

Рис. 3.4.«Срезы по времени» согласно Апу ( а) и Мартину ( б), движущихся относительно друг друга. Согласно Апу, находящемуся в поезде, дуэль проведена честно; согласно Мартину, стоящему на платформе, дуэль проведена нечестно. Обе точки зрения одинаково справедливы. На рис. бподчёркнута разница между углами срезов пространства-времени

Вообразим, что Щекотка и Царапка помирились. Вместо того чтобы стрелять друг в друга, они решили точно синхронизировать часы, идущие в передней и задней частях движущегося вагона. Поскольку они находятся на равном расстоянии от кучки пороха, то принимают следующий план. Каждый из них ставит свои часы ровно на 12:00, когда увидит свет от вспыхнувшего пороха. С их точки зрения, свет должен преодолеть одинаковое расстояние, чтобы достичь каждого из них, а поскольку скорость света постоянна, то он достигнет их одновременно. Но, как и раньше, Мартин, вместе со всеми, стоящими на платформе, заявит, что Щекотка едет навстречу испущенному свету, тогда как Царапка удаляется от него, и поэтому Щекотка получит световой сигнал чуть раньше Царапки. Так что наблюдатель на платформе (Мартин) придёт к выводу, что Щекотка установил свои часы на 12:00 раньшеЦарапки, и поэтому часы Щекотки будут чуть опережать часы Царапки. Например, с точки зрения Мартина, когда часы Щекотки показывают 12:06, на часах Царапки может быть только 12:04 (точное расхождение зависит от длины вагона и скорости поезда: чем длиннее вагон и чем быстрее он движется, тем больше расхождение). И всё же, с точки зрения Апу и всех, едущих на поезде, Щекотка и Царапка совершенно точно синхронизировали свои часы. Опять же, хотя это и трудно принять с точки зрения здравого смысла, парадокса здесь нет: наблюдатели, движущиеся друг относительно друга, не соглашаются по поводу одновременности – они не соглашаются друг с другом в вопросах о том, какие события происходят в одно и то же время.

Это означает, что одна страница из книжки с бегущими картинками наблюдателей, едущих в поезде, содержит события, отражённые на разныхстраницах книжки наблюдателей, стоящих на платформе (с точки зрения наблюдателей с платформы Щекотка установил свои часы раньшеЦарапки, так что эти события отражены на разных страницах). Вот мы и подошли к самому главному. Любая страница книжки наблюдателей с поезда содержит события, отражённые на предшествующих и последующих страницах книжки наблюдателей с платформы. Вот почему «срезы по времени» Мартина и Апу на рис. 3.4 повёрнуты друг относительно друга: то, что с одной точки зрения лежит на одном срезе, пересекает множество срезов по времени с другой точки зрения.

Если бы была верна ньютоновская концепция абсолютного пространства и абсолютного времени, тогда все наблюдатели имели бы один и тот же способ нарезки пространства-времени. Каждый срез представлял бы абсолютное пространство, как оно выглядит в данный момент абсолютного времени. Но мир устроен не так, и переход от жёсткого ньютоновского времени к эйнштейновой гибкости полезно ещё раз проиллюстрировать на следующем примере. Вместо того чтобы представлять пространство-время в виде фиксированной книжки с бегущими картинками, подумайте о громадной буханке свежего хлеба. И вместо того чтобы представлять себе фиксированные страницы книги (фиксированные ньютоновские срезы по времени), подумайте о многообразии углов, под которыми можно нарезать хлеб, как на рис. 3.5 а. Каждый ломтик хлеба представляет пространство в какой-то один момент времени с точки зрения соответствующего наблюдателя. Но другой наблюдатель, движущийся с постоянной скоростью относительно первого, нарежет буханку пространства-времени уже под другим углом, как это показано на рис. 3.5 б. Чем больше относительная скорость движения наблюдателей, тем больше будет разница между «углами нарезки» соответствующих ломтиков (как разъяснено в примечании {25} , предел скорости, установленный светом, означает, что существует максимальная разница в углах, составляющая 45°) и тем больше будет различие в том, что разные наблюдатели считают одновременно произошедшими событиями.

