Текст книги "Ткань космоса. Пространство, время и текстура реальности"
Автор книги: Брайан Грин
Жанр:
Физика
сообщить о нарушении
Текущая страница: 43 (всего у книги 52 страниц)
Часть V. Реальность и воображение
Глава 14. Вверх в небеса и вниз на землю
Эксперименты с пространством и временем
Мы прошли долгий путь со времён Эмпедокла из Агридженто, объяснявшего Вселенную с помощью земли, воздуха, огня и воды. И бо́льшая часть достигнутого нами прогресса, со времён Ньютона и до революционных открытий XX в., впечатляюще подкреплялась экспериментальным подтверждением точных и детальных теоретических предсказаний. Но с середины 80-х гг. XX в. мы стали жертвами собственного успеха. В непрестанном стремлении ещё дальше продвинуть границы понимания наши теории достигли областей, недостижимых для современной технологии.
Тем не менее при должном усердии и удаче многие передовые идеи будут проверены в течение следующих десятилетий. Как мы увидим в данной главе, планируемые или проводимые сейчас эксперименты могут пролить свет на существование дополнительных измерений, на состав тёмной материи и тёмной энергии, на происхождение массы и на океан Хиггса, на космологию ранней Вселенной, на суперсимметрию и, возможно, на достоверность самой теории струн. И если нам чуть больше улыбнётся удача, то могут быть окончательно проверены некоторые многообещающие передовые идеи, касающиеся единой теории, природы пространства и времени и нашего космического начала.
Эйнштейновское увлечениеВ течение десятилетий, направленных на создание общей теории относительности, Эйнштейн черпал своё вдохновение из множества источников. Самой влиятельной оказалась геометрия кривых поверхностей, разработанная в XIX в. рядом математических светил, включая Карла Фридриха Гаусса, Яноша Бояи, Николая Лобачевского и Георга Бернхарда Римана. Как мы говорили в главе 3, Эйнштейн также был вдохновлён идеями Эрнста Маха. Напомним, что Мах отстаивал реляционную концепцию пространства: в его представлении пространство служит языком для определения положения одного объекта по отношению к другому, но само оно не является независимой сущностью. Сначала Эйнштейн был твёрдым сторонником точки зрения Маха, поскольку она отражала крайнюю степень относительности, которая могла бы быть поддержана теорией относительности. Но со временем Эйнштейн осознал, что общая теория относительности не полностью включает в себя идеи Маха. Согласно общей теории относительности поверхность воды в ведре Ньютона, вращающемся в совершенно пустом пространстве, примет вогнутую форму, и это конфликтует с чисто реляционной точкой зрения, поскольку подразумевает концепцию абсолютного ускорения. Но всё же общая теория относительности действительно включает в себя некоторые элементы точки зрения Маха, и в ближайшие несколько лет планируется провести эксперимент, который разрабатывался в течение сорока лет и обойдётся в более чем 500 млн долларов. В этом эксперименте будет проверено одно из главных положений во взглядах Маха.
Ещё в 1918 г. австрийские физики Джозеф Ленс и Ханс Тирринг на основе общей теории относительности показали, что, подобно тому как массивные объекты искривляют пространство и время (подобно шару для игры в боулинг, положенному на батут), так и вращающиеся предметы увлекают за собой пространство (и время), подобно вращающемуся камню, погружённому в ведро с сиропом. Этот эффект, названный эффектом увлечения инерциальной системы отсчёта, означает, к примеру, что астероид, свободно падающий на быстро вращающуюся нейтронную звезду или чёрную дыру, будет захвачен в воронку вращающегося пространства и начнёт двигаться по скрученной траектории. Название эффекта связано с тем, что с точки зрения астероида (в системе отсчёта, связанной с астероидом) его вовсе ничего никуда не увлекает, а падает он прямо вниз по координатной сетке. Но поскольку пространство закручено (как на рис. 14.1), то и сетка загибается, из-за чего понятие «прямо вниз» с точки зрения астероида отличается от этого понятия с точки зрения отдалённого наблюдателя.
