355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Брайан Грин » Ткань космоса. Пространство, время и текстура реальности » Текст книги (страница 24)
Ткань космоса. Пространство, время и текстура реальности
  • Текст добавлен: 19 сентября 2016, 13:25

Текст книги "Ткань космоса. Пространство, время и текстура реальности"


Автор книги: Брайан Грин


Жанр:

   

Физика


сообщить о нарушении

Текущая страница: 24 (всего у книги 52 страниц)

Симметрия и время

Кроме своей роли в определении характера законов, управляющих силами природы, идеи симметрии жизненно важны и для концепции самого времени. Никто пока не нашёл ясного, фундаментального определения времени, но, несомненно, часть роли времени в структуре космоса заключается в том, что оно является счетоводом изменений. Мы ощущаем, что время пролетело, замечаем, что вещи теперь отличаются от того, какими они были раньше. Часовая стрелка на часах указывает на другую цифру, солнце занимает на небе другое положение, страницы в непереплетённом экземпляре книги «Война и мир»стали более перемешанными, углекислый газ, который вырвался из бутылки колы, занял больший объём, – всё это говорит о том, что вещи изменились, и время есть то, что обеспечивает возможность осуществления таких изменений. Перефразируя Джона Уилера, время есть способ природы удержания всего – т. е. всех изменений – так, чтобы всё не произошло сразу.

Таким образом, существование времени связано с отсутствиемопределённой симметрии: вещи во Вселенной должны изменяться от момента к моменту, для того чтобы мы вообще могли определить понятие от момента к моменту, которое как-то представляет наше интуитивное представление времени. Если имеется полная симметрия между существующим положением вещей, и тем, что было, и изменения от момента к моменту имеют не больше последствий, чем изменения при повороте бильярдного шара, время, в нашем обычном представлении, не могло бы существовать. {103} Это не означает, что экспансия пространства-времени, схематически показанная на рис. 5.1, не могла бы существовать – она могла бы. Но, поскольку вдоль оси времени всё было бы совершенно однородно, не было бы никакого смысла, в котором Вселенная эволюционирует или изменяется. Время было бы абстрактным свойством такой арены реальности – четвёртым измерением в пространственно-временно́м континууме, – но, с другой стороны, оно было бы нераспознаваемым.

Тем не менее, хотя существование времени равнозначно отсутствию некоторой определённой симметрии, его применение в космических масштабах требует от Вселенной уважительно относиться к другой симметрии. Идея проста и отвечает на вопрос, который мог появиться у вас при чтении главы 3. Если теория относительности учит нас, что течение времени зависит от того, как быстро вы двигаетесь, и от гравитационного поля, в котором вы находитесь, тогда что должны означать слова астрономов и физиков о всей Вселенной, имеющей определённый возраст – возраст, который в наши дни оценивается приблизительно в 14 млрд лет? 14 млрд лет по отношению к кому? 14 млрд лет по каким часам? Придут ли существа, живущие в далёкой галактике Головастика, к заключению, что Вселенной 14 млрд лет, и если так, что будет гарантировать, что их часы тикают синхронно нашим? Ответ связан с симметрией – симметрией в пространстве.

Если бы ваши глаза могли видеть свет, длина волны которого значительно больше, чем у оранжевого или красного света, вы могли бы не только видеть внутренности вашей микроволновой печки в момент её включения, но также видели бы слабое и почти однородное зарево на том, что мы воспринимаем как тёмное ночное небо. Более сорока лет назад учёные открыли, что Вселенная наполнена микроволновым излучением – светом с большой длиной волны, – которое является холодным остатком жарких условий сразу после Большого взрыва. {104} Это космическое микроволновое фоновое излучениесовершенно безопасно. Раньше оно было значительно горячее, но в ходе эволюции и расширения Вселенной плотность излучения постепенно снижалась и температура падала. Сегодня его температура составляет всего около 2,7° выше абсолютного нуля, и самое заметное его проявление в качестве источника неприятностей заключается в его вкладе в небольшую часть «снега», который вы видите по телевизору при отключённом кабеле или при настройке на канал, по которому не ведётся вещание.

