Текст книги "Ткань космоса. Пространство, время и текстура реальности"
Автор книги: Брайан Грин
Жанр:
Физика
сообщить о нарушении
Текущая страница: 5 (всего у книги 52 страниц)
Став студентом, я узнал об идеях Маха, и они оказались для меня настоящей находкой. Здесь наконец-то была теория пространства и движения, которая полностью уравнивала все точки зрения, поскольку имели смысл только относительная скорость и относительное ускорение. В отличие от ньютоновской системы отсчёта (чего-то невидимого, названного абсолютным пространством), предложенную Махом систему отсчёта могут увидеть все – это материя, распределённая по космосу. Я почувствовал уверенность, что Мах пошёл по правильному пути. Я также узнал, что был не одинок в этом; я последовал за длинной чередой физиков, включающей и Альберта Эйнштейна, которые были захвачены идеями Маха.
Прав ли Мах? Был ли Ньютон так захвачен вращением своего ведра, что пришёл к неверному выводу о природе пространства? Существует ли абсолютное пространство Ньютона или маятник безвозвратно качнулся в сторону реляционной концепции? В течение первых десятилетий после того, как Мах предложил свои идеи, на эти вопросы нельзя было ответить. Причина была, главным образом, в том, что предположение Маха не было законченной теорией, поскольку он никогда не уточнял, какматерия, составляющая Вселенную, могла бы оказывать предполагаемое влияние. Если его идеи верны, то тогда как далёкие звёзды и соседний дом могут вносить свой вклад в ощущение того, что вы вращаетесь, когда вы вращаетесь? Без определения физического механизма, реализующего предположение Маха, трудно было исследовать идеи Маха сколько-нибудь точно.
С нашей современной точки зрения разумно предположить, что какое-то отношение к тому влиянию окружающей материи, которое связано с предположением Маха, может иметь гравитация. В последующие десятилетия эта возможность приковала внимание Эйнштейна, и при разработке собственной теории гравитации – общей теории относительности – он в значительной степени вдохновлялся предположением Маха. Когда наконец-то осела пыль вокруг теории относительности, то вопрос о том, является ли пространство чем-то реальным (или какая точка зрения верна: абсолютная или реляционная) был трансформирован таким образом, что упразднил все предыдущие точки зрения на Вселенную.
Глава 3. Относительность и абсолют
Пространство-время – это абстракция Эйнштейна или физическая сущность?
Есть открытия, которые дают ответы на вопросы. Но есть другие открытия, которые оказываются столь глубоки, что ставят вопросы в совершенно новом свете, показывая, что предшествующие тайны неверно воспринимались из-за нехватки знания. Вы могли бы проводить своё время (и в античные времена некоторые так и поступали), гадая, что же произойдёт, когда вы достигнете края Земли, или пытаясь представить, кто или что живёт на обратной стороне плоской Земли. Но когда вы узнаете, что Земля круглая, вы поймёте, что эти загадки не решаются, они просто оказываются неуместными.
В течение первых десятилетий XX в. Альберт Эйнштейн сделал два глубоких открытия. Каждое из них вызвало радикальный переворот в нашем понимании пространства и времени. Эйнштейн разобрал жёсткие абсолютные структуры, сооружённые Ньютоном, и воздвиг собственную башню, объединив пространство и время совершенно неожиданным образом. Когда это было сделано, время столь теснопереплелось с пространством, что уже стало невозможным одно рассматривать отдельно от другого. Так что в третьем десятилетии XX в. вопрос о субстанциональности пространства изжил сам себя; в постановке Эйнштейна, о которой мы вскоре поговорим, его сменил следующий вопрос: является ли пространство-времячем-то реальным? Кажется, что вопрос лишь чуть модифицировался, но наше понимание арены реальности полностью трансформировалось.
Пусто ли пустое пространство?Свет был главным действующим лицом в драме относительности, написанной Эйнштейном в начале XX в. И подмостки для постановки Эйнштейна установила работа Джеймса Клерка Максвелла. В середине XIX в. Максвелл написал четыре уравнения, которые впервые дали точную теоретическую базу для понимания электричества и магнетизма, а также их тесной взаимосвязи. {17} Максвелл вывел эти уравнения, тщательно изучив работу английского физика Майкла Фарадея, который в начале 1800-х гг. провёл десятки тысяч экспериментов и выявил неизвестные до того времени свойства электричества и магнетизма. Главным достижением Фарадея было введение концепции поля. Эта концепция, развитая позднее Максвеллом и многими другими учёными, оказала громадное влияние на развитие физики в последние два столетия; с помощью этой концепции объясняется множество маленьких загадок, с которыми мы сталкиваемся в повседневной жизни. Каким образом металлоискатель в аэропорту, не касаясь вас, определяет, несёте ли вы с собой металлические предметы? Каким образом магнитно-резонансный томограф (МРТ), не проникая в ваше тело, даёт детальную картину того, что у вас внутри? Почему стрелка компаса всегда указывает точно на север? Обычный ответ на последний вопрос даётся с помощью представления о магнитном поле Земли, и та же концепция магнитного поля помогает объяснить первые два примера.