Рис. 14.1.Вращающийся массивный объект увлекает за собой пространство (свободно падающую систему отсчёта)
Чтобы увидеть связь с точкой зрения Маха, подумайте об эффекте увлечения, вызываемом вращающимся массивным объектом, но полым внутри. Расчёты, начатые Эйнштейном в 1912 г. (ещё даже до завершения общей теории относительности), затем значительно продвинутые в 1965 г. Дитером Бриллом и Джеффри Коэном и окончательно завершённые в 1985 г. немецкими физиками Гербертом Пфистером и К. Брауном, показали, что пространство внутри полой сферы тоже будет захватываться вращательным движением и закручиваться как в водовороте. {184} Если неподвижное ведро с водой (неподвижное по отношению к удалённому наблюдателю) поместить внутрь такой вращающейся сферы, то, согласно расчётам, вращающееся пространство окажет силовое воздействие на неподвижную воду, вынудив её приподняться вблизи стенки ведра, из-за чего поверхность воды примет вогнутую форму.
Этот результат безмерно порадовал бы Маха. Хотя ему могло бы не понравиться описание в терминах «вращающегося пространства» (поскольку эта фраза подразумевает, что пространство является некой сущностью), но его чрезвычайно обрадовал бы тот факт, что именно относительноевращательное движение между сферой и ведром вызывает изменение формы поверхности воды. Действительно, если масса сферической оболочки достаточно велика, так что оказываемое ею гравитационное воздействие сравнимо с гравитационным воздействием со стороны всей Вселенной, то, согласно расчётам, не важно, считать ли сферу вращающейся вокруг ведра или ведро вращающимся внутри сферы – результат от этого не изменится. Как и утверждал Мах, имеет значение лишь относительное вращение сферы и ведра. И поскольку в расчётах используются только уравнения общей теории относительности, то рассмотренный пример явно отражает точку зрения Маха в теории Эйнштейна. (Тем не менее общая теория относительности расходится со стандартным рассуждением в духе Маха, предсказывающим, что поверхность останется плоской, если ведро будет вращаться в совершенно пустой Вселенной. Пфистер и Браун показали лишь то, что достаточно массивная сфера может полностью блокировать обычное влияние пространства за пределами самой сферы.)
В 1960 г. Леонард Шифф из Стэнфордского университета и Жорж Пью из Министерства обороны США независимо предположили, что эффект увлечения, предсказываемый общей теорией относительности, может быть экспериментально проверен с использованием вращательного движения Земли вокруг своей оси. Дело вот в чём. Согласно ньютоновской физике вращающийся гироскоп (вращающееся колесо, прикреплённое к оси), находящийся на орбите высоко над поверхностью Земли, будет указывать своей осью в неизменном направлении. Но согласно общей теории относительности ось гироскопа будет медленно смещаться из-за того, что Земля увлекает за собой пространство. Поскольку масса Земли ничтожна по сравнению с массой гипотетической полой сферы, принятой в расчётах Пфистера и Брауна, о которых говорилось выше, то и смещение оси, вызываемое эффектом увлечения, тоже будет ничтожным. Вычисления показали, что если ось гироскопа изначально была нацелена на некую удалённую опорную звезду, то год спустя из-за медленно вращающегося пространства ось гироскопа сместится на стотысячную долю градуса. На такой угол отклоняется секундная стрелка часов приблизительно за две миллионные доли секунды, так что обнаружение такого отклонения представляет собой труднейшую научную, технологическую и инженерную задачу.
После сорока лет исследований и разработок, а также сотни докторских диссертаций на эту тему, группа из Стэнфордского университета, возглавляемая Фрэнсисом Эвериттом и финансируемая НАСА, готова провести этот эксперимент. В течение нескольких ближайших лет их спутник «Gravity Probe B», оснащённый четырьмя самыми стабильными гироскопами, будет выведен на околоземную орбиту с высотой около 700 км, где и попытается измерить эффект увлечения, вызванный вращением Земли. В случае удачи будет получено одно из самых точных подтверждений общей теории относительности, и оно явится первым прямым подтверждением взглядов Маха. {185} Равным образом интригует возможность того, что в экспериментах обнаружится отклонение от предсказаний общей теории относительности. [86]86
В ноябре 2007 г. коллаборация «Gravity Probe B»объявила о подтверждении эффекта увлечения инерциальной системы отсчёта с точностью 30%. При обработке результатов измерений возникли трудности с учётом электрических зарядов в стенках прибора. К марту 2010 г. коллаборация надеется завершить обработку результатов. (Прим. ред.)
