355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Брайан Грин » Ткань космоса. Пространство, время и текстура реальности » Текст книги (страница 40)
Ткань космоса. Пространство, время и текстура реальности
  • Текст добавлен: 19 сентября 2016, 13:25

Текст книги "Ткань космоса. Пространство, время и текстура реальности"


Автор книги: Брайан Грин


Жанр:

   

Физика


сообщить о нарушении

Текущая страница: 40 (всего у книги 52 страниц)

Браны

В предыдущей главе у вас мог возникнуть естественный вопрос: почему именно струны? Что такого особенного в одномерных структурах? Мы установили, что для примирения квантовой механики с общей теорией относительности решающим является тот факт, что струны – не точки, что они имеют ненулевой размер. Но этому требованию можно удовлетворить с помощью двумерных объектов, таких как миниатюрные диски или мембраны, или с помощью трёхмерных образований, подобных мячам или комкам глины. На эту роль сгодятся объекты и более высокой размерности, поскольку теория изобилует пространственными измерениями. Почему такие объекты не играют никакой роли в наших фундаментальных теориях?

В конце 1980-х – начале 1990-х гг. казалось, что у теоретиков есть убедительный ответ. Они говорили, что уже предпринималисьпопытки сформулировать фундаментальную теорию на основе каплеподобных объектов; среди прочих это пытались сделать такие выдающие физики XX в., как Вернер Гейзенберг и Поль Дирак. Но их работа, как и последующие исследования, показала, что на базе каплеподобных объектов чрезвычайно трудно разработать теорию, которая удовлетворяла бы самым основным физическим требованиям – например, гарантировала бы, чтобы все квантово-механические вероятности лежали в диапазоне от 0 до 1 (отрицательные вероятности или вероятности, превышающие 1, не имеют никакого смысла), и не допускала бы передачу информации со скоростью, превышающей скорость света. Полвека исследований, начатых в 1920-х гг., показали, что этим условиям можно удовлетворить в рамках представлений о точечных частицах (пока игнорируется гравитация). А в 1980-х гг., после более чем десятилетия исследований Шварца, Шерка, Грина и других теоретиков, к удивлению большинства физиков было установлено, что этим же условиям можно удовлетворить, взяв в качестве элементарных составляющих одномерные объекты – струны (и обязательно включивгравитацию). Но казалось невозможным использовать в качестве элементарных составляющих объекты с двумя или более пространственными измерениями. Коротко говоря, дело в том, что число симметрий, допускаемых уравнениями, невероятно возрастает для одномерных объектов (струн), а затем резко падает с увеличением количества измерений. Обсуждаемые симметрии носят более абстрактный характер, чем те, что обсуждались в главе 8 (они имеют отношение к тому, как меняются уравнения, когда при изучении движения струны или объекта более высокой размерности мы увеличиваем или уменьшаем его размер, тем самым неожиданно и произвольно меняя степень разрешения наших наблюдений). Эти преобразования критически важны для формулировки физически осмысленной системы уравнений, и казалось, что требуемое изобилие терялось при переходе к двумерным объектам и объектам более высокой размерности. {172}

Большинство теоретиков, работающих в области теории струн, пережили ещё один шок, когда работа Виттена и лавина последовавших за ней результатов {173} привели к осознанию того, что теория струн и границы M-теории, в которые она вписалась, действительносодержит некоторые объекты помимо струн. Анализ показал, что имеются двумерные объекты, естественным образом названные мембранами(отсюда и ещё одно возможное толкование буквы «M» в названии M-теории) или, ради систематизации, 2-бранами. Допустимы и трёхмерные объекты, названные, соответственно, 3-бранами. Анализ также показал, что существуют и объекты с pпространственными измерениями (хотя их и трудно себе представить), где pможет быть любым целым числом, меньшим 10, – они, соответственно, получили название p-бран. Таким образом, струны являются лишь одним из возможных элементарных объектов теории струн, но не единственнымобъектом.

