355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Брайан Грин » Ткань космоса. Пространство, время и текстура реальности » Текст книги (страница 18)
Ткань космоса. Пространство, время и текстура реальности
  • Текст добавлен: 19 сентября 2016, 13:25

Текст книги "Ткань космоса. Пространство, время и текстура реальности"


Автор книги: Брайан Грин


Жанр:

   

Физика


сообщить о нарушении

Текущая страница: 18 (всего у книги 52 страниц)

Делая шаг назад

Я был несколько шокирован, когда впервые столкнулся с этой идеей много лет назад. Вплоть до того момента я думал, что довольно хорошо понимаю концепцию энтропии, но дело в том, что, следуя учебникам, которые я изучал, я всегда рассматривал приложения энтропии только для будущего. Но, как мы только что видели, в то время как рост энтропии в приложении к будущему подкрепляет нашу интуицию и ощущения, рост энтропии в приложении к прошлому совершенно противоречит им. Может быть это и не настолько плохо, как если бы вы вдруг узнали, что вас предал старый друг, но для меня это было похоже.

Тем не менее иногда хорошо проводить судебное разбирательство не слишком быстро, и очевидная неспособность энтропии соответствовать ожиданиям представляет как раз тот самый случай. Как вы, вероятно, думаете, мысль о том, что всё, с чем мы знакомы, просто вдруг появилось, настолько же привлекательна, сколь и тяжела для принятия. И это не «просто потому», что такое объяснение Вселенной оспаривает достоверность всего, что мы считаем реальным и важным. Без ответа остаются и критические вопросы. Например, чем более упорядоченной Вселенная является сегодня – чем больше провал на рис. 6.4, – тем более удивительным и невероятным является статистическое отклонение, которое требуется, чтобы привести к его возникновению. Так что если бы Вселенная могла срезать углы, делая сразу так, чтобы вещи более или менее выглядели похожими на то, что мы сейчас видим, одновременно экономя на реальном количестве порядка, то вероятностные рассуждения приводили бы нас к уверенности, что она так и делает. Но когда мы исследуем Вселенную, то кажется, что имеется большое количество потерянных возможностей, поскольку имеется много вещей, которые более упорядочены, чем должны быть. Если бы Майкл Джексон не записал песню «Триллер», и многие миллионы копий этого альбома, которые распространились по всему миру, стали частью аномальной флуктуации в направлении более низкой энтропии, то отклонение было бы намного менее экстремальным, если бы были сформированы только миллион, или полмиллиона или только несколько альбомов. Если эволюция никогда не происходила, и мы, люди, возникли здесь благодаря аномальному скачку в направлении более низкой энтропии, отклонение было бы намного менее экстремальным, если бы не существовало такой последовательной и упорядоченной записи эволюции в окаменелостях. Если Большой взрыв никогда не происходил и более чем 100 млрд галактик, которые мы видим сегодня, возникли как аномальный скачок в сторону более низкой энтропии, отклонение было бы менее экстремальным, если бы было 50 млрд, или 5000, или только несколько, или только одна галактика. Итак, если идея, что наша Вселенная является статистической флуктуацией – счастливой случайностью, – имеет хотя бы некоторые основания, необходимо обратиться к вопросу, как и почему Вселенная зашла так далеко и достигла состояния такойнизкой энтропии.

Ещё более тягостно, если вы в самом деле не можете доверять памяти и записям, тогда вы также не можете доверять и законам физики. Их применимость основывается на многочисленных экспериментах, положительные результаты которых проверяются только теми же самыми памятью и записями. Так что все без исключения рассуждения, основанные на симметрии законов физики относительно обращения времени, должны быть поставлены под вопрос, подрывая при этом наше понимание энтропии и все основы настоящего обсуждения. Принимая вывод, что Вселенная – это редкая статистическая флуктуация из конфигурации полного беспорядка, мы быстро попадём в затруднительное положение, в котором теряется всякое понимание, включая ту самую цепочку рассуждений, которая и привела нас к рассмотрению такого эксцентричного объяснения. [40]40
  Тесно связанная с этим особенность заключается в следующем: если мы убедили себя в том, что мир, который мы видим прямо сейчас, только что собрался из полного беспорядка, то точно такие же рассуждения, но привлекаемые в более поздний момент времени, потребуют отказаться от наших текущих убеждений и, напротив, объяснить упорядоченный мир более ранней флуктуацией. Так что на этом пути размышлений каждый следующий момент сводит на нет убеждения, содержащиеся в каждом предыдущем моменте, – определённо малоубедительный способ объяснения космоса.