[Закрыть]Такая микроскопическая трещина в фундаменте основания общей теории относительности может обернуться как раз тем, что нам требуется, чтобы экспериментально проникнуть в доселе скрытые свойства пространства-времени.
Существенный вывод общей теории относительности состоит в том, что масса и энергия вызывают искажение ткани пространства-времени; мы проиллюстрировали это на рис. 3.10, показав искривлённую координатную сетку пространства вокруг Солнца. Однако на неподвижной иллюстрации невозможно отразить, как развиваются искажения и искривления пространства по мере движения массы и энергии или при изменении их взаимного расположения. {186} Общая теория относительности предсказывает, что, подобно тому как батут принимает фиксированную искривлённую форму, если вы неподвижно на нём стоите, но поднимается и опускается, когда вы прыгаете на нём, так и пространство принимает фиксированную искривлённую форму, если материя совершенно неподвижна, как на рис. 3.10, но по ткани пространства проносится рябь, когда материя движется вперёд-назад. Эйнштейн понял это между 1916 и 1918 гг., когда применил только что написанные уравнения общей теории относительности, чтобы показать, что – во многом подобно тому как колебание электрических зарядов в передающей антенне вызывает электромагнитные волны (так и возникают радиоволны и телевизионные волны) – подобное движение материи (например, при взрыве сверхновой звезды) вызывает гравитационные волны. А поскольку гравитация – суть искажение пространства, то гравитационные волны являются волнами кривизны. Подобно тому как брошенный в пруд камешек вызывает распространяющиеся от места падения волны на поверхности воды, так и вращающаяся по кругу материя вызывает распространяющиеся волны пространства; и согласно общей теории относительности взрыв отдалённой сверхновой тоже подобен космическому камню, брошенному в пруд пространства-времени, как показано на рис. 14.2. На рисунке подчёркивается важная отличительная особенность гравитационных волн: в отличие от электромагнитных, звуковых и поверхностных волн – волн, распространяющихся черезпространство, – гравитационные волны распространяются в пространстве. Они являются распространяющимися искажениями геометрии самого пространства.
Рис. 14.2.Гравитационные волны являются рябью ткани пространства-времени
Хотя гравитационные волны сейчас воспринимаются как следствие общей теории относительности, но в течение многих лет этот вопрос тонул в путанице и разногласиях, по крайней мере отчасти из-за слишком большой приверженности философии Маха. Если бы общая теория относительности полностью включала бы в себя идеи Маха, то «геометрия пространства» явилась бы просто удобным языком для описания положения и движения массивных объектов по отношению друг к другу. В таком представлении пустое пространство было бы просто пустой концепцией, так какой же смысл был бы в волнообразном движении пустого пространства? Многие физики пытались доказать, что предполагаемые волны в пространстве – это всего лишь неверная интерпретация математики общей теории относительности. Но при должном подходе теоретические рассмотрения сходятся на одном верном выводе: гравитационные волны реальны, и по пространству могутраспространяться волны.
С каждым проходящим пиком и впадиной гравитационная волна будет растягивать пространство (и всё в нём) в одном направлении и сжимать пространство (и всё в нём) в перпендикулярном направлении, как это показано на рис. 14.3. В принципе, можно обнаружить прохождение гравитационных волн, периодически измеряя расстояние между различными точками и обнаружив, что отношение этих расстояний периодически меняется.
Рис. 14.3.Проходящая гравитационная волна растягивает объект сначала в одном направлении, затем – в другом (ради наглядности искажение пространства на этом рисунке очень сильно преувеличено)
Но на практике ещё никто не сумел сделать это, так что никто прямо гравитационные волны пока не обнаружил. (Однако есть веское, пусть и косвенное, подтверждение их существования.) {187} Трудность состоит в том, что возмущение от проходящей гравитационной волны обычно чрезвычайно мало. Атомная бомба «Тринити», испытанная 16 июля 1945 г. и равная по мощности 20 тыс. т тротила, вызвала столь яркое свечение, что наблюдателям, находившимся на расстоянии многих километров от места взрыва, нужно было защищать глаза, чтобы не повредить их электромагнитными волнами, которые сгенерировал взрыв. И всё же, даже если бы вы стояли прямо под тридцатиметровой стальной вышкой, на которой была взорвана бомба, то гравитационные волны, порождённые взрывом, растянули бы ваше тело в каком-либо направлении всего лишь на ничтожную долю размера атома. Вот насколько слабы гравитационные возмущения. Это даёт представление о трудности технологических проблем, связанных с обнаружением гравитационных волн. (Поскольку гравитационную волну можно также рассматривать как громадное количество гравитонов, движущихся скоординированным образом, – точно так же, как электромагнитную волну можно считать состоящей из громадного количества скоординированных фотонов, – то это также даёт представление о трудности обнаружения отдельногогравитона).