Я никогда не видел лучшей иллюстрации магнитного поля, чем на лабораторной работе в школе, когда железные опилки рассыпаются вокруг стержнеобразного магнита. После небольшого встряхивания опилки выстраиваются упорядоченным образом, образуя дуги, соединяющие северный и южный полюса магнита, как на рис. 3.1. Линии, вдоль которых выстраиваются железные опилки, служат прямым доказательством того, что магнит создаёт невидимое что-то, что пронизывает пространство вокруг него – что-то, что может, например, воздействовать силой на кусочки металла. Это невидимое что-то есть магнитное поле, которое, в соответствии с нашей интуицией, напоминает туман или некий дух, который может заполнять область пространства вокруг магнита и благодаря этому передавать силовое воздействие за пределы физического протяжения самого магнита. То, что магнитное поле даёт магниту, можно сравнить с тем, что армия даёт диктатору, а аудиторы – налоговой службе: влияние за пределами физических границ, что позволяет прикладывать силу в «поле». Вот почему магнитное поле называют также силовым полем.
Рис. 3.1.Железные опилки, выстраивающиеся вокруг стержнеобразного магнита, прорисовывают его магнитное поле
Именно это свойство проникновения и распространения в пространстве делает магнитное поле столь полезным. Магнитное поле металлоискателя в аэропорту проникает сквозь вашу одежду и заставляет металлические предметы испускать собственные магнитные поля, которые и обнаруживаются детектором, и вы слышите звуковой сигнал, оповещающий об этом. Магнитное поле МРТ проникает в ваше тело, заставляя атомы вращаться так, чтобы они генерировали собственные магнитные поля, которые затем регистрируются прибором и перекодируются в картину внутренних тканей. Магнитное поле Земли проникает в компас, вынуждая его стрелку поворачиваться вдоль магнитных силовых линий, которые в результате тысячелетних геофизических процессов оказались ориентированы приблизительно в направлении с юга на север.
Магнитное поле представляет собой один широко распространённый тип поля, но Фарадей исследовал и другой тип: электрическое поле. Это поле вызывает потрескивание вашего шерстяного свитера и бьёт по вашей руке, когда вы, пройдя по ковру, прикасаетесь к металлической ручке двери, а также покалывает вашу кожу, если вы находитесь высоко в горах во время грозы. И если во время такой грозы вы станете следить за стрелкой компаса, то уловите зависимость между внезапными отклонениями стрелки компаса и вспышками бушующих неподалёку молний. Эта зависимость указывает на тесную взаимосвязь между электрическим и магнитным полями, которая была открыта датским физиком Гансом Эрстедом и затем тщательно исследована Майклом Фарадеем в ходе дотошных экспериментов. Подобно тому как изменения на фондовой бирже могут влиять на рынок облигаций, который в свою очередь может влиять на фондовую биржу и т. д., так и изменения электрического поля могут индуцировать магнитное поле, которое в свою очередь может влиять на электрическое поле и т. д. Максвелл нашёл точную математическую формулировку взаимосвязи электрического и магнитного полей, и поскольку его уравнения показали, что эти поля столь же переплетены, как дреды растафари [9]9
Дреды – традиционная причёска ямайских растафари (современные последователи растафари известны как растаманы). Волосы спутываются во множество прядей, которые не расчёсываются. (Прим. перев.)
[Закрыть], то их окрестили электромагнитнымиполями, а их воздействие – электромагнитнойсилой.
Сегодня мы постоянно погружены в океан электромагнитных полей. Ваш сотовый телефон и автомобильное радио работают на огромных пространствах благодаря вездесущему проникновению электромагнитных полей, излучаемых оборудованием операторов сотовой связи и передатчиками радиостанций. То же самое относится к беспроводному доступу в Интернет: компьютер может погружаться во Всемирную паутину благодаря электромагнитным полям, проникающим повсюду вокруг нас и, в том числе, сквозь нас. Конечно, во времена Максвелла технологии, использующие электромагнитные поля, были не столь развиты, но физики вполне оценили подвиг Максвелла: на языке полей Максвелл показал, что электричество и магнетизм, изначально считавшиеся различными явлениями, на самом деле являются разными проявлениями одной и той же физической сущности.