[Закрыть]

Итак, отбросив сомнения и усердно следуя математике энтропии и законам физики – концепциям, которые вместе говорят нам, что с подавляющей вероятностью беспорядок будет возрастать как в будущее, так ив прошлое от любого заданного момента времени, – мы по шею погружаемся в зыбучий песок. И хотя это может звучать не слишком приятно, но это очень хорошая вещь по двум причинам. Во-первых, это с определённостью показывает, что недоверие к памяти и записям – нечто, над чем мы интуитивно насмехаемся, – не имеет оснований. Во-вторых, достигнув точки, где все наши аналитические построения оказались на грани обвала, мы понимаем, что должнобыть что-то критически важное, что осталось за пределами наших рассуждений.

Следовательно, чтобы избежать пучины объяснений, мы спросим себя: какие новые идеи или концепции помимо энтропии и помимо симметрии законов природы относительно обращения времени нам нужны, чтобы вернуть доверие к нашей памяти и нашим записям – нашим ощущениям, что кубик льда при комнатной температуре тает, но не кристаллизуется, что сливки и кофе смешиваются, но не разделяются, что яйца разбиваются, но не восстанавливаются? Короче говоря, куда нас приведёт попытка объяснить асимметричное разворачивание событий в пространстве-времени с энтропией, которая растёт по направлению в будущее, но уменьшаетсяпо направлению в прошлое? Возможно ли это?

Да, возможно. Но только если имелось весьма специфическое прошлое. {79}

Яйцо, курица и Большой взрыв

Чтобы увидеть, что это означает, выберем в качестве примера изначально низкоэнтропийное, полностью сформированное яйцо. Как возникла такая низкоэнтропийная физическая система? Понятно, что, вернув доверие к нашей памяти и записям, мы все знаем ответ: яйцо появилось из курицы. Также знаем, что курица появляется из яйца, которое появляется из курицы, которая появляется из яйца, и т. д. Но, как настойчиво подчёркивал английский математик Роджер Пенроуз, {80} история куриц и яиц на самом деле учит нас кое-чему глубокому и приводит к некоторой определённости.

Курица или любой живой организм есть физическая система с поразительно высокой упорядоченностью. Откуда возникла такая организация и как она поддерживается? Курица остаётся живой, причём достаточно долго, чтобы произвести яйца, питаясь и дыша. Пища и кислород обеспечивают материалы, из которых живой организм извлекает необходимую энергию. Но имеется критически важное свойство этой энергии, которое необходимо подчеркнуть, если вы действительно хотите понять, что происходит. По ходу своей жизни курица, которая остаётся здоровой, принимает как раз примерно столько энергии в виде пищи, сколько она возвращает в окружающую среду, главным образом в форме тепла и других отходов, генерируемых её метаболическими процессами и ежедневной деятельностью. Если бы не было такого баланса между приходящей и уходящей энергией, курица становилась бы всё больше и больше.

Важный момент состоит в том, что не все формы энергии эквивалентны. Энергия, которую курица отдаёт окружающей среде в форме тепла, в высшей степени неупорядочена – она часто приводит к тому, что некоторые молекулы воздуха, теснящиеся тут и там, сталкиваются более интенсивно, чем если бы этой энергии не было. Такая энергия имеет высокую энтропию – она распылена и перемешана с окружающей средой – и поэтому не может быть легко приспособлена для каких-либо полезных целей. Напротив, энергия, которую курица получает из пищи, имеет низкую энтропию и готова к использованию для поддержания жизни. Так курица и, фактически, любая форма жизни является каналом, собирающим низкоэнтропийную энергию, и выдающим наружу высокоэнтропийную энергию.

Это понимание сдвигает вопрос о том, откуда возникла низкая энтропия яйца, на один шаг назад. Как получается, что источник энергии для курицы, пища, имеет столь низкую энтропию?