Конечно, у нас нет никакого специального интереса искать гравитационные волны от взрыва атомного оружия, но ситуация с астрономическими наблюдениями ничуть не легче. Чем ближе к нам и чем массивнее астрономический объект, а также с чем большим ускорением он движется, тем сильнее излучаемые им гравитационные волны. Но даже если взорвётся и станет сверхновой звезда, удалённая от нас на расстояние 10 000 световых лет, то достигшая Земли гравитационная волна растянет метровый стержень лишь на миллионную от миллиардной доли сантиметра, что составляет примерно сотую часть размера атомного ядра. Так что если только не произойдёт невероятное астрономическое событие катастрофического характера относительно недалеко от нас, то обнаружение гравитационной волны потребует аппаратуры, способной регистрировать чрезвычайно малые изменения расстояний.
Учёные, спроектировавшие и построившие лазерный интерферометр LIGO (Laser Interferometer Gravitational Wave Observatory – лазерный интерферометр гравитационно-волновой обсерватории), приняли этот вызов. (Этот проект был запущен совместно Калифорнийским технологическим институтом и Массачусетским технологическим институтом и финансировался Национальным фондом науки США). LIGO является впечатляющей установкой, а ожидаемая чувствительность поражает всяческое воображение. Она состоит из двух полых труб, каждая из которых составляет четыре километрав длину и чуть более метра в ширину; эти трубы расположены в виде гигантской буквы L. Для достижения огромной точности измерения относительной длины труб используется лазерный свет, одновременно посылаемый в вакуумные туннели внутри каждой трубы и отражаемый безупречно отшлифованными зеркалами на концах труб. Идея состоит в том, что если гравитационная волна пройдёт через установку, то она растянет одну трубу относительно другой, и если это растяжение будет достаточно большим, то учёные смогут обнаружить его.
Трубы сделаны столь длинными из-за того, что растяжение и сжатие, вызываемое гравитационной волной, пропорционально длине объекта. Если гравитационная волна растягивает четырёхметровый стержень, скажем, на 10 −20м, то она вытянет четырёхкилометровый стержень уже на 10 −17м, т. е. в тысячу раз больше. Поэтому чем длиннее объект, тем легче обнаружить изменение его длины. С целью усиления этого эффекта в экспериментах LIGO лазерные лучи совершают более сотни пробегов между зеркалами на противоположных концах каждой трубы, что увеличивает «эффективную длину» до 800 км. Благодаря таким уловкам и инженерному искусству установка LIGO сможет обнаружить изменение длины трубы, превосходящее триллионную долю толщины человеческого волоса или сто миллионную долю размера атома.
Но это ещё не всё: на самом деле есть две такие L-образные установки. Одна находится Ливингстоне (штат Луизиана), а другая примерно на расстоянии 3500 км от неё в Хэнфорде (штат Вашингтон). [87]87
В составе проекта LIGO работают три установки. Третья, с длиной плеч 600 м, расположена близ Ганновера, Германия. С мая 2007 г. к анализу результатов LIGO стали присоединяться данные французско-итальянского инструмента VIRGO – гравитационной антенны аналогичной конструкции с длиной плеч 3 км. На начало 2008 г. гравитационные волны не обнаружены. (Прим. ред.)
[Закрыть]Если гравитационная волна от некоего удалённого астрофизического взрыва докатится до Земли, то она должна оказать одинаковое воздействие на каждый детектор, так что любая волна, пойманная в одной экспериментальной установке, должна обнаружиться и в другой. Это важная проверка на состоятельность, поскольку при всех принятых мерах предосторожности возмущения из повседневной жизни (громыхание проезжающего грузовика, скрежет бензопилы, сотрясение от упавшего дерева и т. д.) могут быть приняты за воздействие гравитационных волн. Требование соответствия показаний удалённых детекторов обеспечивает исключение таких ложных проявлений.
