355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Брайан Грин » Ткань космоса. Пространство, время и текстура реальности » Текст книги (страница 25)
Ткань космоса. Пространство, время и текстура реальности
  • Текст добавлен: 19 сентября 2016, 13:25

Текст книги "Ткань космоса. Пространство, время и текстура реальности"


Автор книги: Брайан Грин


Жанр:

   

Физика


сообщить о нарушении

Текущая страница: 25 (всего у книги 52 страниц)

Время в расширяющейся Вселенной

Используя небольшую вариацию модели воздушного шара, теперь можно более точно понять, как симметрия пространства, хотя пространство и расширяется, приводит к понятию времени, которое одинаково применимо в любом месте космоса. Представьте, что мы заменяем каждую монетку одинаковыми часами, как на рис. 8.3. Из теории относительности мы знаем, что при наличии различных физических воздействий – движения или различных гравитационных полей, одинаковые часы отсчитывают время с различным темпом. Но простое, хотя и ключевое, наблюдение заключается в том, что полная симметрия среди всех Линкольнов на раздувающемся шаре переносится на полную симметрию среди всех часов. Все часы помещены в одинаковые физические условия, так что все тикают в точности с одинаковым темпом и фиксируют одинаковое количество прошедшего времени. Аналогично, в расширяющейся Вселенной, в которой имеется высокая степень симметрии среди всех галактик, часы, которые двигаются вместе с той или иной галактикой, также должны тикать с одинаковым темпом и, следовательно, фиксировать одинаковое количество истёкшего времени. Как может быть иначе? Каждые часы выступают наравне с любыми другими, находясь в среднем примерно в одинаковых физических условиях. Это снова показывает ошеломляющую силу симметрии. Без каких-либо расчётов или детального анализа мы выяснили, что однородность физического пространства, как это подтверждается однородностью микроволнового фонового излучения и однородным распределением галактик в пространстве, {108} позволяет сделать заключение об однородности времени.

Рис. 8.3.Часы, которые двигаются вместе с галактиками – чьё движение в среднем возникает только благодаря расширению пространства – обеспечивают универсальный космический хронометраж. Они остаются синхронизированными, хотя отделены друг от друга, поскольку они двигаются вместес пространством, но не черезпространство

И хотя данное обоснование довольно прозрачно, тем не менее заключение может сбить с толку. Поскольку все галактики разбегаются в разные стороны по мере расширения пространства, часы, которые двигаются вместе с галактиками, разбегаются вместе с ними. Более того, галактики двигаются друг относительно друга с гигантским разнообразием скоростей, определяемым гигантским разнообразием расстояний между ними. Не станет ли это движение причиной рассинхронизации часов, как нас учил Эйнштейн в специальной теории относительности? По ряду причин ответ – нет; вот один особенно полезный способ подумать над этим.

Вспомним из главы 3, что Эйнштейн установил, что часы, движущиеся через пространство различными способами, отсчитывают время с различными скоростями (поскольку они переводят различное количество их движения через время в движение через пространство; вспомните аналогию с Бартом на его скейтборде, сначала двигающимся на север, а затем переводящим некоторое количество своего движения на северо-восток). Но часы, которые мы сейчас обсуждаем, совсем недвигаются через пространство. Точно так же, как каждая монетка приклеена к одной точке воздушного шара и движется относительно других монет только вследствие раздувания поверхности шара, каждая галактика занимает одну область в пространстве и, большей частью, движется относительно других галактик только вследствие расширения пространства. А это значит, что по отношению к самому пространству все часы в действительности стационарны, так что они отсчитывают время идентично. Это именно те часы – часы, движение которых происходит только в результате расширения пространства, – которые обеспечивают синхронизацию космических часов, используемых для измерения возраста Вселенной.