Рис. 3.5.Подобно тому как буханку хлеба можно нарезать под различными углами, так и «срезы по времени» блока пространства-времени идут под разными углами в зависимости от относительной скорости наблюдателя. Чем больше эта скорость, тем больше угол (максимум 45° при достижении скорости света)

Ведро с точки зрения специальной теории относительности

Относительность пространства и времени требует существенных изменений в нашем мышлении. Однако здесь есть один важный момент, упомянутый ранее и проиллюстрированный на примере буханки хлеба, но зачастую упускаемый: не всё относительно в специальной теории относительности. Даже если мы с вами захотим вообразить нарезку буханки хлеба разными способами, всё же есть кое-что, с чем мы полностью согласимся: буханка в целом одна и та же. Хотя кусочки хлеба будут отличаться, но если мы составим их вместе, то получим одну и ту же буханку, как бы мы её ни нарезали. Да и как могло бы быть иначе? Ведь мы нарезали одну и ту же буханку.

Аналогично, все «срезы» пространства в последовательные моменты времени (см. рис. 3.4) в совокупности дают один и тот же блок пространства-времени, с какой бы скоростью ни двигался наблюдатель. Различные наблюдатели «нарезают» блок пространства-времени различными способами, но сам блок, подобно буханке хлеба, имеет независимое существование. Таким образом, хотя Ньютон определённо был неправ, его утверждение о том, что существует нечто абсолютное, с чем согласится любой наблюдатель, не полностью развенчано в специальной теории относительности. Абсолютное пространство не существует. Абсолютное время не существует. Но, согласно специальной теории относительности, абсолютное пространство-время в действительности существует. Имея это наблюдение, давайте снова вернёмся к ньютоновскому ведру.

По отношению к чемувращается ведро в совершенно пустой Вселенной? Согласно Ньютону – по отношению к абсолютному пространству. Согласно Маху, в этом случае даже бессмысленно говорить о вращении ведра. Согласно специальной теории относительности Эйнштейна, ведро вращается по отношению к абсолютному пространству-времени.

Чтобы понять это, давайте снова взглянем на проекты благоустройства Спрингфилда. Вспомним, что на планах Мардж и Лизы как супермаркет «На скорую руку», так и атомная электростанция имеют разные адреса из-за того, что сети улиц и авеню на этих планах повёрнуты по отношению друг к другу. Но несмотря на разные сети улиц и авеню, кое-что на этих планах совпадает. Например, если для удобства работников атомной электростанции проложить асфальтированную дорожку прямо от их места работы к супермаркету «На скорую руку», то Мардж и Лиза не придут к согласию о том, какие улицы и авеню пересечёт эта дорожка, как видно по рис. 3.6. Но они наверняка согласятся по поводу формыдорожки: в обоих случаях дорожка будет отрезком прямой линии. Геометрическая форма дорожки не зависит от ориентации сети улиц/авеню.

Рис. 3.6.Независимо от ориентации сети улиц/авеню все согласятся с тем, что проложенная дорожка является отрезком прямой линии

Эйнштейн понял, что нечто подобное справедливо по отношению к пространству-времени. Даже если два наблюдателя, двигающиеся друг относительно друга, «нарезают» пространство-время различными способами, кое в чём они всё же согласятся. В качестве первого примера рассмотрим траекторию движения в виде прямой линии, но не просто в пространстве, а в пространстве-времени. Хотя такая траектория менее привычна из-за введения времени, но после минутного размышления становится понятен её смысл. Чтобы траектория движения объекта в пространстве-времени была прямой линией, этот объект должен двигаться не только по прямой линии в пространстве, но и равномерно по времени; иными словами, величина и направление скорости его движения должны быть неизменными, и, значит, объект должен двигаться с постоянной скоростью. Так вот, хотя разные наблюдатели «нарезают» блок пространства-времени под разными углами и поэтому не согласятся в том, за какое время пройден тот или иной участок траектории или какова его длина, но они, подобно Мардж и Лизе, согласятся в том, что эта траектория является прямой линией. Подобно тому как геометрическая форма дорожки от атомной электростанции к супермаркету «На скорую руку» не зависит от ориентации сети улиц/авеню, так и геометрические формы траекторий в пространстве-времени не зависят от способа организации временны́х слоёв. {26}