Но эти слабые радиопомехи дают астрономам то же, что кости тираннозавров дают палеонтологам: окно в ранние эпохи, которое играет ключевую роль в реконструкции того, что происходило в удалённом прошлом. Существенное свойство излучения, обнаруженное точными спутниковыми измерениями на протяжении последнего десятилетия, состоит в том, что оно предельно однородно. Температура излучения в одной части неба отличается от температуры в другой части неба менее чем на тысячную долю градуса. На земле такая симметрия сделала бы телевизионные каналы с прогнозом погоды неинтересными. Если в Джакарте 30°C, вы бы знали наверняка, что в Аделаиде, Шанхае, Кливленде, Анкоридже и где угодно температура будет между 29,999°C и 30,001°C. Наоборот, в космических масштабах однородность температуры излучения чрезвычайноинтересна, так как она позволяет прийти к двум очень важным выводам.

Во-первых, она обеспечивает наблюдательное свидетельство того, что на ранних этапах развития Вселенная не была заполнена большими и тяжёлыми высокоэнтропийными скоплениями материи, такими как чёрные дыры, поскольку такая неоднородная среда должна была бы оставить отпечаток неоднородности и на излучении. Наоборот, однородность температуры излучения подтверждает, что молодая Вселенная была однородной; и, как мы видели в главе 6, однородность означает низкую энтропию, если гравитация играет важную роль, – как это и было в ранней плотной Вселенной. И это хорошо, поскольку наше обсуждение стрелы времени существенно опиралось на то, что Вселенная стартовала с низкой энтропией. Продвинуться в объяснении этого наблюдения как можно дальше – это одна из наших целей в этой части книги. Мы хотим понять, как могло возникнуть однородное, низкоэнтропийное и очень маловероятное, состояние ранней Вселенной. Это позволит нам сделать большой шаг к пониманию причин стрелы времени.

Во-вторых, хотя Вселенная эволюционировала после Большого взрыва, в среднем эволюция должна была быть почти одинаковой в разных местах космоса. Ввиду того что температуры здесь, и в галактике Водоворот, и в скоплении галактик Волосы Вероники, и где угодно ещё согласуются с точностью до четвёртого знака после запятой, физические условия в каждой области пространства должны изменяться после Большого взрыва существенно одинаковым образом. Это важный вывод, но нужно правильно его интерпретировать. Взгляд на ночное небо определённо показывает разнообразие космоса: различные планеты и звёзды разбросаны там и тут по пространству. Суть, однако, в том, что когда мы анализируем эволюцию целой Вселенной, мы рассматриваем макроскопическую перспективу, которая получается усреднением по этим «мелкомасштабным» отклонениям, и крупномасштабные средние оказываются почти совершенно однородными. Представьте себе стакан воды. В масштабе молекул вода в высшей степени неоднородна: здесь имеется молекула H 2O, затем пустое пространство, затем другая молекула H 2O и т. д. Но если мы усредним по мелкомасштабной молекулярной неоднородности и исследуем воду в «больших», повседневных масштабах, мы можем увидеть невооружённым глазом, что вода в стакане выглядит совершенно однородной. Неоднородность, которую мы видим, глядя на небо, подобна микроскопическому виду на отдельные молекулы H 2O. Но, как и в случае стакана воды, когда Вселенная изучается в достаточно больших масштабах, – масштабах порядка сотен миллионов световых лет, [52]52
  Имеются сообщения о так называемых войдах – областях почти пустого пространства, не содержащего галактик, размером порядка миллиарда световых лет. Так что шкала однородности может оказаться выше сотен миллионов световых лет. (Прим. ред.)


[Закрыть]
– она становится предельно однородной. Таким образом, однородность излучения является «ископаемым» свидетельством однородности как законов физики, так и деталей среды везде в космосе.

