Текст книги "Ткань космоса. Пространство, время и текстура реальности"
Автор книги: Брайан Грин
Жанр:
Физика
сообщить о нарушении
Текущая страница: 21 (всего у книги 52 страниц)
Если этот раздел окажется трудным, вы можете спокойно перейти к следующему разделу, последовательность изложения не потеряется. Но я призываю вас разобраться с ним, так как результаты в полном смысле слова изумительны.
[Закрыть]
Этот эксперимент, квантовый ластик с отложенным выбором, также был предложен Скалли и Дрюлем. Он начинается с эксперимента со светоделителем, показанным на рис. 7.1, изменённым путём введения двух так называемых даун-конверторов [47]47
Англоязычный термин down-conversionне имеет общепринятого русского перевода, и иногда переводится как параметрическое преобразование частоты внизили параметрическое рассеяние, но последнее время всё чаще используется фонетическая калька даун-конверсия. Мы следуем последнему варианту. (Прим. ред.)
[Закрыть], по одному на каждый путь. Даун-конвертор – это прибор, который получает один фотон на входе и производит два фотона на выходе, каждый с половиной энергии («даун-преобразование») от исходного. Один из двух фотонов (так называемый сигнальныйфотон) направляется вдоль пути, по которому к детекторному экрану следовал исходный фотон. Другой фотон, произведённый даун-конвертором (именуемый холостымфотоном), посылается в совершенно другом направлении, как показано на рис. 7.5 а. В каждом эксперименте мы можем определить, какой путь к экрану выбрал сигнальный фотон, путём наблюдения, который из даун-конверторов испустил холостой фотон-партнёр. И снова возможность получить информацию о выборе пути сигнального фотона – даже хотя она является полностью косвенной, поскольку мы не взаимодействуем ни с одним сигнальным фотоном, – вызывает предотвращение возникновения интерференционной картины.
Рис. 7.5.( а) Эксперимент со светоделителем луча, дополненный даун-конверторами, не даёт интерференционной картины, поскольку холостые фотоны сообщают информацию выбора пути. ( б) Если холостые фотоны не детектируются непосредственно, а вместо этого посылаются через изображённый лабиринт, тогда из результатов эксперимента может быть выделена интерференционная картина. Холостые фотоны, которые регистрируются детекторами 2 или 3, не дают информации о выборе пути и, следовательно, их сигнальные фотоны дают интерференционную картину
Приступим к самой таинственной части. Что если мы преобразуем эксперимент так, чтобы стало невозможно определить, из какого даун-конвертора был испущен холостой фотон? Что если мы сотрём информацию о выборе пути, заключённую в холостом фотоне? Произойдёт нечто поразительное: хотя мы ничего не делаем непосредственно с сигнальным фотоном, путём уничтожения информации о выборе пути, переносимой его холостым партнёром, мы можем восстановить интерференционную картину из сигнальных фотонов. Позвольте мне показать вам, как это происходит, поскольку это действительно примечательно.
Взгляните на рис. 7.5 б, в который включены все существенные идеи. Но не пугайтесь. Он проще, чем кажется, и теперь мы разберём его поэтапно. Установка, изображённая на рис. 7.5 б, отличается от установки на рис. 7.5 апринципом детектирования холостых фотонов после их испускания. На рис. 7.5 амы детектировали их непосредственно и могли немедленно определить, из какого даун-конвертора вылетел каждый, и значит определить, какой путь выбрал сигнальный фотон. В новом эксперименте каждый холостой фотон посылается через лабиринт, который делает невозможным такое определение. Представим, что холостой фотон выпущен из даун-конвертора, отмеченного «L». Вместо того чтобы немедленно попасть в детектор (как на рис. 7.5 а), этот фотон попадает на светоделитель (отмеченный «a»), так что имеется одинаковая вероятность пойти по пути A или B. Если он пойдёт вдоль пути A, он попадёт в детектор фотонов (отмеченный «1»), и его прибытие будет зарегистрировано. Но если холостой фотон пойдёт вдоль пути B, то будет подвержен следующим манипуляциям. Он будет направлен на другой светоделитель (отмеченный «c»), так что будет иметь 50%-ю вероятность быть направленным вдоль пути E к детектору, отмеченному «2», и 50%-ю вероятность пойти вдоль пути F к детектору, отмеченному «3». Теперь – следите за мной, так как здесь вся суть, – те же самые рассуждения, применённые к холостому фотону, эмитированному из другого даун-конвертора, отмеченного «R», говорят, что если вспомогательный фотон пойдёт по пути D, он будет записан детектором «4», но если он пойдёт по пути C, то будет обнаружен или детектором «3», или детектором «2», в зависимости от пути, по которому он следовал после прохождения через светоделитель «c».
