355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Брайан Грин » Ткань космоса. Пространство, время и текстура реальности » Текст книги (страница 22)
Ткань космоса. Пространство, время и текстура реальности
  • Текст добавлен: 19 сентября 2016, 13:25

Текст книги "Ткань космоса. Пространство, время и текстура реальности"


Автор книги: Брайан Грин


Жанр:

   

Физика


сообщить о нарушении

Текущая страница: 22 (всего у книги 52 страниц)

Реальность и проблема квантового измерения

За время существования квантовой теории поступило множество предложений для решения проблемы квантового измерения. Ирония заключается в том, что, хотя они влекли за собой различные концепции реальности (некоторые – радикально различные), когда дело касалось предсказаний того, что исследователь будет измерять почти во всех экспериментах, все они были в согласии друг с другом и каждое работало подобно заклинанию. Каждое предложение показывало один и тот же спектакль, хотя, если вы посмотрите за кулисы, то увидите, что их способы действия существенно отличаются.

Когда речь идёт о развлечении, вы обычно не хотите знать, что происходит за кулисами; вы вполне удовлетворяетесь тем, что обращаете внимание исключительно на результат. Но когда речь идёт о понимании Вселенной, имеется непреодолимое желание отдёрнуть все шторы, открыть все двери и полностью обнажить глубинные внутренние механизмы реальности. Бор считал это побуждение безосновательным и вводящим в заблуждение. Для него реальность естьеё представление. Как в монологе Сполдинга Грея [50]50
  Сполдинг Грей – американский актёр. (Прим. ред.)


[Закрыть]
, голые измерения экспериментатора и являются всем спектаклем. Ничего другого нет. Согласно Бору, «за кулисами» ничего нет. Идея попытаться проанализировать, как, когда и почему квантовая волновая функция отбрасывает все возможности, кроме одной, и даёт одно определённое число на измерительном приборе, – ошибочная идея. Измеренное число само по себе является всем, что заслуживает внимания.

Этот взгляд господствовал в течение десятилетий. Однако его успокаивающее действие на ум, пытающийся, несмотря ни на что, понять квантовую теорию, никак не способствует ощущению, что превосходная предсказательная сила квантовой механики означает, что это и естьпроход в скрытую реальность, лежащую в основе нашей Вселенной. Успокаивающее действие этого подхода не может помочь идти дальше и понять, как квантовая механика связана с повседневным опытом – как она перекидывает мост через пропасть между волновой функцией и наблюдением, и какая скрытая реальность лежит в основе наблюдений. Многие исследователи приняли этот вызов; ниже приводятся некоторые разработанные ими подходы.

Один подход, исторические корни которого восходят к Гейзенбергу, заключается в отказе от взгляда на волновую функцию как на объективное свойство квантовой реальности и, вместо этого, во взгляде на неё только как на отражение наших знаний о реальности. Перед проведением эксперимента мы не знаем, где находится электрон, и, как предполагает этот взгляд, наше неведение относительно его расположения отражается электронной волновой функцией, описывающей электрон как находящийся, возможно, в ряде различных мест. Однако в момент, когда мы измеряем его положение, наше знание о том, где он находится, внезапно изменяется: теперь мы знаем его положение, в принципе, с абсолютной точностью. (В соответствии с принципом неопределённости, если мы знаем его положение, мы неизбежно оказываемся в неведении относительно его скорости, но это не является предметом текущего обсуждения.) Это резкое изменение наших знаний, в соответствии с данным взглядом, отражается в резком изменении электронной волновой функции: она внезапно коллапсирует и принимает форму резкого пика, как на рис. 4.7, фиксируя наше точное знание положения электрона. В таком подходе резкий коллапс волновой функции совершенно неудивителен: он есть не что иное, как резкое изменение в знании, которое мы все ощущаем, когда узнаём что-либо новое.