Это заключение является весьма примечательным, поскольку однородность Вселенной позволяет определить концепцию времени, применимую для Вселенной как целого. Если мы принимаем меру изменений в качестве рабочего определения истёкшего времени, то однородность условий везде в пространстве является свидетельством однородности изменений везде в космосе, что предполагает также и однородность прошедшего времени. Точно так же, как однородность земной геологической структуры позволяет геологу в Америке, и такому же геологу в Африке, и другому в Азии прийти к согласию относительно возраста земной истории, однородность космической эволюции всюду в пространстве позволяет физику в галактике Млечного Пути, и такому же физику в галактике Андромеды и другому в галактике Головастика прийти в целом к согласию по поводу возраста и истории Вселенной. Конкретно, однородная эволюция Вселенной означает, что часы здесь, часы в галактике Андромеды и часы в галактике Головастика будут в среднем отсчитывать время примерно одинаковым образом. Таким образом, однородность пространства обеспечивает универсальную синхронизацию.

Поскольку я отложил важные детали (такие как расширение пространства, освещаемое в следующем разделе), выделим ядро проблемы: время располагается на перепутье симметрии. Если Вселенная имеет абсолютную временную симметрию – если она совершенно не меняется, – было бы трудно определить даже, что время означает. С другой стороны, если Вселенная не имеет симметрии в пространстве – если, например, фоновое излучение было бы совершенно случайным, имея сильно различающуюся температуру в разных областях, – время с космологической точки зрения имело бы мало смысла. Часы в разных местах отсчитывали бы время с разной скоростью, так что, если бы вы спросили, что было, когда возраст Вселенной составлял 3 млрд лет, ответ зависел бы от того, по чьим часам вы отмеряете эти 3 млрд лет. Вот тогда было бы сложно. К счастью, наша Вселенная не имеет столько симметрии, чтобы сделать время бессмысленным, но имеет достаточно симметрии, чтобы мы могли избежать таких сложностей, позволяя нам говорить о её общем возрасте и её общей эволюции во времени.

Итак, теперь обратим внимание на эту эволюцию и рассмотрим историю Вселенной.

Растяжение ткани

История Вселенной звучит как нечто грандиозное, но в рамках грубого, эскизного наброска является неожиданно простой и зависит по большому счёту всего от одного существенного факта: Вселенная расширяется. Поскольку это является самымцентральным элементом космической истории и, несомненно, вообще является одним из наиболее глубоких открытий, сделанных когда-либо, рассмотрим прежде, как это стало известно.

В 1929 г. Эдвин Хаббл, используя 100-дюймовый телескоп в обсерватории Маунт-Вильсон в Пасадене, штат Калифорния, обнаружил, что пара дюжин галактик, которые он смог обнаружить, все разбегаются в стороны. {105} Фактически Хаббл выяснил, что чем дальше галактика, тем быстрее она удаляется. Чтобы дать представление о величинах, заметим, что более полные версии оригинальных наблюдений Хаббла (изучались тысячи галактик, в том числе с использованием космического телескопа «Хаббл») показывают, что галактики, которые удалены от нас на 100 млн световых лет, удаляются со скоростью около 10,2 млн км/ч, те же, до которых 200 млн световых лет, удаляются в два раза быстрее, около 20,4 млн км/ч, а те, до которых 300 млн световых лет, улетают в три раза быстрее, около 30,6 млн км/ч, и т. д. Открытие Хаббла было шокирующим, поскольку господствовавшие научные и философские убеждения состояли в том, что Вселенная, в большом масштабе, должна быть статической, вечной и неизменной. Но Хаббл одним ударом вдребезги разбил эту точку зрения. И в поразительном соответствии теории и эксперимента, общая теория относительности Эйнштейна оказалась способной обеспечить прекрасное объяснение открытия Хаббла.