Разберёмся, для чего нужны все эти усложнения. Заметьте, что если холостой фотон обнаружен детектором 1, мы знаем, что соответствующий сигнальный фотон выбрал левый путь, [48]48
Левый путь – значит, соответствующий букве L на рис. 7.5 б. На рисунке левая часть установки (L) изображена справа, а правая (R) – слева. (Прим. ред.)
[Закрыть]поскольку для холостого фотона, который был эмитирован из даун-конвертора R, нет способа найти путь к этому детектору. Аналогично, если холостой фотон обнаружен детектором 4, мы знаем, что его сигнальный фотон-партнёр выбрал правый путь. Но если холостой фотон попал в детектор 2, мы не можем определить, какой путь выбрал его сигнальный фотон-партнёр, поскольку имеются равные шансы, что он эмитирован даун-конвертором L и следует пути B–E или что он эмитирован даун-конвертором R и следует пути C–E. Аналогично, если вспомогательный фотон обнаружен детектором 3, он может быть эмитирован даун-конвертором L и путешествовать по пути B–F или даун-конвертором R и путешествовать по пути C–F.
Итак, для сигнальных фотонов, холостые партнёры которых обнаружены детектором 1 или 4, мы имеем информацию о выбранном пути, но для сигнальных фотонов, холостые партнёры которых обнаружены детектором 2 или 3, информация о выборе пути стёрта.
Означает ли это стирание части информации о выборе пути – хотя мы ничего не делаем с сигнальными фотонами непосредственно – что интерференционные эффекты восстанавливаются? Это действительно так, но только для тех сигнальных фотонов, чьи холостые партнёры попали в детектор 2 или детектор 3. Именно, места попадания всех сигнальных фотонов на экран будут давать картинку, похожую на данные для рис. 7.5 а, не показывающего даже самого слабого намёка на интерференционную картину, что характерно для фотонов, которые идут либо одним, либо другим путём. Но если мы рассмотрим лишь подмножество результирующих точек – например, от тех сигнальных фотонов, для которых холостые фотоны попали в детектор 2, – то это подмножество точек будетдавать интерференционную картину! Эти сигнальные фотоны – холостые партнёры которых, по случайности, не дали информации о выборе пути – ведут себя, как будто они путешествовали обоими путями! Если мы настроим оборудование так, что экран будет показывать красную точку для положения каждого сигнального фотона, холостой фотон которого был обнаружен детектором 2, и зелёную точку для всех остальных, то те, у кого нарушено восприятие цвета, не будут видеть интерференционную картину, но все остальные будут видеть, что красные точки упорядочены в яркие и тёмные полосы – в интерференционную картину. То же самое останется верно и для детектора 3 вместо детектора 2. Но такой интерференционной картины не будет, если мы выделим сигнальные фотоны, холостые фотоны которых обнаружены детектором 1 или детектором 4, поскольку эти холостые фотоны дают информацию о выбранном пути своих сигнальных партнёров.
Эти результаты, которые подтверждены экспериментом, {90} поражают: из-за включения даун-конверторов, которые потенциально могут обеспечить информацию выбора пути, мы теряем интерференционную картину, как на рис. 7.5 а. А без интерференции мы, естественно, заключали, что каждый фотон проходил или вдоль правого пути, или вдоль левого. Но теперь мы узнали, что это заключение было поспешным. Путём аккуратного удаления потенциальной информации о выборе пути, переносимой некоторыми из холостых фотонов, мы можем уговорить данные отдать интерференционную картину, и это свидетельствует, что некоторые фотоны на самом деле двигаются обоими путями.