Конечно, вы можете взять часы, прыгнуть на борт ракеты и носиться по пространству с такой громадной скоростью, что будете иметь существенное движение в дополнение к космическому потоку, связанному с расширением пространства. Если вы это сделаете, ваши часы будут идти с другой скоростью, и вы обнаружите другую продолжительность истёкшего после Большого взрыва времени. Это допустимая точка зрения, но она совершенно индивидуалистична: измеренное истёкшее время тесно связано с историей вашего специального местоположения и состояния движения. Когда астрономы говорят о возрасте Вселенной, они стремятся к чему-то универсальному – они стремятся измерить то, что имеет одинаковое значение где угодно. Однородность изменений всюду в пространстве даёт возможность это сделать. {109}

Фактически, однородность фонового микроволнового излучения обеспечивает готовый тест для определения соответствия вашего движения с космическим потоком пространства. Дело в том, что хотя микроволновое излучение и однородно в пространстве, но если вы предпримете дополнительное движение, не связанное с космическим потоком пространственного расширения, для вас излучение не будет однородным. [53]53
  И в этом вся суть. Реликтовый микроволновой фон снабжает Вселенную выделенной системой отсчёта – сопутствующей системой, – с которой и можно связать универсальные космологические часы. (Прим. ред.)


[Закрыть]
Точно так же, как гудок мчащегося автомобиля имеет бо́льшую высоту, когда автомобиль приближается, и меньшую высоту, когда автомобиль удаляется, если вы несётесь сквозь пространство на космическом корабле, пики и впадины микроволн, набегающие спереди на ваш корабль, будут иметь бо́льшую частоту, чем набегающие на корму. Более высокая частота микроволн переводится в более высокую температуру, так что вы обнаружите, что излучение в направлении вашего полёта будет чуть теплее, чем излучение, достигающее вас сзади. Оказывается здесь, на «космическом корабле» Земля, астрономы действительно обнаруживают, что микроволновой фон немного теплее в одном направлении в пространстве и немного холоднее в противоположном направлении. Причина в том, что Земля не только движется вокруг Солнца, а Солнце движется вокруг галактического центра, но и вся наша Галактика (Млечный Путь) имеет небольшую скорость в дополнение к космическому расширению, направленную к звёздному скоплению Гидры. Только когда астрономы внесли поправки, связанные с влиянием этих относительно слабых дополнительных движений на микроволновой фон, мы выяснили, что микроволновое излучение проявляет высокую однородность температуры от одной части неба к другой. Это та однородность, та всеобъемлющая симметрия между различными положениями в пространстве, которая позволяет осмысленно говорить о времени при описании всей Вселенной.

Тонкие особенности расширяющейся Вселенной

Несколько тонких моментов нашего объяснения космического расширения достойны особого внимания. Во-первых, вспомним, что в аналогии с воздушным шаром роль играет только поверхностьшара – поверхность, которая всего лишь двумерна (каждое положение может быть определено двумя числами, аналогичными широте и долготе на Земле), тогда как пространство, которое мы видим, имеет три измерения. Мы использовали эту модель с меньшим числом измерений, поскольку она сохраняет идеи, существенные для правильной, трёхмерной ситуации, но намного легче поддаётся визуализации. Важно иметь это в виду, особенно если вы попытаетесь сказать, что в модели воздушного шара имеетсяособая точка: центр шара, удаляясь от которого движется вся резиновая поверхность. Хотя это наблюдение верное, оно лишено смысла, поскольку любая точка вне поверхности шара не играет никакой роли в данной аналогии. Поверхность шара представляет собой всёпространство; точки, которые не лежат на поверхности шара, являются просто не относящимися к делу «побочными продуктами» модели и не соответствуют какому-либо положению во Вселенной. [54]54
  Выйти за пределы двумерной аналогии поверхности шара и иметь сферическую трёхмерную модель легко математически, но её трудно изобразить на картинке даже для профессиональных математиков и физиков. У вас может возникнуть искушение представить себе твёрдый трёхмерный шар, похожий на шар для боулинга, но без дырок для пальцев. Однако это неудовлетворительный образ. Мы хотим, чтобы все точки в модели рассматривались на одинаковом основании, поскольку мы верим, что каждое место во Вселенной (в среднем) в точности похоже на любое другое. Но шар для боулинга имеет несколько сортов отличающихся точек: некоторые находятся на внешней поверхности, некоторые находятся внутри, одна находится прямо в центре. Напротив, точно так же, как двумерная поверхность воздушного шара окружает трёхмерную сферическую область (содержащую воздух внутри шара), приемлемая сферическая трёхмерная форма должна окружать четырёхмерную сферическую область. Так что трёхмерная сферическая поверхность шара в четырёхмерном пространстве является приемлемой формой. Но если вы всё же хотите нащупать аналогию, делайте то же самое, что делают все профессионалы: пользуйтесь легко представимыми аналогиями более низкого порядка. Они содержат почти все важные особенности. Чуть дальше мы рассмотрим трёхмерное плоское пространство, в противоположность круглой форме сферы, и это плоское пространство можно представить.