Позднее мы познакомимся с полями другого рода – гравитационными, ядерными, полями Хиггса и т. д. – и будет становиться всё яснее, что концепция поля занимает центральное место в современной формулировке физических законов. Но следующий важный шаг в нашей истории связан опять с Максвеллом. Анализируя свои уравнения, Максвелл обнаружил, что изменения или возмущения электромагнитного поля распространяются в виде волн с вполне определённой и фиксированной скоростью: 300 тыс. км/с в вакууме. И поскольку эта величина в точности совпала со скоростью света в вакууме, то Максвелл заключил, что свет должен быть ничем иным, как электромагнитной волной, взаимодействующей особым образом с химическими реагентами сетчатки глаза и, тем самым, дающей нам ощущение зрения. Это достижение ещё более подняло важность открытий Максвелла: он связал вместе силу магнитов, влияние электрических зарядов и свет, благодаря которому мы видим Вселенную. Но здесь же встал и следующий глубокий вопрос.
Когда мы говорим, что скорость света составляет 300 тыс. км/с, то опыт и проведённое выше обсуждение учит нас, что это утверждение бессмысленно, пока мы не укажем, по отношению к чемуизмерена эта скорость. Забавно то, что уравнения Максвелла просто дают эту величину, 300 тыс. км/с, не указывая систему отсчёта, по отношению к которой получается такая скорость. Это так же сбивает с толку, как если бы кто-то назначил вам встречу на расстоянии 50 км к северу, не указав, к северу от чего. Большинство физиков, включая самого Максвелла, пытались следующим образом интерпретировать скорость, получающуюся из его уравнений. Известные нам волны, такие как океанские или звуковые, переносятся субстанцией, средой. Океанские волны переносятся водой. Звуковые волны переносятся воздухом. И скорости этих волн устанавливаются по отношению к их среде распространения. Когда мы говорим, что скорость звука при комнатной температуре составляет 340 м/с (что соответствует числу Маха, равному единице, – это число названо в честь Эрнста Маха, упомянутого ранее), мы подразумеваем, что звуковые волны с этой скоростью распространяются по неподвижному воздуху. Так что физики естественным образом предположили, что световые волны (электромагнитные волны) должны распространяться также в своей среде, которую ещё никто не видел и никогда не обнаруживал, но которая должна существовать. Для того чтобы обозначить существование этой среды, она была названа светоносным эфиромили просто эфиром; последний термин был введён Аристотелем ещё во времена античности для описания воображаемой магической субстанции, из которой состоят небесные тела. И чтобы соотнести эту гипотезу с результатами Максвелла, было выдвинуто предположение, что в его уравнениях неявно заложена система отсчёта, связанная с эфиром. Таким образом, скорость 300 тыс. км/с, даваемая уравнениями Максвелла, является скоростью света по отношению к неподвижному эфиру.
Как видно, возникает поразительная аналогия между светоносным эфиром и абсолютным пространством Ньютона. Обе эти гипотезы возникли в попытке дать систему отсчёта для определения движения; ускоренное движение привело к концепции абсолютного пространства, а распространение света привело к понятию светоносного эфира. Фактически, многие физики рассматривали эфир как земное отражение божественного духа, который, по мнению Генри Мора, Ньютона и других, пронизывает абсолютное пространство. (Ньютон и многие его современники даже использовали термин «эфир» при описании абсолютного пространства.) Но что в действительности представляет собой этот эфир? Из чего он состоит? Откуда взялся? Существует ли он везде?