Это утверждение простое, но очень важное, поскольку благодаря ему специальная теория относительности даёт абсолютный критерий (с которым согласятся все наблюдатели, с какой бы постоянной скоростью они бы ни двигались) для определения ускоренного движения. Если траектория объекта в пространстве-времени является прямой линией, как у мирно покоящегося космонавта на рис. 3.7 а, то объект не ускоряется. Если же траектория объекта в пространстве-времени описывает другую линию, отличную от прямой, то объект ускоряется. Например, если космонавт включит свой реактивный ранец и начнёт летать кругами, как на рис. 3.7 б, или же понесётся в открытый космос, как на рис. 3.7 в, то его траектория в пространстве-времени будет кривой линией – это непременный знак ускорения. Таким образом, мы поняли, что геометрические формы траекторий в пространстве-времени дают абсолютный критерий для определения ускоренного движения. Пространство-время, но не пространство в отдельности, предоставляет такой критерий.

Рис. 3.7.Траектории трёх космонавтов в пространстве-времени. Космонавт ( а) не ускоряется и поэтому описывает прямую линию в пространстве-времени. Космонавт ( б) летает кругами, что отображается спиралью в пространстве-времени. Космонавт ( в) ускоряется в открытый космос, поэтому его траектория в пространстве пошла по другой кривой линии

В этом смысле, следовательно, специальная теория относительности говорит нам, что само пространство-время является окончательным судьёй для определения ускоренного движения. Пространство-время предоставляет подмостки, по отношению к которым можно говорить об ускоренном движении объектов (например, о вращении ведра) в совершенно пустой Вселенной. Наш маятник снова качнулся: от реляционизма Лейбница к абсолютизму Ньютона, затем к реляционизму Маха и теперь назад к Эйнштейну, который снова показал, что арена реальности, понимаемая, однако, как пространство-время, а не только как пространство, достаточна в качестве чего-то, предоставляющего окончательный критерий движения. {27}

Гравитация и старинный вопрос

В этом месте можно было бы подумать, что мы дошли до конца нашей истории с ведром, так что идеи Маха оказались неверны, и одержала победу радикально модернизированная Эйнштейном ньютоновская концепция абсолютного пространства и времени. Но истина тоньше и интереснее. Однако если изложенные до сих пор идеи вам в новинку, то стоит сделать перерыв, прежде чем штурмовать последние разделы этой главы. Чтобы освежить свою память, мы привели краткую сводку позиций в табл. 3.1.

Таблица 3.1.Сводка различных взглядов на природу пространства и пространства-времени


Ньютон Пространство является сущностью; ускоренное движение не относительно; абсолютистская позиция
Лейбниц Пространство не является сущностью; всякое движение относительно; реляционная позиция
Мах Пространство не является сущностью; ускоренное движение относительно к распределению массы в среднем по Вселенной; реляционная позиция
Эйнштейн(специальная теория относительности)Пространство и время по отдельности относительны; пространство-время является абсолютной сущностью

Раз вы читаете эти строки, то я надеюсь, что вы готовы сделать следующий крупный шаг в истории пространства-времени – шаг, подготовленный по большей части не кем иным, как Эрнстом Махом. Хотя специальная теория относительности, в отличие от теории Маха, приводит к выводу, что даже в совершенно пустой Вселенной вы почувствуете, что вдавливаетесь во внутреннюю стенку вращающегося ведра и что натягивается верёвка, связывающая два вращающихся камня, однако Эйнштейн оставался под глубоким впечатлением от идей Маха. Но Эйнштейн понял, что серьёзное отношение к этим идеям требует значительного их расширения. Мах никогда по-настоящему не определял механизм, посредством которого удалённые звёзды и прочая материя Вселенной могла бы влиять на то, как сильно растягивает в стороны руки при вашем вращении или насколько сильно вас вдавливает во внутреннюю стенку вращающегося ведра. Эйнштейн начал подозревать, что если такой механизм действительно существует, то он должен иметь какое-то отношение к гравитации.