Второй подход, предложенный в 1957 г. студентом Джона Уилера Хью Эвереттом, вообще отрицает, что волновая функция коллапсирует. Вместо этого любой и каждый потенциальный результат, включённый в волновую функцию, реализуется; однако происходит это в его собственной отдельной Вселенной. В этом подходе, известном как многомировая интерпретация, понятие «Вселенная» расширяется, чтобы включить бесчисленные «параллельные вселенные» – бесчисленные версии нашей Вселенной, – так что всё, что может произойти в соответствии с предсказаниям квантовой механики, даже с ничтожной вероятностью, действительнопроисходит, по меньшей мере в одной копии. Если волновая функция говорит, что электрон может быть здесь, там и где-нибудь далеко, тогда в одной вселенной копия вас самих найдёт его здесь; в другой вселенной другая ваша копия найдёт его там; а в третьей вселенной ещё одна ваша копия найдёт электрон очень далеко. Последовательность наблюдений, которую каждый из нас делает каждую секунду, таким образом, отражает реальность, имеющую место только в одной части этой чудовищной, бесконечной сети вселенных, каждая из которых населена копиями вас, меня и любого другого, кто ещё живёт во вселенной, в которой некоторое наблюдение дало определённый результат. В одной такой вселенной вы сейчас читаете эти слова, в другой вы прервались, чтобы походить по Интернету, ещё в другой вы с волнением дожидаетесь, когда поднимется занавес перед вашим дебютом на Бродвее. Это похоже на то, как если бы существовал не единственный блок пространства-времени, изображённый на рис. 5.1, а бесконечное количество, среди которых каждый реализует одну возможную последовательность событий. В многомировой интерпретации, следовательно, ни один потенциальный результат просто не остаётся потенциальным. Волновые функции не коллапсируют. Каждый потенциальный результат проявляется в одной из параллельных вселенных.

Третье предложение, разработанное в 1950-е гг. Дэвидом Бомом, – тем самым физиком, с которым мы сталкивались в главе 4, когда обсуждали парадокс Эйнштейна–Подольского–Розена, – использует совершенно другой подход. {93} Бом утверждал, что частицы, такие как электроны, обладают определёнными положениями и определёнными скоростями, точно как в классической физике и точно так, как надеялся Эйнштейн. Но, в соответствии с принципом неопределённости, эти свойства скрыты от взгляда; они являются примерами скрытых переменных, упоминавшихся в главе 4. Вы не можете определить обе переменные одновременно. По Бому, такая неопределённость представляет предел того, что мы можем знать, но ничего не предполагает о действительных атрибутах самих частиц. Его подход не противоречит результатам Белла, поскольку, как мы обсуждали в конце главы 4, обладание определёнными свойствами, запрещёнными принципом неопределённости, не исключено; исключена только локальность, а подход Бома нелокален. {94} Бом представил, что волновая функция частицы является другим, отдельным элементом реальности, таким, который существует в дополнение к самой частице. Нет частиц иливолн, как полагала философия дополнительности Бора; в соответствии с Бомом, есть частицы иволны. Более того, Бом постулировал, что волновая функция частицы взаимодействует с самой частицей – она «направляет» частицу или «толкает» её – таким способом, что это определяет её последующее движение. В то время как этот подход полностью согласуется с правильными предсказаниями стандартной квантовой механики, Бом нашёл, что изменения волновой функции в одном месте могут немедленно сказаться на удалённой частице, что явно обнаруживает нелокальность его подхода. В эксперименте с двумя щелями, например, каждая частица проходит через одну щель или через другую, тогда как их волновая функция проходит через обе щели и допускает интерференцию. Поскольку волновая функция управляет движением частицы, то не столь уж и удивительно, что, как показывают уравнения, частица охотнее окажется там, где величина волновой функции велика, и неохотно там, где мала, объясняя данные на рис. 4.4. В подходе Бома нет отдельной стадии коллапса волновой функции, поскольку, если вы измеряете положение частицы и находите её здесь, то это действительно то место, где она была моментом раньше измерения.

Четвёртый подход, разработанный итальянскими физиками Джанкарло Жирарди, Альберто Римини и Туллио Вебером, смело изменяет уравнение Шрёдингера неким хитрым способом, который почти не сказывается на эволюции волновых функций отдельных частиц, но имеет существенное влияние на квантовую эволюцию, когда применяется к «большим» повседневным объектам. Предложенная модификация полагает, что волновые функции в своей основе нестабильны; даже без всякого вмешательства, предположили эти исследователи, рано или поздно каждая волновая функция коллапсирует к пикообразной форме по своему собственному желанию. Жирарди, Римини и Вебер постулировали, что для индивидуальной частицы коллапс волновой функции происходит спонтанно и хаотично, возникая в среднем только раз в каждый миллиард лет или около того. {95} Это настолько редко, что вносит только очень слабое изменение в обычное квантово-механическое описание отдельной частицы, и это хорошо, поскольку квантовая механика описывает микромир с беспрецедентной точностью. Но для больших объектов, таких как экспериментатор и его оборудование, которые имеют миллиарды и миллиарды частиц, вероятность будет настолько большой, что в мельчайшую долю любой заданной секунды постулированный спонтанный коллапс произойдёт по меньшей мере с одной отдельной частицей, заставив сколлапсировать её волновую функцию. И, как объясняют Жирарди, Римини, Вебер и другие, запутанная природа всех индивидуальных волновых функций в большом объекте обеспечивает, что этот коллапс инициирует разновидность квантового эффекта домино, при котором волновые функции всех составляющих частиц тоже коллапсируют. Так как это происходит в крошечную долю секунды, предлагаемая модификация обеспечивает, что большие объекты, по существу, всегда находятся в одной определённой конфигурации: стрелки на измерительных приборах всегда указывают на одну определённую величину; Луна всегда находится в одном определённом положении в небе; коты всегда или мертвы, или живы.

