355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Брайан Грин » Ткань космоса. Пространство, время и текстура реальности » Текст книги (страница 16)
Ткань космоса. Пространство, время и текстура реальности
  • Текст добавлен: 19 сентября 2016, 13:25

Текст книги "Ткань космоса. Пространство, время и текстура реальности"


Автор книги: Брайан Грин


Жанр:

   

Физика


сообщить о нарушении

Текущая страница: 16 (всего у книги 52 страниц)

Теннисные мячи и разбивающиеся яйца

Наблюдение за теннисным мячом, проносящимся между Венерой и Юпитером – в том или другом направлении, – не является особенно интересным. Но поскольку вывод, к которому мы пришли, широко применим, отправимся теперь в более интересное место: на вашу кухню. Положите яйцо на кухонный стол, подтолкните его к краю и позвольте ему упасть на пол и разбиться. Несомненно, в этой последовательности событий имеется много разных движений. Яйцо падает. Скорлупа трескается. Желток разливается. Половицы вибрируют. Формируются вихри в окружающем воздухе. Трение вызывает нагревание, влияющее на атомы и молекулы яйца, пола и воздуха, заставляя их дрожать немного быстрее. И точно так же, как законы физики показывают нам, что мы можем отправить теннисный мяч очерчивать его собственный путь точно в обратном направлении, те же самые законы показывают, что мы можем заставить каждый кусочек яичной скорлупы, каждую каплю желтка, каждую половицу и каждый пузырёк воздуха точно проделать его движение в обратном направлении. «Всё», что нам необходимо сделать, это поменять направление скорости всех и каждой из составляющих процесса разбивания яйца на обратное. Более точно, рассуждения, использованные в примере с теннисным мячом, означают, что если гипотетически мы были бы в состоянии одновременно поменять на обратную скорость каждогоатома и молекулы, вовлечённых прямо или косвенно в процесс разбивания яйца, вседвижения в процессе разбивания яйца будут происходить в обратном направлении.

Опять-таки, точно как с теннисным мячом, если мы сумеем обратить все эти скорости, то, что мы увидим, будет похоже на плёнку, прокручиваемую в обратном направлении. Но, в отличие от теннисного мяча, обращение движения разбивающегося яйца будет чрезвычайно впечатляющим. Волна колеблющихся молекул воздуха и мельчайшие сотрясения пола соберутся в месте падения яйца со всех частей кухни, заставив переместиться кусочки скорлупы и капли желтка к месту удара. Каждый ингредиент будет двигаться в точности с той же скоростью, которую он имел в исходном процессе разбивания яйца, но каждый будет теперь двигаться в противоположном направлении. Капли желтка будут лететь назад и собираться в шарик, как и зазубренные края осколков скорлупы будут точно встраиваться друг в друга для соединения в гладкий яйцевидный контейнер. Колебания пола и воздуха будут точно состыкованы с движениями бесчисленных соединяющихся капель желтка и кусочков скорлупы, чтобы дать заново сформированное яйцо, которое одним толчком подпрыгнет с пола в виде одного целого, взлетит на кухонный стол, мягко приземлится на его край с достаточным вращательным движением, чтобы откатиться на несколько дюймов и элегантно вернуться к начальному состоянию покоя. Это всё будет происходить, если мы решим задачу тотального и точного обращения скоростей всего, что было задействовано в процессе. {68}

Так что, является ли событие простым, вроде полёта теннисного мяча по дуге, или чем-то более сложным, вроде разбивания яйца, законы физики показывают – то, что происходит в одном временно́м направлении, может, по крайней мере в принципе, происходить также и в обратном.

Принцип и практика

Истории о теннисном мяче и яйце не просто иллюстрируют симметрию по отношению к обращению времени в законах природы. Они также наводят на мысль, почему в реальном мире многие вещи происходят одним способом, но никогда не происходят в обратном направлении. Нетрудно было заставить теннисный мяч повторить свой путь назад. Мы просто схватили его и направили с той же самой скоростью, но в обратном направлении. Вот и всё. Но заставить все хаотические остатки яйца воспроизвести их пути назад будет куда сложнее. Мы должны схватить каждый кусочек разбитого яйца и одновременно направить его с той же скоростью, но в противоположном направлении. Ясно, что это находится за пределами того, что мы (или вся королевская конница и вся королевская рать) реально можем сделать.