[Закрыть]

Во-вторых, если для галактик, которые находятся всё дальше и дальше от нас, скорость удаления становится всё больше и больше, не означает ли это, что галактики, которые достаточно удалены, будут убегать от нас со скоростью большей, чем скорость света? Ответ ошеломляющий – определённо да. Однако конфликта со специальной теорией относительности не возникает. Почему? А это тесно связано с причиной, по которой часы, разлетающиеся вместе с космическим потоком пространства, остаются синхронизированными. Как мы подчёркивали в главе 3, Эйнштейн установил, что ничто не может двигаться черезпространство быстрее, чем свет. Но галактики в среднем двигаются через пространство еле-еле. Их движение едва ли не полностью связано с растяжением самого пространства. И теория Эйнштейна не запрещает пространству расширяться таким образом, что две точки – две галактики – удаляются друг от друга со скоростью большей, чем скорость света. Теория ограничивает только скорость, из которой удалена составляющая, связанная с пространственным расширением, скорость, дополнительную к пространственному расширению. Наблюдения подтверждают, что для типичных галактик, несущихся вместе с космическим потоком, такое превышение скорости является очень небольшим и полностью остаётся в рамках специальной теории относительности, хотя их движение относительно других галактик, возникающее из раздувания самого пространства, может превышать скорость света. [55]55
  В зависимости от того, ускоряется или замедляется темп расширения Вселенной со временем, свет, испущенный такой галактикой, может вступить в состязание, которое заставило бы Зенона Элейского гордиться: свет может лететь к нам со скоростью света, в то время как расширение пространства всё более увеличивает расстояние, которое свет ещё должен преодолеть, таким образом, свет вообще не сможет достигнуть нас. Подробнее см. в примечании {223} .


[Закрыть]

В-третьих, если пространство расширяется, не означает ли это, что в дополнение к тому, что галактики разлетаются друг от друга, раздувающееся пространство внутри каждой галактики будет двигать друг от друга все её звёзды, а раздувающееся пространство внутри каждой звезды, внутри каждой планеты и внутри вас, меня и чего угодно другого будет раздвигать все составляющие атомы? Короче, не заставит ли раздувающееся пространство любую вещь, включая наши мерные линейки, увеличивать размеры и, таким образом, сделает невозможным определение самого расширения? Ответ: нет. Подумайте ещё раз о модели воздушного шара с монетками. Поскольку поверхность воздушного шара раздувается, все монетки двигаются в разные стороны, но сами монетки, несомненно, не расширяются. Конечно, если вы представите галактики маленькими кружочками, нарисованным на шаре чёрным маркером, тогда действительно, по мере увеличения размера шара маленькие кружочки тоже будут расти. Но именно монетки, а не чёрные кружки дают понять, что реально происходит. Каждая монетка остаётся фиксированной по размеру, так как силы, удерживающие вместе её атомы цинка и меди, намного больше, чем растягивающие силы со стороны расширяющегося шара, к которому приклеена монетка. Аналогично, ядерные силы, удерживающие отдельные атомы как целое, [56]56
  Ядерные силы удерживают как целое атомные ядра, а атом как целое удерживается электромагнитными силами. (Прим. ред.)


[Закрыть]
электромагнитные силы, удерживающие вместе ваши кости и кожу, гравитационные силы, удерживающие планеты и звёзды и собирающие их в галактики, более сильны, чем растаскивание за счёт раздувания пространства, так что ни один из этих объектов не расширяется. Только в самых больших масштабах, намного больше отдельных галактик, расширение пространства встречает мало сопротивления или не встречает совсем (гравитационное притяжение между сильно разделёнными галактиками относительно мало вследствие больших расстояний), так что лишь на таких сверхгалактических масштабах расширение пространства будет разносить объекты в стороны.