Действительно, не нужно думать, что получить объяснение слишком сложно. В конце концов, если вы, проходя мимо завода, вдруг увидите, что во все стороны от него летят различные материалы, то вероятно подумаете, что на заводе что-то взорвалось. Если вы проследите назад по времени пути металлических кусков и бетонных блоков, вы найдёте, что все они сходятся в месте, которое является вероятным кандидатом на место взрыва. По тем же самым причинам, поскольку вид с Земли – как свидетельствуют наблюдения Хаббла и последующие – показывает, что галактики разлетаются, вы можете подумать, что наше положение в пространстве было местом древнего взрыва, который однородно разбросал исходный материал звёзд и галактик. Проблема с этой теорией в том, что она выделяет одну область в пространстве – нашу область – как уникальную, поскольку делает её местом рождения Вселенной. Будь так, это повлекло бы за собой глубокую асимметрию: физические условия в областях, удалённых от изначального взрыва – удалённых от нас, – сильно отличались бы от условий здесь. Поскольку в астрономических данных нет подтверждения такой асимметрии и, более того, поскольку мы с большим подозрением относимся к антропоцентрическим объяснениям, замешанным на докоперниковском мышлении, требуется более изощрённая интерпретация открытия Хаббла, в которой наше положение не занимает выделенного места в космосе.

Общая теория относительности обеспечивает такую интерпретацию. В этой теории Эйнштейн выяснил, что пространство и время являются подвижными и растяжимыми, а не жёсткими и раз и навсегда фиксированными; и он дал уравнения, которые точно говорят, как пространство и время откликаются на присутствие материи и энергии. В 1920-е гг. русский математик и метеоролог Александр Фридман и бельгийский священник и астроном Жорж Леметр независимо проанализировали уравнения Эйнштейна применительно ко всей Вселенной, и оба нашли нечто поразительное. Точно так же, как из-за гравитационного притяжения Земли бейсбольный мяч, запущенный кетчером свечой вверх, должен либо двигаться вверх, либо падать вниз, но, определённо, не может стоять на месте (исключая одно мгновение, когда он достигает своей высшей точки), так и Фридман и Леметр обнаружили, что из-за гравитационного притяжения материи и излучения, распространяющегося по всему космосу, ткань пространства должна либо растягиваться, либо сжиматься, но что она не может сохранять фиксированного размера. Фактически, это один из редких примеров, в которых метафора схватывает не только суть физики, но также и её математическое содержание, поскольку, как оказалось, уравнения, управляющие высотой полёта бейсбольного мяча над землёй, почти идентичны уравнениям Эйнштейна, управляющим размером Вселенной. {106}

Подвижность пространства в общей теории относительности даёт способ для глубокого объяснения открытия Хаббла. Вместо того чтобы объяснять разбегание галактик космической версией взрыва на заводе, общая теория относительности говорит, что в течение миллиардов лет пространство растягивается. И по мере разбухания пространство растаскивает галактики друг от друга, подобно тому как чёрные пятнышки на посыпанном маком пироге удаляются друг от друга, когда тесто поднимается в печи. Так что причина движения галактик в разные стороны нево взрыве, который имел место внутри пространства. Нет, движение в разные стороны возникает из непрекращающегося растяжения самого пространства.

Чтобы лучше ухватить эту ключевую идею, подумаем также о чрезвычайно полезной модели расширяющейся Вселенной в виде воздушного шара, которую часто используют физики (аналогия, столь же давняя, как весёлая карикатура, которую вы можете увидеть в примечании {107} и которая появилась в голландской газете в 1930 г. после интервью с Виллемом де Ситтером, учёным, который внёс большой вклад в космологию). Эта аналогия уподобляет наше трёхмерное пространство двумерной поверхности сферического воздушного шара (как на рис. 8.2 а), который раздувается до всё большего и большего размера. Галактики представлены многочисленными равномерно распределёнными монетками пенни с портретом Линкольна, приклеенными к поверхности шара. Так как шар раздувается, все монетки удаляются друг от друга, обеспечивая простую аналогию того, как расширяющееся пространство разносит галактики.

Рис. 8.2.( а) Если равномерно распределённые монетки приклеены к поверхности сферы, вид, который увидит один Линкольн, изображённый на монетке, будет таким же, который увидит любой другой. Это соответствует тому, что вид из любой галактики во Вселенной в среднем будет таким же, как из любой другой. ( б) Если сфера раздувается, расстояния между всеми монетками увеличиваются. Более того, чем дальше монетки друг от друга разнесены на ( а), тем больше увеличится между ними расстояние на ( б). Это хорошо согласуется с измерениями, которые показывают, что чем более удалена от данной точки отсчёта галактика, тем быстрее она удаляется от этой точки. Отметим, что ни одна монетка не была выделена как специальная, что также согласуется с нашей уверенностью, что во Вселенной ни одна галактика не является как-то выделенной или центром расширения пространства