Как мы объясним этот аномальный источник порядка? Если пища имеет животное происхождение, мы снова приходим к исходному вопросу: почему животные имеют такую низкую энтропию? Но если мы проследуем по пищевой цепочке, мы в конечном счёте придём к животным (вроде меня), которые едят только растения. Как растения и производимые ими продукты в виде фруктов, овощей и зелени поддерживают низкую энтропию? С помощью фотосинтеза растения используют солнечный свет, чтобы разделить углекислый газ на кислород, который возвращается назад в окружающую среду, и углерод, который растения используют, чтобы расти и цвести. Так мы можем проследить за низкоэнтропийными источниками энергии неживотного происхождения вплоть до Солнца.

Это отодвигает вопрос объяснения низкой энтропии ещё на шаг назад: откуда взялось наше высокоупорядоченное Солнце? Солнце сформировалось около 5 млрд лет назад из первичного рассеянного облака газа, которое начало вращаться и сгущаться под воздействием взаимного гравитационного притяжения всех его составляющих частей. По мере того как газовое облако становилось плотнее, гравитационное притяжение между частями становилось сильнее, заставляя облако всё больше коллапсировать в себя. И по мере того как гравитация сжимала облако всё сильнее, оно разогревалось. В конечном счёте оно разогрелось достаточно, чтобы начались ядерные процессы, которые сгенерировали выходящее наружу излучение, достаточное для того, чтобы помешать дальнейшему гравитационному сжатию газа. Родилась горячая, стабильная, ярко сияющая звезда.

Тогда откуда возникло рассеянное облако газа? Вероятно, оно сформировалось из остатков старых звёзд, которые достигли конца своей жизни, став сверхновыми, и исторгли своё содержимое в пространство. Откуда взялся рассеянный газ, отвечающий за появление этих ранних звёзд? Мы думаем, что газ сформировался как последствие Большого взрыва. Наши наиболее разработанные теории возникновения Вселенной – наши самые разработанные космологическиетеории – говорят, что в момент, когда Вселенная была пару минут отроду, она была заполнена почти однородным горячим газом, состоящим примерно на 75% из водорода, на 23% из гелия и из небольшого количества дейтерия и лития. Существенным моментом является то, что этот газ, заполняя Вселенную, имел крайне низкуюэнтропию. Большой взрыв дал старт Вселенной в состоянии низкой энтропии, и это состояние явилось источником упорядоченности, которую мы видим в настоящее время. Иными словами, текущий порядок является космологическим реликтом. Теперь рассмотрим это важное объяснение немного более детально.

Энтропия и гравитация

Поскольку теория и наблюдения показывают, что в течение нескольких минут после Большого взрыва изначальный газ был однородно распределён по юной Вселенной, вы можете подумать, обратившись к нашей ранней дискуссии о бутылке колы и её молекулах углекислого газа, что изначальный газ был в высокоэнтропийном, неупорядоченном состоянии. Но, оказывается, это неверно. Наша прежнее обсуждение энтропии, полностью игнорирующее гравитацию, имело смысл, поскольку гравитация почти не играет роли в поведении минимального количества газа, выходящего из бутылки колы. И в этом предположении мы выяснили, что однородно распределённый газ имеет высокую энтропию. Но когда гравитация имеет значение, всё становится по-другому. Гравитация есть универсальная сила притяжения; поэтому, если вы имеете достаточно большую массу газа, каждая область газа будет притягиваться к каждой другой, и это заставит газ распасться на сгустки, что напоминает фрагментацию воды на капли на листе вощёной бумаги, вызываемую поверхностным натяжением. Когда гравитация имеет значение, как это было в высокоплотной ранней Вселенной, нормой является скопление в кучу, а не однородность; это и есть состояние, в направлении которого газ будет стремиться эволюционировать, как показано на рис. 6.5.