Это предположение было особенно привлекательным для Эйнштейна, потому что в специальной теории относительности, чтобы сделать анализ обозримым, он полностью проигнорировал гравитацию. Возможно, рассуждал он, более общая теория, включающая как специальную теорию относительности, так и гравитацию, придёт к другому выводу относительно идей Маха. Возможно, предполагал он, обобщение специальной теории относительности, учитывающее гравитацию, покажет, что материя, как близкая, так и удалённая, определяет силу, ощущаемую нами при ускорении.

У Эйнштейна была и другая, в чём-то более веская, причина обратить своё внимание на гравитацию. Он понимал, что специальная теория относительности, базирующаяся на утверждении, что никакой материальный объект и никакое возмущение не может двигаться со скоростью, превышающей скорость света, прямо конфликтует с ньютоновским универсальным законом гравитации – фундаментальным достижением, с помощью которого более двух столетий с фантастической точностью предсказывали движение Луны, планет, комет и всех прочих небесных тел. Невзирая на экспериментальные подтверждения закона Ньютона, Эйнштейн понимал, что, согласно Ньютону, гравитация мгновенно распространяется от точки к точке, от Солнца к Земле и т. д., т. е. гораздо быстрее света, а это прямо противоречит специальной теории относительности.

Для иллюстрации этого противоречия предположим, что у вас выдался действительно прескверный вечер (в вашем родном городе закрылся боулинг-клуб, все позабыли о вашем дне рождения, кто-то съел последний кусок сыра в холодильнике), так что вы захотели побыть наедине с собой, и потому решились на лодочную прогулку при Луне. Луна над головой, на море прилив (именно гравитация Луны притягивает воду, вызывая прилив), отражения лунного света пляшут на поверхности морских волн. Но затем, словно в продолжение вечерних кошмаров, враждебные инопланетяне хватают Луну и мгновенно перебрасывают её на другой конец галактики. Конечно, такое исчезновение Луны было бы очень странным, но если верен ньютоновский закон всемирного тяготения, то этот эпизод повлечёт за собой нечто ещё более странное. Закон Ньютона предсказывает, что вода начнёт спадать (вследствие исчезновения притяжения со стороны Луны) за полторы секунды до того, как вы увидите, что Луна исчезла с неба. Подобно спринтеру, допустившему фальстарт, вода начнёт спадать на полторы секунды раньше.

Причина здесь в том, что, согласно Ньютону, в тот самый момент, когда исчезает Луна, также мгновенноисчезает и её притяжение, так что приливные волны мгновенно начинают спадать. А поскольку на преодоление примерно 400 тыс. км между Луной и Землёй свету требуется примерно полторы секунды, то вы не сразу заметите, что Луна исчезла; в течение полутора секунд вы будете видеть, что волны вдруг начали спадать, тогда как Луна, как обычно, сияет на небосклоне. Таким образом, согласно Ньютону, гравитация может воздействовать на нас раньше света – гравитация может опережать свет – а это, как был уверен Эйнштейн, на самом деле это не так. {28}

Поэтому примерно в 1907 г. Эйнштейном завладела идея сформулировать новую теорию гравитации, которая была бы по крайней мере столь же точной, как ньютоновская, но не конфликтовала со специальной теорией относительности. Эта проблема оказалась не чета всем остальным. Гигантский интеллект Эйнштейна наконец-то столкнулся с подобающей ему проблемой. Его тетради того периода теснятся от наполовину сформулированных идей, промахов, когда маленькие ошибки приводили к долгим блужданиям по иллюзорным путям, и восклицаний, что ему удалось решить проблему, за которыми вскоре вновь обнаруживалась ошибка. Наконец, в 1915 г. Эйнштейн нашёл выход. Хотя Эйнштейн и получал помощь в критических ситуациях (особенно от математика Марселя Гроссмана), создание им общей теории относительностиознаменовало редкое героическое усилие одного ума, пытающегося постичь Вселенную. Результатом этих усилий явилась ярчайшая жемчужина доквантовой физики.