Прочие объекты ранее ускользали от теоретических исследований во многом по той же причине, что и десятое измерение: приближённые уравнения теории струн слишком грубы, чтобы ухватить их. Теоретический анализ показал, что p-браны должны быть существенно тяжелее струн. А чем массивнее объект, тем больше требуется энергии, чтобы его создать. При крайне высоких энергиях, характерных для p-бран, приближённые уравнения становятся столь неточными, что не могут обнаружить браны, которые остаются в тени, – вот почему браны не удавалось заметить целыми десятилетиями. Но благодаря различным переформулировкам и новым подходам, предоставленным объединяющей концепцией M-теории, исследователи смогли обойти некоторые из технических препятствий и теперь, чисто математическим путём, открыли всё богатство объектов с более высокой размерностью. {174}

Открытие других объектов в теории струн умаляет или принижает более раннюю работу не в большей степени, чем открытие десятого пространственного измерения. Исследование показывает, что если браны высокой размерности существенно тяжелее струн – как неявно предполагалось в более ранних работах, – то они оказывают минимальное влияние на широкий круг теоретических расчётов. Но подобно тому как десятое измерение не обязательно должно быть гораздо меньше остальных, так и браны высокой размерности не обязательно должны быть значительно тяжелее струн. Существуют разнообразные условия, пока гипотетические, при которых масса браны высокой размерности может оказаться сравнимой с массой самых лёгких колебательных мод струны, и тогда брана действительнозначительно влияет на получаемую физику. Например, в нашей работе в соавторстве с Эндрю Строминджером и Дэвидом Моррисоном показано, что брана может обёртываться вокруг сферического куска многообразия Калаби–Яу подобно вакуумной упаковке вокруг грейпфрута; если эта часть пространства сожмётся, то сожмётся и брана, что приведёт к уменьшению её массы. Мы смогли показать, что это уменьшение массы позволит этой части многообразия полностью сжаться и разорваться (само пространство может разорваться), однако обёрнутая вокруг этой области пространства брана будет гарантировать, что не произойдёт никаких катастрофических физических последствий. Я детально обсуждал этот вопрос в «Элегантной Вселенной», и мы вернёмся к нему в главе 15 при обсуждении путешествия во времени, так что сейчас мы не будем больше останавливаться на этом. Но этот пример ясно показывает, как браны высокой размерности могут существенно влиять на физику теории струн.

Есть, однако, и другой способ, каким браны влияют на представление о Вселенной в соответствии с теорией струн / M-теорией. Само космическое пространство – всё пространство-время, которое мы знаем, – может быть не чем иным, как грандиозной браной. Наш мир может быть миром на бране.

Миры на бранах

Проверка теории струн – очень непростое дело, поскольку струны ничтожно малы. Но вспомним, как физика определяет размер струн. Частица – переносчик гравитации (гравитон) отвечает моде колебания струны из числа мод с наинизшей энергией, а сила переносимого ею гравитационного взаимодействия пропорциональна длине струны. Поскольку гравитационное взаимодействие очень слабо, то и струна должна быть чрезвычайно короткой; расчёты показывают, что длина струны должна быть не более сотни планковских длин или около того, чтобы колебательная мода струны-гравитона обеспечивала наблюдаемую величину гравитационной силы.

Из этого разъяснения видно, что высокоэнергетические струны не обязательно должны быть чрезвычайно малыми, поскольку они не имеют прямой связи с гравитоном (гравитон является низкоэнергетическойколебательной модой с нулевой массой). В действительности, по мере увеличения энергии струны она поначалу колеблется всё интенсивнее, но при переходе через определённый энергетический порог дальнейшее повышение энергии приводит к другому эффекту: длина струны начинает неограниченно расти. При закачивании в струну достаточного количества энергии она может вырасти до макроскопических размеров. Современные технологии не позволяют вкачать в струну столь много энергии, но вполне возможно, что такие струны рождались в сверхгорячей гиперэнергетической Вселенной сразу после Большого взрыва. Если некоторые из этих струн дожили до сегодняшнего дня, то они вполне могли бы сейчас простираться где-то в небесах. Хотя это и смелое предположение, но возможно даже, что такие длинные струны могли бы оставить крохотные, но обнаружимые следы в тех данных, которые мы получаем из космоса, так что не исключена возможность, что теория струн будет когда-нибудь подтверждена с помощью астрономических наблюдений.