Рис. 6.5.Для гигантских объёмов газа, когда гравитация имеет существенное значение, атомы и молекулы эволюционируют из однородной равномерно распределённой конфигурации в конфигурацию, включающую всё бо́льшие и более плотные сгущения

Хотя сгущения являются более упорядоченными, чем исходный рассеянный газ, – примерно как игровая комната с игрушками, которые аккуратно разложены по шкафам и ящикам, более упорядочена, чем комната, в которой игрушки разбросаны по полу, – в расчёте энтропии надо рассчитывать вклад от всехисточников. Для игровой комнаты уменьшение энтропии в процессе перехода от беспорядочно разбросанных игрушек к игрушкам, разложенным по шкафам и ящикам, более чем компенсируется ростом энтропии от сгорающих жиров и выделяемого тепла телами родителей, которые потратили часы, чтобы всё вычистить и привести в порядок. Аналогично, в первичном рассеянном газовом облаке вы обнаружите, что уменьшение энтропии при формировании упорядоченных сгустков более чем компенсируется за счёт выделения тепла при сжатии газа и, в конце концов, за счёт огромного количества тепла и света, высвобождающегося при возникновении ядерных процессов.

Это важный момент, который временами упускается из вида. Подавляющее стремление в направлении беспорядка не означает, что не могут формироваться организованные структуры, вроде звёзд и планет, или организованные формы жизни, вроде растений и животных. Конечно, могут. И, очевидно, формируются. Что определяет второй закон термодинамики, так это то, что при формировании порядка всегда имеется более чем компенсирующий генератор беспорядка. Итог энтропийного баланса всё равно находится в плюсе, энтропия растёт, хотя определённые составляющие системы становятся более упорядоченными. И из фундаментальных сил природы гравитация – единственная, которая использует это свойство энтропии во всей полноте. Поскольку гравитация действует через громадные расстояния и является универсально притягивающей силой, она подстёгивает формирование упорядоченных сгустков газа – звёзд, испускающих свет, который мы видим на чистом ночном небе, в полном соответствии с итоговым балансом в пользу роста энтропии.

Чем более сжаты, плотны и массивны сгущения газа, тем больше общая энтропия. Чёрные дыры – наиболее экстремальная форма гравитационного сгущения и сжатия во Вселенной, дошедшая до предела. Гравитационное притяжение чёрной дыры настолько сильно, что ничто, даже свет, не может вырваться, что объясняет, почему чёрные дыры являются чёрными. Поэтому, в отличие от обычных звёзд, чёрные дыры упрямо удерживают всю энтропию, которую они произвели: ничто не может вырваться из мощнейшей гравитационной хватки чёрной дыры. {81} Фактически, как мы будем обсуждать в главе 16, ничто во Вселенной не содержит больше беспорядка (больше энтропии), чем чёрная дыра. [41]41
  Это значит, что чёрная дыра заданного размера содержит больше энтропии, чем что-либо другое того же размера.


[Закрыть]
Это имеет простое интуитивное объяснение: высокая энтропия означает, что огромное количество перестановок составляющих частей объекта останутся незамеченными. Поскольку мы не можем видеть внутренность чёрной дыры, невозможно отследить любую перегруппировку её составляющих, какими бы ни были эти составляющие, и поэтому чёрная дыра имеет максимальную энтропию. Когда гравитация напрягает свои мускулы до предела, она становится самым эффективным генератором энтропии в известной Вселенной.

Теперь добрались до последней инстанции. Исходным источником порядка, низкой энтропии, должен быть сам Большой взрыв.На своей самой ранней стадии, вместо того чтобы быть заполненной чудовищными контейнерами энтропии, вроде чёрных дыр, как мы могли бы ожидать на основе вероятностного рассмотрения, по некоторым причинам рождающаяся Вселенная была заполнена горячей и однородной газовой смесью водорода и гелия. Хотя при плотностях настолько низких, что можно игнорировать гравитацию, такая конфигурация имела бы высокую энтропию, ситуация становится совершенно иной, когда гравитацией нельзя пренебречь; тогда однородный газ имеет крайне низкую энтропию. По сравнению с чёрными дырами, рассеянный, почти однородный газ пребывал в состоянии с крайне низкой энтропией. С тех пор, в соответствии со вторым законом термодинамики, общая энтропия Вселенной постоянно растёт; постепенно возрастает общее итоговое количество беспорядка. Спустя примерно миллиард лет или около того после Большого взрыва гравитация заставила изначальный газ собраться в сгущения, и эти сгустки, в конце концов, сформировали звёзды, галактики и некоторые более мелкие сгущения, которые стали планетами. По меньшей мере у одной такой планеты была рядом звезда, обеспечивающая относительно низкоэнтропийный источник энергии, который позволил развиться низкоэнтропийным формам жизни. Среди таких форм жизни со временем возникла курица, которая отложила яйцо, которое нашло свой путь к вашему кухонному столу и, к вашему огорчению, это яйцо продолжило неотвратимую траекторию к состоянию с более высокой энтропией, скатившись со стола и разбившись об пол. Яйцо разбивается скорее, чем восстанавливается, поскольку это отражает стремление вперёд к более высокой энтропии, которое было инициировано состоянием с необычайно низкой энтропией, с которого началась Вселенная. Невероятный порядок в начале – это то, с чего всё началось, и мы живём в процессе последовательного перехода ко всё большему беспорядку.