Важная особенность этой модели состоит в том, что имеется полная симметрия монеток, поскольку вид, который наблюдает какой-либо отдельно взятый Линкольн, будет таким же, как и вид, который наблюдает любой другой Линкольн. Чтобы показать это, представьте, что вы уменьшились, попали на монетку и обозреваете все направления вдоль поверхности шара (вспомним, что в этой аналогии поверхность шара представляет всё пространство, так что взгляд не вдоль поверхности шара лишён смысла). Что вы будете видеть? Конечно, вы увидите монетки, удаляющиеся от вас во всех направлениях, так как шар раздувается. А если вы перейдёте на другую монетку, что вы будете наблюдать? Симметрия гарантирует, что вы будете видеть то же самое: монетки, разбегающиеся во всех направлениях. Этот осязаемый образ хорошо подкрепляет наши убеждения – при поддержке всё более точных астрономических исследований, – что наблюдатель в любой из более чем 100 млрд галактик Вселенной, вглядывающийся в своё ночное небо через мощный телескоп, будет в среднем видеть образ, сходный с тем, что видим мы: окружающие галактики, удаляющиеся прочь во всех направлениях.

Итак, в отличие от взрыва на заводе внутри фиксированного заранее и уже существующего пространства, в рассматриваемой ситуации движение в разные стороны возникает вследствие того, что само пространство растягивается, поэтому не нужна выделенная точка – ни особая монетка, ни особая галактика, – являющаяся центром расходящегося движения. Каждая точка – каждая монетка, каждая галактика – выступает абсолютно наравне с любой другой. Вид из любого места кажетсяпохожим на вид из центра взрыва: каждый Линкольн видит всех других Линкольнов удаляющимися прочь; наблюдатель, вроде нас, в любой галактике видит все другие галактики разбегающимися. Но поскольку это верно для всех положений, не существует специального или уникального места, которое было бы центром, из которого происходит расходящееся движение.

Более того, эта картина не только качественно объясняет такое разбегание галактик, которое является пространственно однородным, но она также объясняет количественные детали, обнаруженные Хабблом и подтверждённые с большей точностью последующими наблюдениями. Как видно из рис. 8.2 б, если воздушный шар раздувается в течение некоторого интервала времени, например, удваиваясь в размере, то все пространственные расстояния будут также удвоены: монетки, которые находились на расстоянии 1 дюйм, теперь будут на расстоянии 2 дюйма, монетки, которые находились на расстоянии 2 дюйма, теперь будут на расстоянии 4 дюйма, монетки, которые находились на расстоянии 3 дюйма, теперь будут на расстоянии 6 дюймов и т. д. Так что в течение любого заданного промежутка времени увеличение расстояний между двумя монетками пропорционально начальному расстоянию между ними. А поскольку большее увеличение расстояния за данный промежуток времени означает большую скорость, монетки, которые удалены дальше друг от друга, разлетаются быстрее. В сущности, чем дальше находятся друг от друга две монетки, тем больше поверхности воздушного шара находится между ними и тем быстрее они разлетаются в стороны, когда шар раздувается. Применяя точно такие же рассуждения к пространству и содержащимся в нём галактикам, мы получаем объяснение наблюдений Хаббла. Чем дальше находятся две галактики, тем больше пространства имеется между ними, и тем быстрее они будут разлетаться друг от друга при расширении пространства.

Связывая наблюдаемое движение галактик с расширением пространства, общая теория относительности даёт объяснение, которое не только трактует все положения в пространстве симметрично, но также одним махом объясняет все результаты Хаббла. Это объяснение, в котором преодолевается исключительность нашего положения во Вселенной, решает задачу настолько элегантно, утончённо симметрично и с количественной точностью, что физики рассматривают его как слишком красивое, чтобы быть неверным. В настоящее время имеется практически полное общее согласие в том, что ткань пространства растягивается.


    Ваша оценка произведения:

Популярные книги за неделю