Браны большой размерности, p-браны, тоже не обязательно должны быть ничтожно малыми, а поскольку у них больше измерений, чем у струны, то открывается принципиально новая возможность. Когда мы представляем длинную – возможно, бесконечно длинную – струну, мы воображаем длинный одномерный объект, существующий в трёхмерном пространстве нашей повседневной жизни. Линия электропередачи, простирающаяся настолько, насколько может увидеть глаз, – адекватный образ. Аналогично, если мы воображаем большую – возможно, бесконечно протяжённую в обоих направлениях – 2-брану, мы воображаем двумерную поверхность, существующую в трёхмерном пространстве, хорошо известном нам по повседневному опыту. Я не знаю реалистической аналогии, но сверхъестественно огромный экран летнего кинотеатра – чрезвычайно тонкий, но широкий и высокий, насколько видит глаз, – даёт достаточно хороший визуальный образ. Но когда дело доходит до 3-браны, мы оказываемся в совершенно иной ситуации. У 3-браны три измерения, так что будь она большой – возможно, бесконечно протяжённой во всех трёх направлениях – она бы заполнилавсе три пространственных измерения. Тогда как 1-брана и 2-брана, подобно линии электропередачи и экрану кинотеатра, являются объектами, существующими внутринаших трёх пространственных измерений, 3-брана заняла бы всё известное нам пространство.

Отсюда возникает интригующая возможность. Не живём ли мы сами внутри 3-браны? Не уподобляемся ли мы Белоснежке, чей мир ограничивается двумерным экраном – 2-браной, которая сама пребывает внутри трёхмерной Вселенной (внутри трёх пространственных измерений кинотеатра)? Не может ли быть так, что всё известное нам существует внутри трёхмерного экрана – 3-браны, которая сама пребывает внутри Вселенной более высокой размерности, описываемой теорией струн / M-теорией? Не может ли оказаться так, что то, что Ньютон, Лейбниц, Мах и Эйнштейн называли трёхмерным пространством, является на самом деле особой трёхмерной сущностью теории струн / M-теории? Или, переходя на язык теории относительности, не может ли быть так, что четырёхмерное пространство-время, разработанное Минковским и Эйнштейном, является на самом деле следом или траекторией 3-браны, разворачивающейся во времени? Короче говоря, не может ли известная нам Вселенная быть браной? {175}

Возможность того, то мы живём внутри 3-браны (так называемый сценарий мира на бране), является самым последним поворотом теории струн / M-теории. Как мы увидим, она открывает совершенно новый взгляд на теорию струн / M-теорию с многочисленными и далеко идущими последствиями. Суть дела в том, что браны во многом подобны космической «липучке»; определённым образом, который мы сейчас обсудим, они очень липкие.

Липкие браны и колеблющиеся струны

Один из мотивов введения термина «M-теория» состоит в том, что, как мы теперь видим, название «теория струн» подчёркивает лишь один из множества объектов теории. Одномерные струны были обнаружены в теоретических исследованиях за десятилетия до того, как более тонкий анализ обнаружил существование бран более высокой размерности, так что «теория струн» – в чём-то устаревшее название. Однако, хотя M-теория и устанавливает своего рода «демократию» среди многообразия объектов различной размерности, но струны всё же играют главную роль в нашей современной формулировке. Одна из причин сразу же ясна. Можно игнорировать все p-браны более высокой размерности в ситуации, когда они гораздо тяжелее струн, – так исследователи неосознанно и поступали с 1970-х гг. Но есть и ещё одна причина, носящая более общий характер и делающая струны «первыми среди равных».

В 1995 г., вскоре после того как Виттен объявил о своём открытии, Джозеф Польчински из Калифорнийского университета в Санта-Барбаре получил богатую пищу для размышлений. Несколькими годами ранее в статье, написанной совместно с Робертом Леем и Джином Даем, Польчински обнародовал интересное и загадочное свойство теории струн. Мотивировки и рассуждения Польчински были несколько техническими, но детали для нас не важны, а результаты таковы. Он обнаружил, что в определённых ситуациях концы открытых струн (напомним, что такие струны представляют собой отрезки с двумя свободными концами) не могут двигаться как им угодно. Подобно тому как бусинка на проволочке может свободно двигаться, но при своём движении вынуждена повторять контур проволоки, и подобно тому как пинбольный шарик свободен в своём движении, но должен повторять контуры поверхности пинбольного стола, так и концы незамкнутой струны могут свободно двигаться, но ограничены в своём движении определёнными формами или контурами в пространстве. Польчински с соавторами показал, что хотя струна всё ещё вольна колебаться, но её концы будут «приклеены» к определённым областям или «захвачены» ими.