Путь Эйнштейна к созданию общей теории относительности начался с основного вопроса, который Ньютон скромно опустил два столетия ранее. Как гравитация действует через огромное пространство? За счёт чего страшно далёкое Солнце влияет на движение Земли? Солнце не прикасается к Земле, так как же оно воздействует на Землю? Короче говоря, как работает гравитация? Хотя Ньютон и открыл уравнение, которое с высокой точностью описывает силу гравитации, он вполне осознавал, что оставил без ответа этот важный вопрос. В своих «Началах» Ньютон честно написал: [18]18
  В классическом переводе «Начал» Ньютона на русский язык А. Н. Крыловым эта фраза отсутствует. Согласно переводу Крылова, Ньютон пишет о природе тяготения следующее (с. 661–662): «До сих пор я изъяснял небесные явления и приливы наших морей на основании силы тяготения, но я не указывал причины самого тяготения. ‹...› Причину же этих свойств силы тяготения я до сих пор не мог вывести из явлений, гипотез же я не измышляю. Всё же, что не выводится из явлений, должно называться гипотезою, гипотезам же метафизическим, физическим, механическим, скрытым свойствам, не место в экспериментальной философии». (Прим. ред.)


[Закрыть]
«Я оставляю эту проблему на рассмотрение читателя» {29} . Как видно, есть аналогия между этой проблемой и той, которую Фарадей и Максвелл решили в начале XIX в., используя представление о магнитном поле, посредством которого магнит воздействует на объекты, не прикасаясь к ним. На основании этого можно предложить аналогичный ответ: гравитация передаёт воздействие посредством другого поля – гравитационного поля. И, вообще говоря, это правильное предположение. Но проще сказать, чем создать теорию, которая не конфликтовала бы со специальной теорией относительности.

Да, гораздо проще. Эйнштейн отважно взялся за решение этой задачи, и с помощью поразительной схемы, разработанной им спустя десятия поисков во тьме, ниспроверг устоявшуюся ньютоновскую теорию гравитации. Равным образом поражает то, что история вернулась к своему началу, поскольку ключевой прорыв Эйнштейна был тесно связан с той самой проблемой, которую Ньютон поднял в примере с ведром: какова истинная природа ускоренного движения?

Эквивалентность гравитации и ускорения

В специальной теории относительности Эйнштейн рассматривал наблюдателей, двигающихся только с постоянной скоростью, – такие наблюдатели никак не ощущают своего движения, и поэтому с полным правом могут заявлять, что это они неподвижны, а двигается весь остальной мир. Щекотка, Царапка и Апу, едущие в поезде, не ощущают своего движения. С их точки зрения двигается Мартин и все, стоящие на платформе. Мартин тоже не чувствует движения. С его точки зрения двигается поезд с пассажирами. Ни одна из точек зрения не является более правильной, чем другая. Но с ускоренным движением всё по-другому, так как вы можетеощущать его. Вы чувствуете, как вас вдавливает в спинку кресла, когда автомобиль начинает ускоряться; вы чувствуете, как вас толкает вбок, когда поезд делает резкий поворот; вы чувствуете усиление давления со стороны пола, когда лифт поднимается с ускорением.

Тем не менее эти силы, которые вы всегда должны чувствовать, привлекли внимание Эйнштейна как самые обыкновенные. Когда вы приближаетесь к резкому повороту, ваше тело по привычке напрягается, поскольку предстоящий толчок в сторону неизбежен. И нет способа укрыться от такого воздействия. Единственный способ избежать такого толчка – это поменять свои планы и не поворачивать. Для Эйнштейна это прозвучало ударом колокола. Он подметил, что то же самое характеризует и силу гравитации. Если вы находитесь на планете Земля, то подвергаетесь силе земного гравитационного притяжения. Это неизбежно. Нет способа избежать её. В то время как от электромагнитных и ядерных сил вы можете каким-либо способом укрыться (экранироваться), нет способа защитить себя от гравитации. И в один из дней 1907 г. Эйнштейн осознал, что это не просто аналогия. В одной из тех вспышек прозрения, в стремлении к которым учёные проводят жизнь, Эйнштейн понял, что гравитация и ускоренное движение – две стороны одной медали.