Нашли ли мы ответ, который искали? Связана ли причина того, почему яйца разбиваются, но не собираются обратно, хотя оба действия допускаются законами физики, с тем, что осуществимо, а что не осуществимо на практике? Не состоит ли ответ на вопрос просто в том, что яйцо легко разбить – катнуть его по столу, – но чрезвычайно трудно заставить его собраться обратно?

Но если бы это был ответ, поверьте мне, я не стал бы делать из этого большой проблемы. Противопоставление простоты и сложности является существенной частью ответа, но вся история намного более тонка и удивительна. В своё время мы вернёмся к ней, но сначала необходимо придать всему обсуждению в этой главе бо́льшую строгость. Это приводит нас к концепции энтропии.

Энтропия

На могильном камне Центрального кладбища в Вене, рядом с могилами Бетховена, Брамса, Шуберта и Штрауса, выгравировано простое уравнение S= klog Wкоторое выражает математическую формулировку важного понятия, известного как энтропия. На могильном камне начертано имя Людвига Больцмана, одного из наиболее проницательных физиков, работавших на рубеже XIX и XX столетий. В 1906 г., с подорванным здоровьем и страдая от депрессии, Больцман совершил самоубийство, находясь на отдыхе со своей женой и дочерью в Италии. По иронии судьбы, всего несколькими месяцами позже эксперименты, начатые для подтверждения идей Больцмана, пылко отстаивая которые, он растратил свою жизнь, оказались успешными.

Понятие энтропии впервые было введено во время промышленной революции учёными, исследовавшими работу печей и паровых двигателей. Эти исследования послужили началом новой науки – термодинамики. После многих лет исследований основополагающие идеи термодинамики были предельно уточнены, получив окончательную формулировку в подходе Больцмана. Его интерпретация энтропии, лаконично выраженная в уравнении на его надгробии, использует статистический подход для установления связи между огромным числом отдельных компонентов, составляющих физическую систему, и общими свойствами, которые имеет эта система. {69}

Чтобы почувствовать эти идеи, представим себе непереплетённое издание романа «Война и мир», на отдельных 693 листах. Подбросим их высоко в воздух, а затем соберём аккуратно в стопку. {70} Когда вы проверите собранную пачку, то с огромной вероятностью обнаружите, что страницы расположены не по порядку. Причина очевидна. Имеется множество вариантов, в которых порядок страниц будет перепутан, но существует лишь один вариант, при котором порядок правильный. Конечно, по порядку – это значит, что страницы должны быть расположены в точности 1, 2; 3, 4; 5, 6 и т. д., вплоть до 1385, 1386. Любое другое расположение будет не по порядку. Простое, но существенное наблюдение заключается в том, что чем большим числом равноправных способов что-то может произойти, тем более вероятно, что оно произойдёт. А если нечто может произойти огромнымчислом способов, вроде как для страниц приземлиться в неправильном порядке, то в огромнойстепени более вероятно, что именно так и произойдёт. Интуитивно мы все это знаем. Если вы покупаете один лотерейный билет, есть только один способ выиграть. Если вы купите миллион билетов, каждый со своим номером, то будет миллион способов выиграть, так что ваши шансы разбогатеть будут в миллион раз выше.

Энтропия – это понятие, которое придаёт точность этой идее путём подсчёта количества способов, согласующихся с законами физики, которыми может быть реализована данная физическая ситуация. Высокая энтропия означает, что имеется много способов; низкая энтропия означает, что имеется мало способов.Если страницы книги расположены в правильном числовом порядке – это низкоэнтропийная конфигурация, поскольку имеется одно и только одно расположение, удовлетворяющее этому критерию. Если страницы находятся не в правильном порядке – это высокоэнтропийная ситуация, поскольку небольшой расчёт показывает, что имеется

1245521984537783433660029353704988291633611012463890451368876912646868955918529845043773940692947439507941893387518765276567140592866271513670747391295713823538000161081264653018234205620571473206172029382902912502131702278211913473582655881541071360143119322157534159733855428467298691398151599251190858672609934810561430341343830563771367151105704786941333912934192440961051428879847790853609508954014012593285063290603410951314946638983905267676104278041667301549455228188610250246338662603601508886647010142970854584815141598392546876231295293347829518681237077459652243214888735167928448340300078717063668462384353624245167362286109198539391815030760468904664912978940625033265186858373227136370247390401891094064988139838026545111487686489581649140342644411087191184416428090275713773809067258708430215795015899162320458130129508343865379081918237777385214375363122531641598589268105976528144801387748697026525462643937189392730592179674716916697815519856976926924946738364227822733457767180733162404336369527711836741042844934722347792234027225630721193853912472880929072034271692377936207650190457109788774453544358680331916095924987744319498699770033324946307324375535322906744817657953956218403295168144271042227608124289048716428664872403070364864934832509996672897344642531034930062662201460431205110109328239624925119689782833061921508282708143936599873268490479941668396577478902124562796195600187060805768778947870098610692265944872693410000872699876339900302559168582063973485103562967646116002251592001137227412733180748295472481928076532664070230832754286312646671501355905966429773337131834654748547607012423301287213532123732873272187482526403991104970017214756470049929226458643522650111999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999