Те же вопросы, которые оказались связаны с эфиром, столетиями ставились по отношению к абсолютному пространству. Но тогда как для реализации эксперимента Маха в отношении абсолютного пространства требуется вращение в совершенно пустой Вселенной, физики могли предложить вполне реальные эксперименты для определения, существует ли в действительности эфир. Например, если вы плывёте навстречу волне, то она быстрее настигает вас; если же вы уплываете от волны, то она медленнее приближается к вам. Аналогично, если вы двигаетесь по предполагаемому эфиру навстречу световой волне или от неё, то скорость приближения к вам световой волны должна быть больше или меньше величины 300 тыс. км/с. Но в 1887 г. Альберт Майкельсон и Эдвард Морли, неоднократно измеряя скорость света, всякий раз обнаруживали, что она в точности равна 300 тыс. км/с независимо от движения экспериментальной установки или движения источника света. Для объяснения этого результата приводились всевозможные хитроумные доводы. Некоторые считали, что экспериментальная установка, быть может, невольно увлекала за собой эфир в ходе проведения экспериментов. Другие предполагали, что само оборудование как-то деформировалось при движении через эфир, что приводило к искажению результатов измерений. Но только после революционного прозрения Эйнштейна объяснение стало окончательно ясным.
Относительное пространство, относительное времяВ июне 1905 г. Эйнштейн написал статью с непритязательным названием «К электродинамике движущихся тел», раз и навсегда положившую конец концепции светоносного эфира. Одним махом она навсегда изменила и наши представления о пространстве и времени. Идеи, предложенные в этой статье, были сформулированы Эйнштейном в течение пяти недель интенсивной работы в апреле-мае 1905 г., но вопросы, на которые он дал ответ, волновали его до этого более десятилетия. Ещё будучи подростком, Эйнштейн задавался вопросом, как будет выглядеть световая волна, если догонять её точно со скоростью света. Поскольку и вы, и световая волна двигаетесь по эфиру с одной и той же скоростью, то вы должны шагать со светом в ногу. И поэтому, заключил Эйнштейн, с вашей точки зрения свет должен выглядеть как неподвижный. Вы должны иметь возможность зачерпнуть пригоршню неподвижного света, подобно тому как вы можете зачерпнуть горсть свежевыпавшего снега.
Но вот в чём проблема. Уравнения Максвелла не разрешают свету быть покоящимся – выглядеть так, как будто он неподвижен. И, конечно, никому и никогда не удавалось взять в руки неподвижный комок света. «Так что же делать с этим очевидным парадоксом?» – спрашивал себя Эйнштейн, будучи подростком.
Десять лет спустя Эйнштейн дал миру ответ на этот вопрос в виде своей специальной теории относительности. Было множество дебатов, касающихся интеллектуальных корней открытия Эйнштейна, но решающую роль, несомненно, сыграла его непоколебимая вера в простоту решения. Эйнштейн был осведомлён по крайней мере о нескольких экспериментах, в которых не удалось получить свидетельства в пользу существования эфира. {18} Так к чему же плясать вокруг эфира, пытаясь отыскать недочёты экспериментов? Вместо этого, предложил Эйнштейн, будем исходить из простого утверждения: эксперименты не смогли обнаружить эфир, потому что эфир не существует. И поскольку уравнения Максвелла, описывая распространение света (электромагнитных волн), не предполагают никакой светоносной среды, то теория и эксперимент приходят к одному выводу: свету, в отличие от волн другого рода, не требуется среда для своего распространения. Свет – одинокий путешественник. Свет может распространяться в пустом пространстве.
Но что же тогда делать с уравнениями Максвелла, дающими скорость света 300 тыс. км/с? Если нет эфира в качестве стандарта состояния покоя, то по отношению к чемуполучается такая скорость? Эйнштейн опять порвал с традицией и ответил с предельной простотой. Если теория Максвелла не выделяет какого-либо стандарта покоя, то проще всего предположить, что он и не требуется. Скорость света, – декларировал Эйнштейн, – равна300 тыс. км/с относительно всего.
Это действительно простое утверждение; оно прекрасно вписывается в максиму, часто приписываемую Эйнштейну: «Сделайте всё настолько просто, насколько это возможно, но не проще». Проблема в том, что это утверждение тоже выглядит безумным. Если вы бежите за удаляющимся лучом света, то здравый смысл говорит вам, что по отношению к вам свет должен удаляться со скоростью, меньшей 300 тыс. км/с. Если же вы бежите навстречу приближающемуся лучу света, то здравый смысл говорит вам, что по отношению к вам свет должен приближаться со скоростью, большей 300 тыс. км/с. В течение всей своей жизни Эйнштейн бросал вызов общепринятому здравому смыслу, и этот раз не явился исключением. Он с уверенностью настаивал, что независимо от того, насколько быстро вы приближаетесь к лучу света или удаляетесь от него, скорость луча с вашей точки зрения всегда будет составлять 300 тыс. км/с, не больше, не меньше, – независимо ни от чего. Это определённо разрешало парадокс, поразивший Эйнштейна, когда он был ещё подростком: теория Максвелла не позволяет свету находиться в покое, потому что свет никогдане покоится; независимо от того, двигаетесь вы сами или покоитесь, свет всегда распространяется по отношению к вам с неизменной скоростью 300 тыс. км/с. Но тут же возникает естественный вопрос: как свет может вести себя таким странным образом?