Исследователи также аккуратно рассчитали частоты гравитационных волн – количество пиков и впадин, которые должны проходить через детектор каждую секунду, – вызываемых рядом астрофизических явлений, включая взрывы сверхновых, вращательное движение несферических нейтронных звёзд и столкновения чёрных дыр. Без этой информации эксперименты уподобились бы поиску иголки в стоге сена; располагая этой информацией, учёные могут настроить свои детекторы на узкий диапазон частот, представляющий физический интерес. Любопытно, что расчёты показали: частоты некоторых гравитационных волн должны находиться в диапазоне нескольких тысяч колебаний в секунду; если бы это были звуковые волны, они попали бы в диапазон восприимчивости человеческого уха. Объединяющиеся нейтронные звёзды зазвучали бы как щебетание с быстро растущим тоном, а пара сталкивающихся чёрных дыр имитировала бы чириканье воробья, получившего резкий удар в грудь. Существует запутанная какофония гравитационных волн, прокатывающихся по ткани пространства-времени, и если всё пойдёт по плану, то установка LIGO будет первым инструментом, настроившимся на неё. {188}
Самое волнующее заключается в том, что гравитационные волны наследуют два основных свойства гравитации: слабость и вездесущность. Из всех четырёх видов взаимодействий гравитация слабее всего взаимодействует с материей. Это означает, что гравитационные волны могут проходить через материалы, непроницаемые для света, и тем самым открыть доступ в астрофизические области, остававшиеся доселе скрытыми. Более того, поскольку всёподвержено гравитации (тогда как, например, электромагнитная сила воздействует только на объекты, несущие электрический заряд), то всё в состоянии генерировать гравитационные волны и, следовательно, заявлять о своём существовании. Тем самым LIGO знаменует важную поворотную точку в наших способах исследования космоса.
Было время, когда мы могли наблюдать небо лишь невооружённым глазом. В XVII в. Ганс Липпершей и Галилео Галилей изменили такое положение дел; благодаря телескопу перед взором человечества развернулась великая панорама космоса. Но со временем мы поняли, что видимый свет представляет лишь узкий диапазон электромагнитных волн. В XX в. благодаря инфракрасным, радио, рентгеновским и гамма-телескопам космос раскрыл нам чудеса, невидимые в диапазоне длин волн, которые могут воспринимать наши глаза. Теперь, в XXI в., мы снова открываем небеса. С помощью установки LIGO и её дальнейших модернизаций [88]88
Одной из таких модернизаций является запланированный проект LISA (Laser Interferometer Space Antenna – лазерный космический интерферометр), космическая версия LIGO, включающая в себя несколько космических кораблей, разделённых миллионами километров, играющих роль четырёхкилометровых труб LIGO. Установка LIGO будет также спарена с VIRGO, французско-итальянским детектором гравитационных волн, расположенным в окрестностях города Пиза.
[Закрыть]мы увидим космос совершенно по-новому. Вместо электромагнитных мы будем использовать гравитационные волны; вместо электромагнитной мы будем использовать гравитационную силу.
Чтобы оценить революционность этой новой технологии, представьте мир, в котором инопланетные учёные только что открыли, как обнаруживать электромагнитные волны (свет), и подумайте о том, сколь глубоко изменится вскоре их представление о Вселенной. Мы находимся на грани первого обнаружения гравитационных волн и поэтому можем оказаться в аналогичном положении. Тысячелетиями мы вглядывались в космос; теперь, словно впервые в человеческой истории, мы будем вслушиваться в него.
Поиск дополнительных измеренийДо 1996 г. в большинстве теоретических моделей, включающих дополнительные измерения, представлялось, что их пространственная протяжённость имеет порядок планковской длины (10 −33см). Поскольку это на семнадцать порядков меньше предела, разрешимого с помощью современного оборудования, то без открытия новой чудодейственной технологии планковская физика будет оставаться вне досягаемости. Но если дополнительные измерения «велики», т. е. их протяжённость превышает сотую от миллиардной от миллиардной доли метра (10 −20м), что примерно равно миллионной доли размера атомного ядра, то есть надежда.