– приблизительно 10 1878– различных неупорядоченных расстановок страниц. {71} Если вы подбросили страницы в воздух, а затем собрали их в аккуратную стопку, практически всегда они будут сложены беспорядочно, поскольку такие конфигурации имеют более высокую энтропию – имеется намного больше способов получить неупорядоченный результат, чем исключительное расположение, в котором страницы находятся в правильном числовом порядке.

В принципе, мы могли бы воспользоваться законами классической физики, чтобы точно определить, где приземлится каждая страница после того, как целая пачка была подброшена в воздух. Тогда, снова в принципе, мы могли бы точно предсказать итоговое расположение страниц {72} и поэтому (в отличие от квантовой механики, которую мы игнорируем до следующей главы) могло бы показаться, что нет необходимости полагаться на вероятностные понятия, вроде того, какой результат является более или менее вероятным по сравнению с другими. Но статистические понятия являются как мощными, так и полезными. Если бы «Война и мир»была памфлетом из пары страниц, мы могли бы успешно завершить необходимые вычисления, но это будет невозможно сделать для настоящей книги «Война и мир». {73} Отслеживание точного движения 693 гибких листов бумаги, когда они подхватываются воздушными потоками, соприкасаются, скользят и толкают друг друга, будет монументальной задачей, далеко лежащей за пределами возможностей даже самых мощных суперкомпьютеров.

Более того – и это существенно – точный ответ не так уж важен. Когда вы исследуете окончательную стопку страниц, вы гораздо меньше интересуетесь подробностями, какая страница где оказалась, чем главным вопросом, расположились ли страницы в правильном порядке. Если расположились – прекрасно. Вы сможете, как обычно, сесть и продолжить чтение про Анну Павловну и Николая Ильича Ростовых. Но если вы обнаружили, что страницы в неправильном порядке, точные детали расположения страниц, вероятно, будут заботить вас меньше всего. Если вам попалось одно неупорядоченное расположение страниц, вы в значительной степени имеете представление обо всех. За исключением случаев, когда по некоторым странным причинам вы погрязли в мелочах, выясняя, каким страницам пришлось появиться в стопке здесь или там, вы едва ли заметите, что кто-то внёс ещё дополнительную путаницу в то неправильное расположение страниц, которое вы имели в начале. Начальная стопка будет выглядеть неупорядоченной, и ещё раз перемешанная стопка тоже будет выглядеть неупорядоченной. Так что обсуждение на статистическом уровне не только значительно легче провести, но и ответ, который оно даёт, – упорядоченное против неупорядоченного, – более важен по сути, более важен по отношению к тому, на что мы обычно обращаем внимание.

Такая разновидность укрупнённого мышления является центральной для статистических оснований энтропийных рассуждений. Точно так же, как любой лотерейный билет имеет те же шансы на выигрыш, что и любой другой, после многих подбрасываний страниц книги любое частное расположение страниц столь же вероятно, что и любое другое. Что делает статистические рассуждения уместными, так это то, что имеется два представляющих интерес классаконфигураций страниц: упорядоченные и неупорядоченные. Первый класс имеет одно представление (правильное расположение страниц 1, 2; 3, 4 и т. д.), тогда как второй класс имеет гигантское число представлений (любое другое возможное расположение страниц). Эти два класса составляют разумный набор для использования, поскольку, как сказано выше, они дают адекватную макроскопическую оценку, которую можно сделать, рассматривая любое данное расположение страниц.