Эйнштейн понял, что подобно тому как изменив свои планы, чтобы избежать ускорения, вы можете избежать вдавливания в автомобильное кресло или толчка в сторону при повороте, так можно избежать и обычных ощущений, связанный с гравитационным притяжением. Идея чудесно проста. Чтобы понять её, представим, что Барни [19]19
  Барни Гамбл – ещё один персонаж мультсериала про семейку Симпсонов. Проживает также в Спрингфилде. (Прим. перев.)


[Закрыть]
отчаянно пытается выиграть Кубок Спрингфилда – соревнование толстяков: кто сбросит за месяц больший вес? Но после двухнедельной «жидкой диеты» (на пиве «Дафф»), встав на весы в своей ванной комнате, Барни теряет всякую надежду. В приступе отчаяния он выбрасывается из окна ванной прямо с прилипшими к его ногам весами. И прежде чем угодить прямиком в бассейн соседа, Барни бросает взгляд на показание весов и что же он видит? Да, Эйнштейн первым осознал, и осознал полностью, что Барни видит, как стрелка весов встала на «ноль». Весы падают точно с той же скоростью, что и Барни, так что его ноги совсем не давят на них. В свободном падении Барни ощущает ту же невесомость, что и космонавты в открытом космосе.

Фактически, если мы вообразим, что Барни, выпрыгнув из окна, попадает в глубокую шахту, из которой откачан весь воздух, тогда на его пути вниз не только сопротивление воздуха будет устранено, но будут устранены и все обычные напряжения тела, возникающие из-за давления ступней на лодыжки, оттягивания руками плеч и т. д. – поскольку каждый атом его тела будет падать с совершенно одинаковой скоростью. {30} Закрыв глаза во время падения, Барни почувствует точно то же самое, что он почувствовал бы в открытом космосе. (Или, в случае, если вам больше нравятся примеры неодушевлённые: если в ту же шахту сбросить пару камней, связанных верёвкой, то верёвка останется ненатянутой, как в открытом космосе.) Таким образом, меняя своё состояние движения – полностью «отдаваясь гравитации», – Барни может имитировать отсутствие гравитации. (На самом деле так и тренируются астронавты в НАСА, привыкая к невесомости на модифицированном Боинге 707, прозванном ими Vomit Comet [20]20
  Vomit Comet – непереводимая игра слов. Vomit – рвота, comet – комета. (Прим. ред.)


[Закрыть]
, который периодически входит в состояние свободного падения.)

Аналогично, подходящим образом меняя движение, можно создавать силу, совершенно идентичную гравитации. Например, вообразим, что Барни попадает в космическую капсулу с космонавтами в состоянии невесомости, а от ног нашего бедолаги ещё не отлипли весы, так и показывающие «ноль». Если капсула включит двигатели и начнёт ускоряться, всё существенно изменится. Барни почувствует давление со стороны пола, такое же, как вы ощущаете в кабине ускоренно поднимающегося лифта. И поскольку ноги Барни теперь уже давят на весы, то их показания сдвинутся с «нуля». Если капитан запустит двигатель с подходящей мощностью, то показание весов Барни точно совпадёт с тем, что он видел, находясь в ванной комнате. За счёт подходящего ускорения Барни теперь ощущает силу, неотличимую от гравитации.

То же самое верно по отношению и к другим видам ускоренного движения. Например, если Барни присоединится к Гомеру, привязанному к внутренней стенки вращающегося в открытом космосе ведра, и встанет на внутреннюю стенку под прямым углом к Гомеру, то показания весов опять сдвинутся с «нуля», поскольку на весы будут давить ноги Барни. Можно подобрать такую скорость вращения ведра, что весы покажут тот же вес, что и в ванной комнате: ускорение вращающегося ведра может с успехом заменять гравитацию, не отличаясь от неё по своему действию.

Всё это привело Эйнштейна к заключению, что ощущаемая сила гравитации и сила, ощущаемая от ускорения, – это одна и та же сила. Они эквивалентны. Эйнштейна назвал это принципом эквивалентности.