В одних ситуациях эта область может быть одномерной, и тогда концы струны уподобляются двум бусинкам, скользящим по проволоке, а сама струна – ниточке, связывающей их. В других ситуациях эта область может быть двумерной, и тогда концы струны уподобляются двум пинбольным мячам, связанным одной нитью и катающимся по пинбольному столу. Ещё в других ситуациях область может иметь три, четыре или любое число пространственных измерений не выше девяти. Эти результаты, как показал Польчински, а также Пётр Хоржава и Майкл Грин, помогли решить давнюю загадку, возникающую при сравнении замкнутых и незамкнутых струн, но в течение ряда лет эта работа привлекала мало внимания. {176} Всё изменилось в октябре 1995 г., когда Польчински закончил пересмотр этих ранних результатов в свете новых открытий Виттена.

Работа Польчински оставляла без ответа следующий вопрос, который, возможно, возник у вас при чтении предыдущего абзаца: если концы незамкнутых струн удерживаются внутри определённой области пространства, то к чему же они приклеены? Проволока и пинбольный стол существуют сами по себе, независимо от бусинок или шариков, движение которых они ограничивают. Что это за области пространства, к которым привязаны концы незамкнутых струн? Заполнены ли они неким независимым и фундаментальным ингредиентом теории струн, который так ревностно удерживает концы незамкнутой струны? До 1995 г., когда единственными объектами теории струн были только струны, не виделось подходящего кандидата на эту роль. Но после открытия Виттена и шквала последовавших работ ответ стал очевиден Польчински: если концы незамкнутых струн обязаны находиться внутри некой p-мерной области пространства, то эта область должна заниматься p-браной [81]81
  Точнее говоря, эти клейкие сущности называются p-бранами Дирихлеили, для краткости, D-p-бранами. Мы будем придерживаться укороченного названия: p-браны.


[Закрыть]
. Его расчёты показали, что вновь открытые p-браны в точности обладают свойствами объектов, неумолимо захватывающих концы открытых струн, вынуждая их двигаться в пределах p-мерной области пространства, занимаемой браной.

Чтобы получить более ясное представление, взглянем на рис. 13.2. На рис. 13.2 амы видим пару 2-бран с массой движущихся колеблющихся струн, концы которых ограничены в своём движении этими бранами. Ситуация с бранами более высокой размерности совершенно идентична, хотя её труднее изобразить. Концы открытых струн могут свободно двигаться по p-бранам и внутри них, но они не могут покинуть саму брану. Когда речь заходит о возможности движения вне браны, то браны оборачиваются самой клейкой вещью, какую только себе можно представить. Возможно также, что один конец открытой струны захвачен одной p-браной, а другой конец – другой p-браной, которая может иметь либо ту же самую размерность, что и первая (рис. 13.2 б), либо другую (рис. 13.2 в).

Рис. 13.2.( а) Открытые струны, с концами, прикреплёнными к двумерным бранам (2-бранам). ( б) Струны, соединяющие две разные 2-браны. ( в) Струны, соединяющие 2-брану и 1-брану

Работа Польчински как нельзя кстати подошла к открытию Виттена, вызвавшему вторую революцию в теории суперструн. В то время как некоторые из величайших умов в теоретической физике XX в. тщетно пытались сформулировать теорию, содержащую фундаментальные объекты с бо́льшим числом измерений, чем точки (нульмерные) или струны (одномерные), результаты Виттена и Польчински, дополненные важными достижениями множества современных ведущих исследователей, открыли путь к прогрессу в этом направлении. Эти физики не только установили, что теория струн / M-теория содержит объекты более высокой размерности, но результаты Польчински, в частности, дали средства для теоретического анализа их детальных физических свойств (если будет доказано их существование). Польчински показал, что свойства браны определяются в значительной степени свойствами открытых колеблющихся струн, концы которых она захватывает. Подобно тому как вы многое можете узнать о ковре, проведя рукой по его ворсу – шерстяным нитям, прикреплённым к подложке ковра, – так и многие свойства браны можно выяснить, изучая струны, концы которых она держит.