Отметим также самый яркий результат: три дополнительных светоделителя и четыре детектора холостых фотонов могут располагаться на другой стороне лаборатории или даже на другой стороне Вселенной, поскольку ничто в нашем обсуждении не зависело от того, получается ли данный холостой фотон до или после того, как его сигнальный партнёр попадёт на экран. Представим, что все эти приборы удалены на большое расстояние, для определённости – на десять световых лет, и подумаем, к чему это приведёт. Вы сегодня проводите эксперимент на рис. 7.5 б, записывая – одно за другим – места падения гигантского числа сигнальных фотонов, и не наблюдаете признаков интерференции. Если кто-нибудь попросит вас объяснить результаты, может возникнуть соблазн сказать, что из-за наличия холостых фотонов имеет место информация о выборе пути, и значит каждый сигнальный фотон определённо шёл или вдоль левого, или вдоль правого пути, исключая любую возможность интерференции. Но, как видно выше, это будет опрометчивое заключение о происходящем; это будет совершенно непродуманное описание прошлого.
Десятью годами позднее вы увидите, что четыре детектора фотонов зарегистрируют – один за другим – холостые фотоны. Если затем вы получите информацию о том, какие холостые фотоны попали, скажем, в детектор 2 (например, первый, седьмой, девятый, двенадцатый... холостые фотоны), и вернётесь к данным, которые собрали годами ранее и выделите положения соответствующих сигнальных фотонов на экране (первого, седьмого, девятого, двенадцатого... сигнальных фотонов), вы обнаружите, что выделенные данные дают интерференционную картину, а это говорит о том, что соответствующие сигнальные фотоны должны описываться как прошедшие по обоим путям. Наоборот, если спустя 9 лет и 364 дня после того, как вы собрали данные по сигнальным фотонам, техник-шутник саботирует эксперимент путём удаления светоделителей «a» и «b» – гарантируя, что когда вспомогательные фотоны прибудут на следующий день, они все попадут в детектор 1 или детектор 4, что сохранит всюинформацию о выборе пути, то когда вы получите эту информацию, вы сделаете заключение, что каждыйсигнальный фотон двигался вдоль левого пути или вдоль правого пути, и интерференционная картина не может быть извлечена из данных по сигнальным фотонам. Таким образом, как убедительно показывает это обсуждение, история, которую вы пытаетесь рассказать, чтобы объяснить результаты регистрации сигнальных фотонов, существенно зависит от измерений, проведённых десятью годами позже сбора этих данных.
Позвольте мне ещё раз подчеркнуть, что будущие измерения совершенно не изменяют чего-либо из того, что имело место в вашем сегодняшнем эксперименте; будущие измерения никоим образом не изменяют данные, которые вы собрали сегодня. Но будущие измерения влияютна некоторые подробности того, как вы объясняете то, что произошло сегодня. До того как вы получите результаты измерений холостых фотонов, вы на самом деле совсем не можете сказать что-либо об истории выбора пути любого данного сигнального фотона. Однако когда вы получили результаты, вы заключаете, что сигнальные фотоны, холостые партнёры которых успешно использованы для получения информации о выборе пути, могут быть описаны как прошедшие – годы назад – либо слева, либо справа. Вы также придёте к заключению, что сигнальные фотоны, холостые партнёры которых уничтожили информацию выбора пути, не могут быть описаны как определённо прошедшие – годы назад – по одному или по другому пути (заключение, которое вы можете убедительно подтвердить с использованием вновь полученных данных по холостым фотонам, чтобы выявить ранее скрытую интерференционную картину среди этого последнего класса сигнальных фотонов). Таким образом, мы видим, что будущее помогает сформировать историю, которую вы рассказываете о прошлом.