Вы можете предложить сделать более тонкое разграничение между этими двумя классами, рассматривая расположения с несколькими выпадающими из правильного порядка страницами, с неупорядоченными страницами только из первой главы и т. д. Фактически, иногда может оказаться полезным рассмотрение таких промежуточных классов. Однако число возможных расположений страниц в каждом из этих новых подклассов всё ещё крайне мало по сравнению с числом расположений во всём неупорядоченном классе. Например, полное число неупорядоченных расположений, включающих только страницы из первой части романа «Война и мир», составляет 10 –178от одного процента от полного числа неупорядоченных расположений, включающих все страницы. Так, хотя при начальном подбрасывании непереплетённой книги итоговое расположение страниц будет, вероятнее всего, частью одного из промежуточных, не полностью разупорядоченных классов, но если вы повторите процедуру подбрасывания много раз, почти наверняка порядок страниц в конечном счёте не будет демонстрировать каких-либо очевидных закономерностей. Порядок страниц эволюционирует в направлении к полностью неупорядоченному классу, поскольку имеется очень много расположений страниц, которые удовлетворяют данному требованию.

Пример с романом «Война и мир»выявляет две существенные особенности энтропии. Первая особенность: энтропия есть мера количества беспорядка в физической системе. Высокая энтропия означает, что имеется много перестановок составляющих частей системы, которые пройдут незамеченными. С другой стороны, это означает, что система сильно неупорядочена (когда страницы романа все перемешаны, любое дальнейшее их перепутывание будет едва ли заметно, поскольку просто оставляет страницы в перемешанном состоянии). Низкая энтропия означает, что очень немного перестановок пройдут незамеченными. С другой стороны, это означает, что система высокоупорядочена (когда страницы романа находятся в правильном порядке, вы легко обнаружите любую перестановку). Вторая особенность состоит в том, что в физических системах с большим числом составных частей (например, в книгах со многими страницами, подбрасываемых в воздух) имеется естественная эволюция по направлению к большему беспорядку, поскольку беспорядок может возникнуть гораздо большим числом способов, чем порядок. На языке энтропии это утверждение означает, что физические системы имеют тенденцию развиваться по направлению к состояниям с более высокой энтропией.

Конечно, делая понятие энтропии точным и универсальным, физическое определение энтропии не имеет дела с подсчётом числа перестановок страниц той или иной книги, которые оставляют её упорядоченной или неупорядоченной. Вместо этого подсчитывается число перестановок фундаментальных составляющих – атомов, субатомных частиц и т. д., – которое оставляет макроскопические, крупномасштабные свойства данной физической системы неизменными. Как и в примере с романом «Война и мир», низкая энтропия означает, что только незначительное число перестановок останутся незамеченными, так что система высокоупорядочена, тогда как высокая энтропия означает, что много перестановок не будут замечены, что означает, что система сильно неупорядочена. [37]37
  Энтропия – это ещё один пример, в котором терминология усложняет идеи. Не расстраивайтесь, если вам опять пришлось напомнить себе, что низкаяэнтропия означает высокийпорядок, а высокаяэнтропия означает низкийпорядок (эквивалентный высокому беспорядоку). Мне часто приходилось так делать.


[Закрыть]

В качестве физического примера, причём такого, который можно легко проверить, подумаем об упомянутой ранее бутылке колы. Когда углекислый газ, изначально находящийся в бутылке, в конечном счёте распространяется по комнате, имеется множествоперестановок отдельных молекул этого газа, которые не будут иметь заметного эффекта. Например, если вы машете руками, молекулы углекислого газа будут двигаться туда-сюда, быстро изменяя положения и скорости. Но в целом не будет никакого качественного влияния на их расположение. Молекулы были распределены однородно до того, как вы взмахнули руками, и они останутся однородно распределёнными после того, как вы это сделали. Конфигурация однородно распределённого газа нечувствительна к огромному числу перестановок молекулярных составляющих, поэтому газ находится в состоянии с высокой энтропией. Напротив, если газ распределён в меньшем пространстве, как это было в бутылке, или удерживается заслонкой в углу комнаты, он будет иметь существенно более низкую энтропию. Причина проста. Точно так же, как более тонкая книга имеет меньше способов перестановки страниц, меньшее пространство обеспечивает меньше мест, где молекулы могут размещаться, и, следовательно, допускает меньше перестановок молекул.