Это великолепный результат. Он показывает, что десятилетия исследований, которые привели к разработке тонких математических методов для изучения одномерных объектов (струн), могут использоваться для изучения объектов более высокой размерности, p-бран. Замечательно то, что Польчински обнаружил: анализ объектов боле высокой размерности сводится в значительной степени к очень знакомому, хотя всё ещё гипотетическому, анализу струн. Именно в этом смысле струны выделяются среди равных. Если вы понимаете поведение струн, то вы уже прошли большой путь к пониманию поведения p-бран.

Имея в виду всё это, давайте теперь вернёмся к сценарию мира на бране – возможности, что все мы живём в пределах 3-браны.

Наша Вселенная как брана

Если мы живём внутри 3-браны – если наше четырёхмерное пространство-время является не чем иным, как историей 3-браны во времени, – то сакраментальный вопрос, является ли пространство-время чем-то сущим, предстаёт в совершенно ином свете. Известное нам пространство-время может появиться из реальной физической сущности теории струн / M-теории – 3-браны, а не из некой смутной или абстрактной идеи. В этом подходе реальность нашего четырёхмерного пространства будет на равных с реальностью электрона или кварка. (Конечно, можно ещё задаться вопросом, является ли сущностью само более крупное пространство-время, в котором существуют струны и браны – одиннадцать измерений теории струн / M-теории; тем не менее реальность арены пространства-времени, которую мы непосредственно окружаем, будет очевидной.) Но если Вселенная, которую мы осознаём, на самом деле является 3-браной, то не может ли даже поверхностный взгляд обнаружить, что мы во что-то погружены – а именно, во внутренность 3-браны?

Что же, мы уже осведомлены о том, во что мы можем быть погружены по предположению современной физики, – в океан Хиггса, в пространство, заполненное тёмной энергией, в мириады флуктуаций квантового поля – и ни одна из этих сущностей непосредственно не воспринимается человеком. Так что не должно вызвать потрясение то, что теория струн / M-теория добавляет ещё одного кандидата в список невидимых сущностей, которые могут заполнять «пустое» пространство. Но не будем спешить в выводах. Мы понимаем воздействие на физику каждой из предыдущих возможностей, а также то, как мы могли бы установить, действительно ли они существуют. В самом деле, мы видели, что уже собраны веские доказательства в пользу существования тёмной энергии и квантовых флуктуаций; доказательство существования поля Хиггса ищется на современных ускорителях и планируется продолжать поиски на будущих ускорителях элементарных частиц. А какова ситуация с 3-браной? Если верен сценарий мира на бране, то почему мы не видим эту 3-брану, и как нам установить, существует ли она на самом деле?

Ответ на этот вопрос показывает, насколько радикально отличаются физические результаты теории струн / M-теории в контексте мира на бране от предшествующих «безбранных» сценариев. В качестве важного примера рассмотрим движение света – движение фотонов. Как вы знаете, в теории струн фотон представляет собой одну из колебательных мод струны. Но математические исследования показали, что в сценарии мира на бране фотоны связаны только с колебаниями открытых струн, замкнутые струны не имеют отношения к фотонам, и это имеет важные следствия. Концы открытых струн могут двигаться как угодно, но только в пределах 3-браны. Это значит, что фотоны (открытые струны с колебательной модой фотонов) могут беспрепятственно путешествовать по всей нашей 3-бране, из-за чего брана становится совершенно прозрачной (полностью невидимой), и это не даёт нам возможности увидеть, что мы погружены в неё.

Не менее важно и то, что концы открытых струн не могут покинуть брану, т. е. они не могут двигаться по дополнительным измерениям. Подобно тому как проволока ограничивает движение нанизанных на неё бусинок или пинбольный стол сдерживает свои шарики, наша липкая 3-брана разрешает фотонам двигаться тольков пределах наших трёх пространственных измерений. Поскольку фотоны являются частицами – переносчиками электромагнитного взаимодействия, то это значит, что электромагнитная сила – свет – замкнута в пределах наших трёх измерений, как показано на рис. 13.3 (на примере двумерного пространства).