Эти эксперименты конфликтуют с нашими обычными представлениями о пространстве и времени. Нечто, что имеет место намного позже и очень далеко от чего-то другого, тем не менее существенно для нашего описания этого чего-то другого. По любому классическому счёту – по здравому смыслу – это просто сумасшествие. Конечно, дело в этом: здравый смысл неприменим для использования в квантовой Вселенной. Из обсуждения парадокса Эйнштейна–Подольского–Розена мы узнали, что квантовая физика нелокальна в пространстве. Если вы полностью усвоили этот урок, то эксперименты, которые включают в себя запутывание и через пространство, и через время, не будут казаться такими уж странными. Но по стандартам повседневного опыта они определённо таковы.
Квантовая механика и опытЯ помню своё воодушевление, когда впервые узнал об этих экспериментах. Я чувствовал, что мне дали мельком увидеть скрытую сторону реальности. Здравый смысл – земная, обыкновенная, повседневная деятельность – внезапно оказался частью классической шарады, скрывающей истинную природу нашего квантового мира. Мир повседневности внезапно оказался не чем иным, как вывернутым наизнанку магическим действием, внушившим своим зрителям веру в обычные, привычные концепции пространства и времени, в то время как удивительная истина квантовой реальности, ускользая от взгляда, тщательно защищена природой.
В последние годы физики приложили много усилий в попытках объяснить уловки природы, чтобы точно понять, как фундаментальные законы квантовой физики превращаются в классические законы, которые столь успешны при объяснении повседневного опыта, – в сущности, чтобы разобраться, как атомное и субатомное скидывают магическую таинственность, когда они объединяются, чтобы сформировать макроскопический объект. Исследования продолжаются, но многое уже понято. Посмотрим на некоторые вещи, особенно уместные в связи с вопросом о стреле времени, но теперь с точки зрения квантовой механики.
Классическая механика основывается на уравнениях, которые Ньютон открыл в конце 1600-х гг. Электромагнетизм основывается на уравнениях, которые Максвелл открыл в поздние 1800-е гг. Специальная теория относительности основывается на уравнениях, которые Эйнштейн открыл в 1905 г., а общая теория относительности основывается на уравнениях, которые он открыл в 1915 г. Что общего имеют все эти уравнения, и что является центральным для дилеммы стрелы времени (как объясняется в предыдущей главе), так это совершенно симметричная трактовка прошлого и будущего в них. Нигде, ни в одном из этих уравнений нет чего-либо, что отличает время, направленное «вперёд», от времени, направленного «назад». Прошлое и будущее рассматриваются на одинаковых основаниях.
Квантовая механика основывается на уравнении, которое Эрвин Шрёдингер открыл в 1926 г. {91} Вам не нужно знать подробностей об этом уравнении, кроме того факта, что в качестве входных данных в него входит квантово-механическая вероятностная волна в один момент времени, как на рис. 4.5, и оно позволяет определить, как вероятностная волна будет выглядеть в любой другой момент времени, более ранний или более поздний. Если вероятностная волна ассоциируется с частицей, такой как электрон, вы можете использовать её для предсказания вероятности, с которой в заданное время эксперимент обнаружит электрон в заданном месте. Подобно классическим законам Ньютона, Максвелла и Эйнштейна, квантовый закон Шрёдингера включает в себя равноправное рассмотрение будущего и прошлого. «Фильм», показывающий вероятностную волну стартующей в такомвиде и заканчивающей в этаком, может быть запущен в обратном направлении, – показывая вероятностную волну, стартующую в этакомвиде, а заканчивающую в таком, – и нет способа сказать, что одна эволюция правильна, а другая ложна. В уравнении Шрёдингера оба решения будут верны. Оба одинаково представляют осмысленные пути, по которым возможно развитие. {92}
Конечно, «фильм», о котором идёт речь, очень отличается от аналогов, использованных в предыдущей главе при анализе движения теннисного мяча или разбивающегося яйца. Мы не можем видеть волны вероятности непосредственно; не существует камеры, которая могла бы зафиксировать вероятностные волны на плёнку. Вместо этого мы можем описать вероятностные волны с использованием математических уравнений и представить себе простейшие из таких волн, имеющие форму как на рис. 4.5 и 4.6. Но единственный способ доступа к самим вероятностным волнам является косвенным, через процесс измерения.