Посмотрим, что это значит. Прямо сейчас вы чувствуете воздействие гравитации. Если вы стоите, то ваши ступни чувствуют, как пол поддерживает ваш вес. Если вы сидите, вы чувствуете поддержку где-то ещё. И, если только вы не читаете эти строки сидя в самолёте или в автомобиле, вы, вероятно, думаете, что вы неподвижны – что вы не ускоряетесь и даже вообще не двигаетесь. Но, согласно Эйнштейну, вы на самом деле ускоряетесь. Поскольку вы всё ещё сидите, то это звучит как-то глупо, но не забывайте задавать обычный вопрос: по отношению к чему вы ускоряетесь? Ускоряетесь с чьей точки зрения?

В специальной теории относительности абсолютное пространство-время давало критерий ускоренного движения, но эта теория не учитывала гравитацию. Теперь, с помощью принципа эквивалентности, Эйнштейн дал более общий взгляд на вещи, включающий воздействие гравитации. И это радикально изменило перспективу. Поскольку гравитация и ускорение эквивалентны, то если вы чувствуете воздействие гравитации, значит, вы ускоряетесь.Эйнштейн заключил, что только те наблюдатели, которые не чувствуют вообще никаких сил, включая и силу гравитации, могут с полным правом заявить, что они не ускоряются. Такие свободные от сил наблюдатели предоставляют истинную точку отсчёта для описания движения, и признание именно этого требует полного переворота в наших представлениях обо всех этих вещах. В примере с Барни, выпрыгивающим из окна в глубокую шахту, мы привычно считаем, что он начинает двигаться с ускорением по направлению к земной поверхности. Но Эйнштейн не согласится с таким утверждением. Согласно Эйнштейну, Барни неускоряется. Онне чувствует никакой силы. Онневесом. Онощущает себя словно парящим в глубокой тьме открытого космического пространства. Именно он служит системой отсчёта, по отношению к которой следует рассматривать движение. А с точки зрения Барни это вы в действительностиускоряетесь, когда спокойно сидите и читаете у себя дома. С точки зрения Барни, пролетающего в свободном падении мимо вашего окна (а его точка зрения, согласно Эйнштейну, служит истинным критерием движения), вы, Земля и всё прочее, что вы считаете неподвижным, – всё это ускоренно движется вверх. Эйнштейн скажет, что это голова Ньютона сама налетела на яблоко, а не яблоко упало на его неподвижную голову.

Несомненно, это радикально иной способ думать о движении. Но он привязан к признанию того простого факта, что вы чувствуете гравитацию, только когда сопротивляетесь ей. Наоборот, когда вы полностью сдаётесь гравитации, вы не чувствуете её. Если во время вашего падения на вас больше ничто не действует (например, сопротивление воздуха), то вы ощущаете себя так, как ощущали бы себя, если бы свободно парили в открытом космосе, а уж о свободно парящем человеке никак не скажешь, что он ускоряется.

Таким образом, только свободно парящие наблюдатели, независимо от того, находятся ли они в открытом космосе или на пути столкновения с Землёй, могут с полным правом заявить, что не испытывают никакого ускорения. Если мимо вас проплывает такой наблюдатель и между вами имеется относительное ускорение, то, согласно Эйнштейну, это выускоряетесь.

Заметим, что, фактически, ни Щекотка, ни Царапка, ни Апу, ни даже Мартин – никто из них не может с полным правом заявить, что он был неподвижен во время дуэли, поскольку каждый из них чувствовал земное притяжение. Это никак не сказывается на наших предыдущих рассуждениях, поскольку ранее мы рассматривали только горизонтальное движение, не затрагиваемое вертикально направленной силой гравитации, ощущаемой всеми участниками дуэли. Но принципиально важно то, что связь, установленная Эйнштейном между гравитацией и ускорением, означает, что с полным правом можно считать неподвижными только тех наблюдателей, которые не чувствуют вообще никакойсилы.

Установив связь между ускорением и гравитацией, Эйнштейн оказался готов принять вызов Ньютона и начать искать объяснение тому, как работает гравитация.


    Ваша оценка произведения:

Популярные книги за неделю