В этомсостоит та самая ошеломляющая связь, которую мы пытались найти на протяжении всей этой главы. Разбивающееся яйцо говорит нам нечто глубокое о Большом взрыве.Оно говорит нам, что Большой взрыв дал начало необычайно упорядоченному рождающемуся космосу.

Та же идея применима ко всем другим примерам. Причина, по которой вновь подбрасываемые в воздух нескреплённые страницы романа «Война и мир»приходят в состояние с более высокой энтропией, в том, что они начиналис высокоупорядоченной низкоэнтропийной формы. Начальная упорядоченная форма пачки страниц подготовила их к росту энтропии. Наоборот, если страницы изначально были совершенно вне числового порядка, подбрасывание их в воздух вряд ли изменит энтропию. Так что вопрос снова состоит в том, как они стали с самого начала такими упорядоченными? Ясно, что Толстой написал и представил их в таком порядке, а наборщик текста и переплётчик следовали его инструкциям. А высокоупорядоченные тело и ум Толстого, а также и издателей книги, которые позволили им, каждому в свою очередь, создать том такого высокого порядка, могут быть объяснены, следуя той же цепочке рассуждений, которую мы уже прошли для яйца, которая снова приведёт нас назад к Большому взрыву. А как насчёт наполовину растаявших кубиков льда, которые вы видели в 10:30 вечера? Теперь, раз уж мы доверяем памяти и записям, вы вспомните, что ещё до 10:00 вечера бармен кинул сформированные кубики льда в ваш стакан. Он взял кубики льда из морозильника, который был разработан умелым инженером и изготовлен талантливым механиком, которые способны создавать нечто такого высокого порядка потому, что они сами являются высоко организованными формами жизни. И снова мы последовательно сводим их высокую организацию к высокоупорядоченному началу Вселенной.

Важное утверждение

Откровение, к которому мы пришли, заключается в том, что мы можем доверять нашей памяти о прошлом с более низкой, а не более высокой энтропией, только если Большой взрыв – процесс, событие или явление, которое привело Вселенную к существованию, – дал старт Вселенной в очень специфическом, высокоупорядоченном состоянии с низкой энтропией. Без этого важного добавления наши ранние рассуждения, что энтропия должна расти как в будущее, так и в прошлое от любого заданного момента, приводят к заключению, что весь порядок, который мы видим, возник из случайной флуктуации обыкновенного неупорядоченного состояния высокой энтропии, а это заключение, как мы уже видели, подрывает сами рассуждения, на которых оно основано. Но, включая в наш анализ маловероятную низкоэнтропийную начальную точку Вселенной, мы теперь видим, что правильное заключение состоит в том, что энтропия растёт по направлению в будущее, поскольку вероятностные рассуждения полностью и без ограничений работают в этом направлении; но энтропия не растёт в прошлое, поскольку такоеиспользование вероятностного обоснования находится в противоречии с нашим новым пониманием, что Вселенная начиналась с состояния с очень низкой, а не высокой, энтропией. {82} Так что условия рождения Вселенной оказываются решающими для направления стрелы времени. Направление в будущее есть в действительности направление возрастания энтропии. Стрела времени – факт, что события начинаются так и заканчиваются эдак, но никогда не начинаются эдак и заканчиваются так, – начинает свой полёт из высокоупорядоченного, низкоэнтропийного состояния Вселенной в её начале. {83}


    Ваша оценка произведения:

Популярные книги за неделю