То есть, как объяснялось в главе 4 и как видно в рассмотренных выше экспериментах, стандартная формулировка квантовой механики описывает эволюцию с использованием двухсовершенно различных стадий. На первом этапе волна вероятности – или, точнее говоря, волновая функция– некоторого объекта, например электрона, эволюционирует в соответствии с уравнением, открытым Шрёдингером. Это уравнение гарантирует, что форма волновой функции изменяется гладко и постепенно, почти как волна на воде, когда она движется от одного берега озера к другому. [49]49
Квантовая механика справедливо имеет репутацию описывать что угодно, но только не нечто гладкое и размеренное; скорее, как мы явно увидим в последующих главах, она выявляет турбулентный и дрожащий микрокосмос. Причиной этого дрожания является вероятностная природа волновой функции – даже если вещи могут иметь некоторый вид в один момент, имеется вероятность, что они будут существенно другими моментом позже, – и это не есть всегда существующие колебания самой волновой функции.
[Закрыть]В стандартном описании второй стадии путём измерения положения электрона реализуется связь электрона с наблюдаемой реальностью, и когда мы это делаем, форма его волновой функции мелется резко и прерывисто. Волновая функция электрона не похожа на более привычные примеры волн на воде или звуковых волн: когда мы измеряем положение электрона, его волновая функция образует пик, т. е. коллапсирует, падая до нуля везде, где частица не найдена, и вырастает до 100%-й вероятности в единственном месте, где частица найдена измерением (как показано на рис. 4.7).
Первая стадия – эволюция волновой функции в соответствии с уравнением Шрёдингера – является математически строгой, совершенно недвусмысленной и полностью принятой физическим сообществом. Вторая стадия – коллапс волновой функции при измерении – наоборот, является чем-то, что на протяжении последних восьмидесяти лет держит физиков, в лучшем случае, в тихом смущении, а в худшем – провоцирует проблемы, загадки и потенциальные парадоксы, ради которых жертвуют карьерами. Трудность, как отмечалось в конце главы 4, состоит в том, что в соответствии с уравнением Шрёдингера волновые функции неколлапсируют. Коллапс волновой функции представляет собой что-то дополнительное. Оно, это дополнение, было введено после открытия Шрёдингером своего уравнения в попытке описать, что же видят экспериментаторы на самом деле. Хотя исходная, несколлапсированная волновая функция воплощает странную идею, что частица находится и тут, и там, экспериментаторы никогда не видят этого. Они всегда обнаруживают частицу определённо в том положении или другом; они никогда не видят её частично тут, а частично там; стрелка в измерительных приборах никогда не витает в состоянии некоторой призрачной смеси, указывая и на эту, и на ту величину.
То же самое происходит, конечно, при наших собственных повседневных наблюдениях окружающего мира. Мы никогда не видели, чтобы стул был и тут, и там; мы никогда не наблюдаем Луну одновременно в одной части ночного неба, а также и в другой; мы никогда не видим кота, который одновременно и жив, и мёртв. Понятие коллапса волновой функции присоединяется к нашему опыту путём постулирования, что акт измерения заставляет волновую функцию отказаться от квантовой неопределённости и сделать одну из множества потенциальных возможностей (частица здесь или частица там) действительной.
Загадка квантового измеренияНо почему проведение измерения экспериментатором заставляет волновую функцию коллапсировать? Фактически, действительно ли коллапс волновой функции происходит, и если он происходит, что реально происходит на микроскопическом уровне? Вызывает ли коллапс любое и всякое измерение? Когда происходит коллапс и как долго длится? Поскольку в соответствии с уравнением Шрёдингера волновая функция не коллапсирует, какое уравнение описывает вторую стадию квантовой эволюции и как это новое уравнение свергает с престола шрёдиигеровское, узурпируя его обычную нерушимую власть над квантовыми процессами? И, что важно в смысле обсуждения стрелы времени, в то время как уравнение Шрёдингера, которое управляет первой стадией, не делает различий между прямым и обратным направлением во времени, не вводит ли уравнение для второго этапа фундаментальную асимметрию между временем до и временем после измерения? То есть, не вводит ли квантовая механика, включая её связь с повседневным миром через измерения и наблюдения, стрелу времени в основные законы физики? В конце концов, мы обсуждали, как квантовая трактовка прошлого отличается от трактовки прошлого в классической физике, и под прошлым мы понимали то, что происходит перед тем, как имеет место определённое квантовое измерение. Поэтому не устанавливают ли измерения, воплощённые в коллапсе волновой функции, асимметрию между прошлым и будущим: между тем, что было до измерения, и тем, что будет после?