Каждый из этих подходов, равно как и ряд других, которые мы не хотим обсуждать, имеет своих сторонников и противников. Подход «волновой функции как знания» ловко обходит проблему коллапса волновой функции путём отрицания реальности волновых функций, сводя их вместо этого всего лишь к способу описания того, что мы знаем. Но почему, спросит противник, фундаментальная физика должна быть так тесно связана с человеческим знанием? Если бы здесь не было нас, чтобы наблюдать этот мир, то волновые функции никогда бы не коллапсировали или, может быть, вообще не существовало бы самой концепции волновой функции? Разве Вселенная была совершенно другой до того, как на планете Земля появилось человеческое сознание? Что если вместо экспериментаторов-людей наблюдателями являются только мыши, или муравьи, или амёбы, или компьютеры? Будет ли изменение в их «знании» достаточным, чтобы его можно было связать с коллапсом волновой функции? {96}

Напротив, многомировая интерпретация избегает самого понятия коллапса волновой функции, поскольку в этом подходе волновые функции не коллапсируют. Но ценой этого является чудовищное разрастание Вселенной, что многие противники этой интерпретации считают совершенно недопустимым. {97} Подход Бома также избегает коллапса волновой функции; но, утверждают его противники, допуская независимую реальность как частиц, так и волн, теория теряет экономичность. Более того, справедливо утверждают противники, в формулировке Бома волновые функции могут передавать влияние на частицы, которые они направляют, со скоростью, превышающей скорость света. Сторонники замечают, что первое возражение в лучшем случае субъективно, а последнее согласуется с нелокальностью, которая, как показал Белл, неизбежна, так что критика неубедительна. Тем не менее, может быть незаслуженно, подход Бома никогда не был популярным. {98} Подход Жирарди–Римини–Вебера прямо включает коллапс волновой функции путём добавления к уравнениям нового спонтанного механизма коллапса. Но, отмечают противники, тут всё ещё нет и намёка на экспериментальное подтверждение предложенной модификации уравнения Шрёдингера.

Поиск ясной и прозрачной связи между формализмом квантовой механики и опытом повседневной жизни будет, несомненно, продолжаться до конца, и трудно сказать, который из известных подходов, если среди них такой вообще есть, в конечном счёте будет принят большинством. Если бы физики сегодня проголосовали, я не думаю, что нашёлся бы несомненный фаворит. К несчастью, экспериментальные данные могут оказать ограниченную помощь. Хотя предложение Жирарди–Римини–Вебера даёт предсказания, которые могут в определённых ситуациях отличаться от стандартной квантовой механики с её двумя стадиями эволюции, отклонения слишком малы, чтобы их можно было зафиксировать современной технологией. Ситуация с другими тремя предложениями ещё хуже, поскольку они ещё более решительно препятствуют экспериментальной верификации. Они полностью согласуются со стандартным подходом, так что все они дают одинаковые предсказания для того, что можно было бы наблюдать или измерить. Они отличаются только в отношении того, что происходит за кулисами, если вообще что-то происходит. То есть они отличаются только в отношении того, что квантовая механика предполагает в качестве фундаментальной основы природы реальности.

Хотя проблема квантовых измерений остаётся нерешённой, на протяжении последних нескольких десятилетий был разработан подход, который, хотя ещё неполон, но имеет широкую поддержку как вероятный компонент любого жизнеспособного решения. Он называется декогеренция [51]51
  Помимо использованного в переводе термина декогеренция, в русскоязычной литературе используется также термин декогерентизация, но использованный в переводе термин декогеренциянам кажется более удачным (и он тоже используется в русскоязычной научной литературе), так как он ближе к оригиналу по звучанию, и, кроме того, термин должен по смыслу быть своеобразным антиподом интерференции, что и поддерживается таким словообразованием. (Прим. ред.)