Как мы говорили в главе 13, если одно из дополнительных измерений «очень велико» (порядка миллиметра), то точные измерения силы гравитации должны вскрыть их существование. Такие эксперименты проводились в течение ряда лет, и их методика быстро совершенствовалась. До сих пор отклонений от закона обратных квадратов, характерного для трёх пространственных измерений, выявлено не было, так что исследователи переходят ко всё более мелким масштабам расстояний. Обнаруженное отклонение потрясло бы, если не сказать большего, основания физики. Оно послужило бы веским доказательством существования дополнительных измерений, доступных только для гравитации, и дало бы косвенное подтверждение сценария мира на бране в теории струн / M-теории.
Если дополнительные измерения велики, но недостаточно велики, то вряд ли они будут обнаружены в экспериментах с гравитацией, однако остаются и другие, косвенные подходы, указывающие на их существование. Например, мы уже указывали на то, что из существования больших дополнительных измерений следовало бы, что «исконная» сила гравитации больше, чем мы полагали. Наблюдаемая слабость гравитационного взаимодействия могла бы быть приписана «утечке» в дополнительные измерения, а не его исходной слабости; и на коротких расстояниях, когда ещё нет этой «утечки», гравитация могла бы быть сильной. Среди прочего это означает, что порождение миниатюрных чёрных дыр потребовало бы гораздо меньше массы и энергии, чем во Вселенной со значительно более слабой гравитацией. В главе 13 мы обсуждали возможность того, что такие микроскопические чёрные дыры могли бы быть порождены высокоэнергетическими столкновениями протонов в Большом адронном коллайлере (LHC) – ускорителе частиц, который строится сейчас в Женеве (Швейцария) и по плану должен быть запущен в 2007 г. [89]89
Пуск LHC состоялся 10 сентября 2008 г., но выход на проектную мощность запланирован на лето 2009 г. (Прим. ред.)
[Закрыть]Это волнующая перспектива. Но есть и другая соблазнительная возможность, указанная Альфредом Шапиром из университета Кентукки и Джонатаном Фенгом из университета Калифорнии в Ирвине. Эти исследователи заметили, что космические лучи – элементарные частицы, приходящие из космоса и постоянно бомбардирующие нашу атмосферу, – также могут порождать микроскопические чёрные дыры.
Космические лучи были открыты в 1912 г. австрийским учёным Виктором Хессом; спустя более чем девяносто лет они всё ещё окутаны множеством тайн. Космические лучи ежесекундно вторгаются в атмосферу и вызывают целый каскад миллиардов частиц, низвергающихся на Землю и проходящих через наши тела; некоторые из них обнаруживаются с помощью ряда специальных приборов. Однако никто полностью не уверен, из каких частиц состоят космические лучи (хотя учёные всё больше приходят к соглашению, что они состоят из протонов), и несмотря на тот факт, что некоторые из этих высокоэнергетических частиц являются, по-видимому, отголосками взрывов сверхновых звёзд, ни у кого нет ни малейшего представления, откуда исходят космические лучи. Например, 15 октября 1991 г. детектор космических лучей «Мушиный глаз» («Fly’s Eye») в пустыне Юта зафиксировал частицу, пронёсшуюся по небу с энергией, эквивалентной 30 млрд масс протона. [90]90
К настоящему времени установки HiRes и детектор имени Пьера Оже зафиксировали частицу с энергией более 10 20эВ (100 млрд масс протона). (Прим. ред.)
[Закрыть]В этой единственной субатомной частице содержится примерно столько же энергии, как в мяче, мчащемся от удара бейсболиста Мариано Риверы, что в 100 млн раз превосходит характерную энергию частиц, которые будут рождаться в Большом адронном коллайдере. {189} Самое загадочное состоит в том, что ни один из известных нам астрофизических процессов не смог бы породить частицы с такой высокой энергией; надеясь решить эту загадку, экспериментаторы собирают всё больше данных с помощью всё более чувствительных детекторов.