Эти вопросы упорно сопротивляются полному решению, и они остаются источником противоречий. Тем не менее спустя десятилетия успехов предсказательную мощь квантовой теории трудно скомпрометировать. Квантовая теория, включающая две стадии эволюции, хотя вторая стадия и остаётся таинственной и непонятной, правильно предсказывает вероятности результатов измерений. И эти предсказания подтверждаются повторением данного эксперимента снова и снова и проверкой частоты, с которой обнаруживаются те или иные результаты. Фантастический экспериментальный успех этого подхода намного перевешивает дискомфорт от отсутствия точного описания того, что на самом деле происходит на второй стадии.
Но дискомфорт всегда рядом. И это не означает просто, что некоторые детали коллапса волновой функции не вполне определены. Проблема квантового измерения, как она называется, является проблемой, имеющей отношение к пределам и универсальности квантовой механики. Это нетрудно увидеть. Подход с двумя различными стадиями эволюции вводит пропасть между тем, что наблюдается (например, электрон, или протон, или атом), и экспериментатором, проводящим наблюдения. Перед тем как экспериментатор появляется на сцене, волновая функция радостно и спокойно эволюционирует в соответствии с уравнением Шрёдингера. Но когда экспериментатор вмешивается в процесс для проведения измерения, правила игры неожиданно меняются. Уравнение Шрёдингера отбрасывается в сторону и наступает коллапс второй стадии эволюции. Теперь, поскольку нет разницы между атомами, протонами и электронами, которые составляют экспериментатора и оборудование, которое он использует, и атомами, протонами и электронами, которые он изучает, так почему же имеется столь большое различие в том, как их трактует квантовая механика? Если квантовая механика является универсальной теорией, которая применима без ограничений к чему угодно, наблюдаемое и наблюдатель должны рассматриваться в точности одинаковым образом.
Нильс Бор был не согласен. Он утверждал, что экспериментаторы и их оборудование действительноотличаются от элементарных частиц. Хотя они и сделаны из одинаковых частиц, они являются «большими» собраниями элементарных частиц и поэтому управляются законами классической физики. Где-то между мельчайшим миром отдельных атомов и субатомных частиц и привычным миром людей и их оборудования правила меняются, поскольку меняются размеры. Мотивировка для принятия этого разделения ясна: крохотные частицы, в соответствии с квантовой механикой, могут находиться в состоянии размытой смеси тут и там, тогда как мы не видим подобного поведения в большом, повседневном мире. Но где точно находится граница? И, что жизненно важно, как два набора правил согласуются, когда большой повседневный мир сталкивается с очень маленьким миром атомов, как в случае измерения? Бор настойчиво декларировал, что эти вопросы должны быть вынесены за границы обсуждения. Под этим он понимал, по правде говоря, что они находятся за границами того, на что он или кто-либо другой сможет дать ответ. И поскольку даже без ответа на эти вопросы теория даёт поразительно точные предсказания, долгое время такие проблемы находились в самой нижней части списка важнейших вопросов, которые рассматривались физиками.
Но для того чтобы полностью понять квантовую механику, чтобы определить до конца, что она говорит о реальности, и чтобы установить, какую роль она может играть в выборе направления стрелы времени, необходимо полное понимание проблемы квантового измерения.
В следующих двух разделах мы опишем некоторые из наиболее заметных и многообещающих попыток это сделать. Если вы захотите сразу перейти к последнему разделу, посвящённому стреле времени в квантовой механике, то отметим, что ответ таков. Множество хитроумных работ по проблеме квантовых измерений привело к значительным успехам, но принимаемое большинством решение проблемы, по-видимому, всё ещё находится вне пределов нашей досягаемости. Многие рассматривают это как самый важный пробел в формулировке квантовых законов.