[Закрыть]
.

Декогеренция и квантовая реальность

Когда вы впервые сталкиваетесь с вероятностным аспектом квантовой механики, естественной реакцией является мысль, что это не более экзотично, чем вероятности, которые возникают при подбрасывании монетки или вращении рулетки. Но при знакомстве с квантовой интерференцией вы осознаёте, что вероятность в квантовой механике намного более фундаментальна. В повседневных примерах различным результатам – орёл против решки, красное против чёрного, один лотерейный номер против другого – присваиваются вероятности на основании понимания, что тот или иной результат определённо произойдёт и что каждый результат является конечным продуктом независимой, определённой истории. Когда монета подбрасывается, иногда вращательное движение таково, что выходит орёл, а временами таково, что выходит решка. Вероятность 50 на 50 мы относим не просто к конечному результату – орёл или решка, – но также к истории, которая привела к каждому результату. Половина возможных способов, которыми вы можете подбросить монету, приведут к орлу, а половина – к решке. Сами события, однако, являются совершенно отдельными, изолированными альтернативами. Нет смысла интересоваться, какие различные движения монеты усиливают друг друга, а какие гасят. Все они независимы.

Но в квантовой механике иная ситуация. Альтернативные пути, по которым электрон может следовать через две щели к детектору, – это не отдельные, изолированные истории. Возможные истории смешиваются, производя наблюдаемый результат. Некоторые пути усиливают друг друга, тогда как другие уничтожают друг друга. Такая квантовая интерференция между различными возможными историями отвечает за картину светлых и тёмных полос на детекторном экране. Так что основное различие между квантовым и классическим понятиями о вероятности заключается в том, что первое подвержено интерференции, а второе – нет.

Декогеренция является широко распространённым явлением, которое наводит мост между квантовой физикой малого и классической физикой не столь уж малогочерез подавление квантовой интерференции – т. е. путём резкого уменьшения того, что является ключевым различием квантовой и классической вероятности. Важность декогеренции была осознана давно, ещё в ранние времена квантовой теории, но её современное возрождение отсчитывается от плодотворной статьи немецкого физика Дитера Цея в 1970 г., {99} и с тех пор разрабатывалось многими исследователями, включая Эрика Йоса, тоже из Германии, и Войцеха Цурека из Лос-Аламосской национальной лаборатории в Нью-Мексико.

Идея такова. Когда уравнение Шрёдингера применяется в простой ситуации, такой как прохождение отдельного изолированного фотона через экран с двумя щелями, оно приводит к известной интерференционной картине. Но этот лабораторный пример имеет две весьма специфические особенности, которые не характерны для событий реального мира. Первая состоит в том, что вещи, с которым мы сталкиваемся в повседневной жизни, больше и сложнее, чем отдельный фотон. Вторая – в том, что вещи, с которыми мы сталкиваемся в повседневной жизни, не изолированы: они взаимодействуют с нами и с окружением. Книга, находящаяся сейчас в ваших руках, подвергается контакту с человеком и, вообще, постоянно бомбардируется фотонами и молекулами воздуха. Более того, поскольку сама книга состоит из многих молекул и атомов, эти постоянно дрожащие составляющие непрерывно сталкиваются друг с другом. То же самое справедливо для стрелок измерительных приборов, для котов, для человеческих мозгов и просто для всего, с чем вы сталкиваетесь в повседневной жизни. На астрофизических масштабах Земля, Луна, астероиды и другие планеты непрерывно бомбардируются фотонами Солнца. Даже частичка пыли, плавающая в темноте космического пространства, подвергается непрерывным толчкам низкоэнергетических микроволновых фотонов, которые начали путешествовать по пространству спустя небольшое время после Большого взрыва. Итак, чтобы понять, что квантовая механика говорит о событиях реального мира, – в противоположность рафинированным лабораторным экспериментам, – мы должны применить уравнение Шрёдингера к этим более сложным, более беспорядочным ситуациям.