Но когда вы откручиваете крышку бутылки или удаляете заслонку, вы открываете целую новую Вселенную для молекул газа, и через столкновения и соударения они быстро рассеиваются, чтобы эту Вселенную «исследовать». Почему? По тем же самым статистическим причинам, как и в случае страниц романа «Война и мир». Нет сомнений, что некоторые из соударений будут толкать молекулы в сторону исходного плотного облака газа. Но, поскольку объём комнаты превышает объём исходного облака газа, имеется гораздобольше перестановок, доступных молекулам, когда они уходят из облака, чем для случая, когда они остаются в облаке. Тогда в среднем молекулы газа будут разбегаться из исходного облака и постепенно достигнут состояния однородного распределения по комнате. Так что относительно низкоэнтропийная исходная конфигурация, в которой весь газ собран в малой области, естественным образом эволюционирует в направлении относительно высокоэнтропийной конфигурации, в которой газ однородно распределён в большем пространстве. И однажды достигнув такой однородности, газ будет иметь тенденцию поддерживать это состояние высокой энтропии: столкновения и соударения всё ещё заставляют молекулы двигаться туда-сюда, вызывая замену одной перестановки на другую, но сильно превалируют такие перестановки, которые не влияют на макроскопические свойства газа. Вот что означает иметь высокую энтропию. {74}

В принципе, как и со страницами романа «Война и мир», мы можем использовать законы классической физики, чтобы точно определить, где в данный момент времени будет находиться каждая молекула углекислого газа. Но вследствие огромного числа молекул CO 2– около 10 24в бутылке колы – в действительности провести такие вычисления практически невозможно. И даже если каким-то образом мы были бы в состоянии сделать это, обладание списком из миллионов миллиардов миллиардов положений и скоростей частиц мало дало бы для понимания того, как распределены молекулы. Концентрация внимания на крупномасштабных статистических свойствах – рассеялся газ или сжался, т. е. имеет ли он высокую или низкую энтропию – намного более информативна.

Энтропия, второй закон и стрела времени

Тенденция физической системы эволюционировать в направлении состояния с более высокой энтропией известна как второй закон термодинамики. (Первый закон – это привычный закон сохранения энергии.) Как отмечалось выше, основанием для закона является простое статистическое рассуждение: для системы имеется больше способов иметь более высокую энтропию, и «больше способов» означает, что более вероятным является то, что система будет эволюционировать в одну из этих высокоэнтропийных конфигураций. Хотя отметим, что это не есть закон в обычном смысле, поскольку что-то может перейти из состояния с высокой энтропией в состояние с низкой. Однако такие случаи маловероятны и встречаются редко. Когда вы подбрасываете в воздух перепутанную пачку страниц, а затем собираете её в аккуратную стопку, можетпроизойти возврат к правильному числовому порядку. Вы не захотите заключить пари на большую сумму, что это произойдёт, но это возможно. Также возможно, что столкновения и соударения приведут к тому, что весь рассеянный углекислый газ будет двигаться согласованно и втянется назад в вашу открытую бутылку колы. Не надо, затаив дыхание, ожидать такого исхода, но такое можетпроизойти. {75}

Большое число страниц романа «Война и мир» и большое число молекул газа в комнате являются тем, что делает разницу энтропий между неупорядоченными и упорядоченными расположениями настолько огромной, что приводит к чрезвычайно малой вероятности низкоэнтропийных исходов того или иного процесса. Если вы неоднократно подбрасываете в воздух только два двусторонних листа, вы обнаружите, что они опустятся в правильном порядке примерно в 12,5% случаев. С тремя листами эта величина упадёт примерно до 2%, с четырьмя листами – примерно до 0,3%, с пятью листами – примерно до 0,03%, с шестью листами – примерно до 0,002%, с десятью листами – до 0,000000027%. С 693 листами процент подбрасываний, которые будут приводить к правильному порядку, настолько мал (он содержит так много нулей после запятой), что издатель убедил меня не использовать полстраницы, чтобы записать его явно. Аналогично, если вы запустили две молекулы газа бок о бок в пустую бутылку из-под колы, вы обнаружите, что при комнатной температуре хаотическое движение молекул будет сводить их вместе обратно (на расстоянии миллиметра друг от друга) в среднем примерно каждые несколько секунд. Для группы из трёх молекул вы будете ждать день, для четырёх молекул вы будете ждать год, а для исходного плотного сгустка из миллиона миллиардов миллиардов молекул потребуется время, намного превышающее текущий возраст Вселенной, чтобы их хаотическое движение свело их вместе назад в маленький упорядоченный сгусток. С большей уверенностью, чем в неизбежности смерти и налогов, мы можем считать, что системы с большим числом составляющих эволюционируют к беспорядку.