Рис. 13.3.( а) В сценарии мира на бране фотоны являются открытыми струнами, концы которых заперты внутри браны, так что фотоны не могут покинуть саму брану. ( б) Наш мир на бране мог бы плавать в великом просторе дополнительных измерений, остающихся невидимыми для нас, поскольку видимый нами свет не может покинуть нашу брану. Могли бы существовать и другие миры на бранах, плывущие рядом с нами

Это очень сильное утверждение с важными последствиями. Ранее мы требовали, чтобы дополнительные измерения теории струн / M-теории были бы компактно свёрнуты. Ясно, что причина этого требования состоит в том, что раз мы не видим дополнительные измерения, то они должны быть от нас скрыты. А один из способов скрыть их – сделать их настолько малыми, что ни мы, ни наше оборудование не будет в состоянии обнаружить их. Но давайте теперь посмотрим на эту проблему в рамках сценария мира на бране. Как мы обнаруживаем объекты? Когда мы смотрим глазами, мы используем электромагнитное взаимодействие; когда мы применяем мощные инструменты, подобные электронным микроскопам, мы также используем электромагнитное взаимодействие; когда мы берём на вооружение ускорители элементарных частиц, то одной из сил, позволяющих нам заглянуть в микромир, опять же является электромагнитная сила. Но если электромагнитное взаимодействие ограничено нашей 3-браной, нашими тремя измерениями, то с помощью него никак невозможно«пощупать» дополнительные измерения, независимо от их размера. Фотоны не могут вырваться из наших трёх измерений, войти в дополнительные измерения, а затем вернуться к нашим глазам или к нашему оборудованию, позволяя обнаружить дополнительные измерения – даже если бы они были столь же большими, как известные нам измерения нашего пространства.

Так что если мы живём в 3-бране, то есть и альтернативное объяснение того, почему мы ничего не знаем о дополнительных измерениях. Требование, чтобы дополнительные измерения были чрезвычайно малы, необязательно. Они могут быть и большими. Мы не видим их из-за способа, которым смотрим. Мы смотрим посредством электромагнитной силы, которая не в состоянии добраться до любых измерений, помимо трёх известных нам. Подобно муравью, бродящему по плавающему листу лилии, совершенно не ведающему о глубоких водах прямо под видимой поверхностью листа, мы могли бы плавать внутри громадного пространства более высокой размерности, как на рис. 13.3 б, но электромагнитная сила – навечно запертая в пределах наших измерений – не может открыть нам это.

Хорошо, но ведь электромагнитное взаимодействие является лишь одним из четырёх взаимодействий природы. Как насчёт остальных трёх? Могут ли они внедриться в дополнительные измерения и позволить нам вскрыть их существование? Что касается сильного и слабого ядерного взаимодействия, то ответ снова отрицательный. Расчёты показывают, что в сценарии мира на бране частицы – переносчики этих взаимодействия (глюоны и W– и Z-частицы) также возникают из колебательных мод открытых струн, так что они тоже заперты, как и фотоны, в трёх наших измерениях, и процессы, включающие сильное и слабое ядерное взаимодействие, столь же слепы по отношению к дополнительным измерениям. То же самое относится и к частицам материи. Электроны, кварки и все прочие типы частиц также возникают из колебаний открытых струн с пойманными концами. Таким образом, в сценарии мира на бране вы и я, а также всё, что мы когда-либо видели, навечно заключены в пределах нашей 3-браны.Учитывая время, можно сказать, что всё заключено в пределах нашего четырёхмерного среза пространства-времени.

Это почти всё, но только почти. С гравитационным взаимодействием ситуация совсем другая. Математический анализ в рамках сценария мира на бране показывает, что гравитоны возникают из колебательных мод замкнутых струн, как это было и в ранее обсуждавшихся сценариях «безбранного мира». А замкнутые струны – струны, не имеющие концов, – не ограничены бранами. Они могут столь же свободно покинуть брану, как и путешествовать по ней или через неё. Так что если бы мы жили на бране, то не были бы полностью отрезаны от дополнительных измерений. Посредством гравитационной силы мы могли бы взаимодействовать с дополнительными измерениями. В этом сценарии гравитация была бы нашим единственным способом выхода за пределы наших трёх пространственных измерений.

Сколь большими должны быть дополнительные измерения, чтобы мы начали осознавать их посредством гравитационного взаимодействия? Это очень интересный и важный вопрос, так что давайте подробнее остановимся на нём.


    Ваша оценка произведения:

Популярные книги за неделю