По существу, это было то, на что обратил внимание Цей. Его работа и работы многих других, кто последовал за ним, открыли нечто действительно удивительное. Хотя фотоны и молекулы воздуха слишком малы, чтобы оказать существенное влияние на движение большого объекта, например книги или кота, но они в состоянии сделать кое-что другое. Они непрерывно «толкают» волновую функцию большого объекта или, говоря на языке физики, они возмущают её когерентность: они размывают упорядоченную последовательность гребней и впадин, следующих друг за другом. Это критично, поскольку упорядоченность волновой функции является центральным свойством для генерирования интерференционных эффектов (см. рис. 4.2). Подобно тому как добавление маркирующих приборов в эксперимент с двумя щелями размазывает результирующую волновую функцию и поэтому размывает интерференционные эффекты, постоянная бомбардировка объектов составными частями окружающей среды также препятствует возникновению интерференционных явлений. С другой стороны, раз квантовая интерференция более невозможна, вероятности, присущие квантовой механике, с любой практической точки зрения ведут себя подобно вероятностям, присущим подбрасываемой монете и вращающейся рулетке. Когда декогеренция, вызванная взаимодействием с окружающей средой, размывает волновую функцию, экзотическая природа квантовых вероятностей растворяется в более привычных вероятностях повседневной жизни. {100} Это может означать решение загадки квантового измерения, которое, если действительно окажется решением, стало бы лучшим, на что мы можем надеяться. Я сначала опишу идею декогеренции в наиболее оптимистичном свете, а затем сделаю акцент на том, что ещё остаётся сделать.

Если волновая функция изолированного электрона показывает, что он имеет, скажем, 50% вероятности находиться здесь и 50% вероятности находиться там, мы должны интерпретировать эти вероятности, используя всю причудливость квантовой механики. Поскольку обе альтернативы могут проявить себя при смешивании и генерировать интерференционную картину, мы должны думать о них как о реальных в равной степени. Проще говоря, кажется, что электрон находится в обоих положениях. Что произойдёт, если мы измерим положение электрона неизолированными лабораторными инструментами обычного размера? Тогда в соответствии с неопределённостью местонахождения электрона стрелка инструмента имеет 50% вероятности указать на одно значение и 50% вероятности – на другое. Но вследствие декогеренции стрелка не будет находиться в призрачной смеси, указывая на обе величины; вследствие декогеренции мы можем интерпретировать этивероятности в обычном, классическом, повседневном смысле. Как монета имеет 50%-й шанс упасть орлом и 50%-й шанс упасть решкой, но падает илиорлом, илирешкой, так и стрелка прибора имеет 50%-й шанс указать на одну величину и 50%-й шанс указать на другую величину, но она определённо укажет на одну илина другую.

Сходные рассуждения применимы и для всех других сложных неизолированных объектов. Если квантовые расчёты показывают, что кот, сидя з закрытом ящике, имеет 50% шансов быть мёртвым и 50% шансов быть живым – поскольку имеется 50% шансов, что электрон попадёт в счётчик и запустит устройство, которое отравит кота ядовитым газом, – то декогеренция означает, что кот небудет пребывать в некотором абсурдном смешанном состоянии жизни и смерти. Хотя десятилетия жарких дебатов были посвящены обсуждению проблемы типа: что означает для кота быть одновременно мёртвым и живым? Как открытие ящика и наблюдение кота заставляют его выбирать определённое состояние – смерти или жизни? Декогеренция означает, что задолго до того, как вы откроете ящик, окружающая среда уже завершила миллиарды наблюдений кота, которые почти совсем без затрат времени заменили все мистические квантовые вероятности на их менее мистические классические двойники. Задолго до того, как вы посмотрели внутрь, окружающая среда заставила кота принять одно единственное, определённое состояние. Декогеренция заставляет многие странности квантовой механики «утечь» из больших объектов, так как эти квантовые странности кусочек за кусочком удаляются прочь бесчисленными налетающими частицами окружения.

Трудно было бы представить более удовлетворительное решение проблемы квантового измерения. Будучи более реалистичными и отказываясь от упрощающего предположения, которое игнорирует окружающую среду, – упрощения, которое было критически важным на ранних этапах развития квантовой механики, – мы бы обнаружили, что квантовая механика имеет встроенное решение проблемы измерения. Сознание человека, люди-экспериментаторы и наблюдения людьми не играли бы больше особой роли, поскольку они (мы!) были бы просто элементами окружающей среды, подобными молекулам воздуха и фотонам, которые могут взаимодействовать с данной физической системой. Также больше не было бы пропасти между эволюцией объекта и эволюцией при измерении этого объекта экспериментатором. Всё сущее – наблюдаемое и наблюдатель – существовало бы на одинаковом основании. Всё сущее – наблюдаемое и наблюдатель – подчинялось бы в точности одним и тем же квантово-механическим законам, как установлено уравнением Шрёдингера. Акт измерения больше не являлся бы чем-то специальным; он просто был бы одним из специальных примеров взаимодействия системы с окружающей средой.