Хотя это может быть не сразу очевидно, но мы подошли к интригующему моменту. Второй закон термодинамики, кажется, дал нам стрелу времени, которая появляется, когда физические системы имеют большое число составляющих. Если вы посмотрите плёнку о двух молекулах углекислого газа, которые разместились в малом объёме (с подсветкой траекторий, показывающей движения каждой из них), вам будет трудно сказать, прокручивалась ли плёнка в прямом или в обратном направлении. Две молекулы будут летать там и сям, временами собираясь вместе, временами удаляясь, но они не будут представлять макроскопическое поведение, различающее одно направление во времени от обратного. Однако если вы увидите плёнку, на которой 10 24молекул углекислого газа собрались вместе в малом объёме (скажем, в виде маленького плотного облака молекул), вы легко определите, прокручивалась ли плёнка в прямом или обратном направлении. Наиболее вероятно, что прямое направление времени – это когда молекулы газа становятся более и более однородно распределёнными, достигая всё большей и большей энтропии. Если вместо этого плёнка показывает однородный рассеянный газ молекул, который стягивается вместе в тесную группу, вы немедленно поймёте, что смотрите плёнку в обратном направлении.

По существу, те же рассуждения годятся для всех явлений, с которыми мы сталкиваемся в повседневной жизни – для явлений, которые имеют большое число составляющих, стрела времени указывает в направлении роста энтропии. Если вы смотрите фильм о стакане воды со льдом на столе, вы можете определить, какое направление является прямым во времени, отметив, что лёд тает, – молекулы H 2O льда распределяются по всему стакану, следовательно, достигают более высокой энтропии. Если вы смотрите фильм о разбивающемся яйце, вы можете определить, какое направление является прямым во времени, проверив, что составляющие яйца становятся всё более и более разупорядоченными, – что яйцо скорее разбивается, чем собирается обратно, следовательно, также стремясь к более высокой энтропии.

Как вы видите, понятие энтропии даёт точную версию заключения «простота против сложности», которую мы нашли раньше. Страницам романа «Война и мир»легко нарушить правильный порядок, так как имеется очень многонеупорядоченных расположений. Для страниц трудно попасть в совершенный порядок, поскольку сотни страниц должны будут двигаться очень специальным способом, чтобы упасть в уникальной последовательности, которую задумывал Л. Н. Толстой. Яйцу легко разбиться, так как существует много способов разбиться. Яйцу трудно собраться воедино, поскольку огромное число разбрызганных составляющих должны будут двигаться в совершенной координации, чтобы воспроизвести уникальный результат в виде неповреждённого яйца, покоящегося на столе. Для тел с большим числом составляющих легко переходить от низкой энтропии к высокой – от порядка к беспорядку, – что всегда и происходит. Двигаться от высокой энтропии к низкой – от беспорядка к порядку – труднее, поэтому такое происходит в лучшем случае редко.

Отметим также, что энтропийная стрела не является совершенно жёсткой; не утверждается, что это определение направления времени надёжно на все 100%. Напротив, этот подход имеет достаточно гибкости, чтобы позволить тем или иным процессам иногда идти в обратном направлении. Поскольку второй закон декларирует, что рост энтропии является только статистически вероятным, но не непременным свойством природы, он допускает с малой вероятностью, что страницы могут выпасть в правильном числовом порядке, что молекулы газа могут влезть обратно в бутылку, а яйца могут восстанавливаться. Используя математику энтропии, второй закон в точности выражает, насколько статистически невероятны такие события (вспомните гигантское число в предыдущем разделе, показывающее, насколько более вероятно, что страницы романа «Война и мир»лягут в беспорядке), но он признаёт, что они могут происходить.

Это выглядит довольно убедительно. Статистические и вероятностные аргументы дают нам второй закон термодинамики. В свою очередь, второй закон обеспечивает нас интуитивным различием между тем, что мы называем прошлым, и тем, что мы называем будущим. Он даёт нам практическое объяснение, почему явления повседневной жизни, которые обычно состоят из огромного числа составляющих, начинаются так, а заканчиваются эдак, в то время как мы никогда не видим их начинающимися эдак, а заканчивающимися так. Но по прошествии многих лет – и благодаря огромному вкладу таких физиков, как лорд Кельвин, Джозеф Лошмидт, Анри Пуанкаре, С. X. Бербери, Эрнст Цермело и Вильярд Гиббс, – Людвиг Больцман пришёл к пониманию, что история стрелы времени ещё более удивительна. Больцман понял, что, хотя энтропия и проясняет важные аспекты головоломки, она неотвечает на вопрос, почему прошлое и будущее кажутся столь различными. Вместо этого энтропия переопределяет сам вопрос столь существенным способом, что это ведёт к неожиданным заключениям.


    Ваша оценка произведения:

Популярные книги за неделю