Задумаемся немного о скорости. Скорость вычисляется так: пройдённое расстояние делится на затраченное время. То есть это мера длины (пройдённое расстояние), делённая на меру времени (затраченное время). Ещё со времён Ньютона пространство считалось абсолютным, существующим «безотносительно к чему-либо внешнему». Поэтому и измерения пространства и расстояний тоже должны быть абсолютными: кто бы ни проводил измерение расстояния между двумя объектами, в результате должна получаться одна и та же величина (если, конечно, измерения проводятся достаточно тщательно). И, хотя мы до сих пор и не говорили об этом прямо, то же самое Ньютон утверждал и по отношению к времени. Его описание времени в «Началах» вторит его описанию пространства: «время само по себе и по самой своей сущности, без всякого отношения к чему-либо внешнему, протекает равномерно». [10]10
Ньютон И.Математические начала натуральной философии. С. 30. (Прим. ред.)
[Закрыть]Иными словами, согласно Ньютону, существует универсальная, абсолютная концепция времени, которая применима всегда и везде. В ньютоновской Вселенной получается так: кто бы ни измерял время, прошедшее между двумя событиями, в результате должна получаться одна и та же величина (если измерения проводятся достаточно точно).
Эти представления о пространстве и времени согласуются с нашим повседневным опытом и, опираясь на здравый смысл, позволяют нам заключить, что по отношению к нам луч света должен двигаться медленнее, если мы догоняем его. Проведём такой мысленный эксперимент. Представьте себе Барта, который только что получил новенький скейтборд с атомным двигателем и по этому случаю решил посоревноваться со светом. И хотя Барт немного разочарован тем, что максимальная скорость скейтборда только 250 тыс. км/с, он не намерен сдаваться и собирается выжать из своего скейтборда всё возможное. Его сестра Лиза встала наготове с лазером; она начинает вести обратный отсчёт от 11 (это любимое число её кумира Шопенгауэра) и когда достигает «0», Барт и лазерный луч срываются с места. Что видит Лиза? Она видит, что за каждую секунду свет покрывает 300 тыс. км, тогда как Барт только 250 тыс. км, так что Лиза справедливо заключает, что свет удаляется от Барта со скоростью 50 тыс. км/с. Теперь вспомним о Ньютоне. Из его идей следует, что наблюдения Лизы над пространством и временем абсолютны и универсальны в том смысле, что к тому же заключению должен прийти каждый, кто бы ни проводил эти измерения. Согласно Ньютону, это столь же объективно, как «дважды два – четыре». Значит, согласно Ньютону, Барт должен согласиться с Лизой и сказать, что свет удалялся от него со скоростью 50 тыс. км/с.
Но по возвращению с гонки Барт вовсе с этим не согласен. Он уныло говорит, что как он ни старался – независимо от того, насколько сильно гнал он свой скейтборд, – он видел, что свет удалялся от него со скоростью 300 тыс. км/с, ничуть не меньше. {19} И если вы по какой-либо причине не доверяете Барту, вспомните, что тысячи проведённых за последнюю сотню лет тщательных экспериментов, в которых измерялась скорость света с использованием движущихся источников и приёмников, в точности согласуются с наблюдениями Барта.
Как такое может быть?
Эйнштейн разгадал эту загадку, и его ответ не только логичен, но и позволяет существенно расширить рамки нашего обсуждения. Результаты измерений расстояний и промежутков времени, полученные Бартом, которые он использует для вычисления скорости, отличаются от результатов измерений Лизы. Задумайтесь над этим. Поскольку скорость есть не что иное, как расстояние, делённое на время, то невозможно никак иначе объяснить расхождение в оценке скорости удаления света с точек зрения Барта и Лизы. Поэтому, заключил Эйнштейн, ньютоновская идея абсолютного пространства и абсолютного времени неверна. Эйнштейн понял, что экспериментаторы, движущиеся друг относительно друга (такие как Барт и Лиза), не получат идентичных результатов при измерении расстояний и промежутков времени. Загадочные экспериментальные данные, касающиеся скорости света, могут быть объяснены только в том случае, если восприятия пространства и времени у движущихся друг относительно друга наблюдателей отличаются.