Вот оно? Декогеренция разрешила проблему квантового измерения? Декогеренция ответственна за то, что волновая функция закрывает дверь всем, кроме одного потенциального исхода, к которому она может привести? Некоторые так думают. Такие исследователи, как Роберт Гриффитс из Карнеги Меллон, Роланд Омнес из Орси, нобелевский лауреат Мюррей Гелл-Манн из института Санта-Фе и Джим Хартл из Калифорнийского университета в Санта-Барбаре достигли большого прогресса и утверждают, что они развили представление о декогеренции до состояния завершённой концепции (названной декогерентными историями), которая решает проблему измерения. Другие, вроде меня, заинтригованы, но ещё полностью не убеждены. Вы видите, что сила декогеренции в том, что она успешно удаляет искусственный барьер, установленный Бором между большими и малыми физическими системами, делая всё сущее управляемым одними и теми же квантово-механическим формулами. Это большой прогресс и, я думаю, Бор нашёл бы его вызывающим удовлетворение. Хотя нерешённая проблема квантового измерения никогда не мешала физикам проводить теоретические расчёты, согласующиеся с экспериментальными данными, она привела Бора и его коллег к квантово-механической системе взглядов с некоторыми явно неуклюжими свойствами. Многие находят, что система взглядов, нуждающаяся в неясном представлении о коллапсе волновой функции или неточном понятии «больших» систем, принадлежащих классической физике, слаба. Приняв во внимание декогеренцию, исследователи в значительной степени сделали эти смутные идеи необязательными.

Однако ключевая проблема, которую я обошёл в обсуждении, заключается в том, что хотя декогеренция подавляет квантовую интерференцию и поэтому заставляет таинственные квантовые вероятности быть похожими на их привычных классических двойников, каждый потенциальный результат, включённый в волновую функцию, всё ещё соперничает за реализацию. Так что мы всё ещё остаёмся в неведении, какой результат «победит» и куда «уйдут» другие возможности, когда это реально произойдёт. Когда подбрасывается монета, классическая физика даёт ответ на аналогичный вопрос. Она говорит, что если вы исследуете способ, которым подброшена монета, вы можете, в принципе, с адекватной точностью предсказать, упадёт она орлом или решкой. Следовательно, более внимательный анализ показывает, что деталями, которые вы сначала упустили, был определён в точности один результат. В квантовой физике нельзя сказать то же самое. Декогеренция позволяет интерпретировать квантовые вероятности почти как классические, но не даёт точных деталей, которые объясняют, как из множества возможных исходов выбирается один для действительной реализации.

Почти в духе Бора некоторые физики думают, что поиски объяснений таких вещей, как причина возникновения отдельного определённого результата, неконструктивны. Эти физики утверждают, что квантовая механика, дополненная теорией декогеренции, является жёстко сформулированной теорией, предсказания которой описывают поведение лабораторных измерительных приборов. И, в соответствии с этой точкой зрения, этои есть цель науки. Попытки отыскать объяснение, что реально происходит, попытки побороться за понимание, как получился частный результат в опыте, попытки отыскать другой уровень реальности за показаниями детектора и компьютерными распечаткамипредставляются как неоправданная интеллектуальная жадность.

Многие другие, включая меня, придерживаются другого взгляда. Объяснениеданных – вот что является предметом науки. Многие физики думают, что наука должна включать в себя также и теории, которые, подтверждая экспериментальные данные, идут дальше к максимальному проникновению в природу реальности. Я сильно подозреваю, что ещё многое предстоит понять, чтобы сдвинуться в направлении полного решения проблемы измерений.

Так что, хотя многие согласны, что вызванная окружающей средой декогеренция является важнейшей частью структуры, перекидывающей мост над пропастью между квантовым и классическим, и в то время как многие надеются, что эти соображения однажды приведут к полной и убедительной связи между этими двумя областями, далеко не каждый убеждён, что мост уже полностью построен.


    Ваша оценка произведения:

Популярные книги за неделю