Но происхождение высокоэнергетических частиц космических лучей мало заботило Шапира и Фенга. Они подметили, что если гравитация на микроскопических масштабах гораздо сильнее, чем считалось ранее, то безотносительно к тому, откуда приходят такие частицы, у них могло бы хватить энергии, чтобы порождать миниатюрные чёрные дыры при соударениях в верхних слоях атмосферы.
Такие миниатюрные чёрные дыры (порождаемые хоть космическими лучами, хоть в ускорителях частиц) не могут представлять никакой опасности ни для экспериментаторов, ни для мира в целом. После своего порождения они быстро бы разрушались, посылая характерный каскад других, более привычных частиц. В действительности микроскопические чёрные дыры столь короткоживущие, что экспериментаторы даже не будут пытаться непосредственно обнаруживать их; вместо этого они будут искать доказательства краткого существования чёрных дыр путём тщательного изучения каскада частиц, обрушивающегося на их детекторы. Самый чувствительный в мире детектор космических лучей – обсерватория имени Пьера Оже («Pierre Auger Observatory», с площадью наблюдения размером порядка Род Айленда, 4 тыс. кв. км) строится в настоящее время в обширной местности в западной Аргентине. По оценкам Шапира и Фенга, если все дополнительные измерения доходят до размера порядка 10 −14м, то после годичного сбора данных на детекторе Оже обнаружатся характерные следы от приблизительно дюжины миниатюрных чёрных дыр, рождавшихся в верхних слоях атмосферы. [91]91
Установка Пьера Оже в настоящее время (конец 2008 г.) работает уже около двух лет, но о следах чёрных дыр пока не сообщалось. (Прим. ред.)
[Закрыть]Если эти следы не обнаружатся, значит, дополнительные измерения меньше. Поиск следов чёрных дыр, рождаемых космическими лучами, является, несомненно, очень непростым делом, но в случае успеха появится первое экспериментальное подтверждение существования дополнительных измерений и микроскопических чёрных дыр, а также теоретических построений теории струн и квантовой гравитации.
Помимо рождения чёрных дыр существует и другой способ обнаружения дополнительных измерений, который будет задействован в следующем десятилетии с помощью ускорителей частиц. Идея этого способа представляет собой изощрённый вариант объяснения пропажи монет из вашего кармана, заваливающихся за подкладку пиджака.
Главным принципом физики является закон сохранения энергии. Энергия может проявляться во многих формах – в кинетической энергии мяча, летящего по бейсбольной площадке, в гравитационной потенциальной энергии, когда мяч набирает высоту, в звуковой и тепловой энергии, когда мяч ударяется о землю и возбуждает разнообразные колебательные движения, в энергии массы, заключённой в самом мяче, и т. д. – но при учёте всех составляющих энергии полная энергия всегда сохраняется. {190} До сих пор ни в одном эксперименте не было обнаружено нарушения этого закона совершенного баланса энергии.
Но в зависимости от точного размера предполагаемых дополнительных измерений высокоэнергетические эксперименты, которые должны быть проведены с вновь усовершенствованным оборудованием в Фермилабе (лаборатория Fermilab – Fermi National Accelerator Laboratory) и на LHC, могут вскрыть процессы, которые на первый взгляд будут нарушать закон сохранения энергии: энергия после столкновения может оказаться меньше энергии до столкновения. Причина, напоминающая причину пропажи монет из кармана, состоит в том, что энергия (переносимая гравитонами) может ускользнуть в щель – микроскопическое дополнительное пространство, – возникающую из-за существования дополнительных измерений, и оказаться неучтённой при расчёте баланса энергии. Возможное обнаружение такого «сигнала пропажи энергии» даст ещё один способ установления того, что ткань космоса намного сложнее, чем мы можем видеть непосредственно.
Несомненно, я пристрастен, когда речь заходит о дополнительных измерениях. В течение более чем пятнадцати лет я работал над различными проявлениями дополнительных измерений, так что они занимают особое место в моём сердце. Но всё же, даже с учётом этого признания, мне трудно представить более завораживающее открытие, чем обнаружение доказательства существования дополнительных измерений помимо трёх, известных всем нам. По моему мнению, в настоящее время нет других серьёзных предположений, подтверждение которых столь основательно бы потрясло устои физики и столь основательно бы установило, что мы должны ставить под сомнение базисные элементы реальности, кажущиеся самоочевидными.