Космология, симметрия и форма пространства

Если кто-нибудь разбудит вас среди ночи и потребует рассказать о форме Вселенной – общей форме пространства, – вы, вероятно, затруднитесь с ответом. Даже в полусонном состоянии вы вспомните, что Эйнштейн показал, что пространство должно быть чем-то вроде пластилина, так что, в принципе, оно может иметь практически любую форму. Каким же тогда может быть возможный ответ? Мы живём на маленькой планете, вращающейся вокруг средней звезды на окраине Галактики, которая всего лишь одна из сотен миллиардов, рассеянных по пространству, так как же вы можете надеяться знать хоть что-нибудь о форме всей Вселенной? Но, когда туман сна рассеется, вы понемногу осознаете, что сила симметрии ещё раз придёт на помощь.

Если вы примете во внимание широко распространённое среди учёных мнение, что после крупномасштабного усреднения все местоположения и все направления Вселенной симметричны (равноправны) друг относительно друга, то вы на правильном пути к ответу на вопрос. Причина в том, что почти все формы пространства неудовлетворяют этому требованию симметрии, поскольку одна часть или одна область такого пространства фундаментально отличается от другой. Груша сильно выпукла у черенка, но куда меньше с противоположной стороны; яйцо более плоское в середине, но закруглённое у своих концов. Эти формы, хотя и проявляют некоторую степень симметрии, не обладают полной симметрией. Исключив такие формы и ограничившись только теми, в которых каждая область и направление похожи на любые другие, вы сможете значительно сократить список вариантов.

Мы уже сталкивались с одной формой, которая отвечает всем требованиям. Сферическая форма воздушного шара была ключевым моментом в симметрии между монетками на его раздувающейся поверхности, и поэтому трёхмерная версия этой формы, так называемая 3-сфера, является одним из кандидатов на модель формы пространства. Но это не единственная форма, которая даёт полную симметрию. Продолжая работать с более лёгкими для визуализации двумерными моделями, представим бесконечноширокий и бесконечнодлинный резиновый лист – абсолютно плоский – с равномерно распределёнными монетками, приклеенными к его поверхности. Если весь лист растягивается, то опять имеется полная пространственная симметрия и полное согласие с открытием Хаббла; каждый Линкольн на монетке видит, что каждый другой Линкольн удаляется со скоростью, пропорциональной расстоянию до него, как показано на рис. 8.4. Поэтому трёхмерная версия этой формы, подобная бесконечно протяжённому кубу из прозрачной резины с галактиками, равномерно разбросанными внутри, является другой возможной формой для пространства. (Если вы предпочитаете кулинарные аналогии, подумайте о бесконечно большом пироге с маком, который упоминался раньше, таком, который имеет форму куба, но продолжается бесконечно, при этом мак играет роль галактик. Когда пирог печётся, тесто поднимается, заставляя каждое маковое зерно удаляться от других). Эта форма называется плоским пространством, поскольку, в отличие от примера сферического пространства, она не имеет кривизны (понятие «плоский», которое используют математики и физики, отличается от разговорного понятия «подобный блину»). {110}

Рис. 8.4.( а) Вид от любой монетки на бесконечном плоском листе такой же, как и вид от любой другой монетки. ( б) Чем дальше друг от друга расположены две монетки на ( а), тем быстрее будет увеличиваться расстояние между ними при растяжении плоскости

Одно замечательное обстоятельство, имеющее отношение как к сферическому пространству, так и к бесконечному плоскому пространству, заключается в том, что вы можете бесконечно идти по нему и никогда не достигнете края или границы. Это удобно, поскольку позволяет избежать каверзных вопросов: что находится за краем пространства? что произойдёт, если вы дойдёте до границы пространства? Если пространство не имеет краёв или границ, вопрос не имеет смысла. Но заметим, что эти две формы обеспечивают это привлекательное свойство пространства различными способами. Если вы идёте прямо вперёд в сферическом пространстве, вы обнаружите, подобно Магеллану, что рано или поздно вернётесь в стартовую точку, нигде не встретив край. Наоборот, если вы идёте прямо вперёд по бесконечному плоскому пространству, то обнаружите, что, подобно кролику Энерджайзеру, можете идти и идти и никогда не дойдёте до края, но и не вернётесь туда, откуда начали путешествие. Хотя это может показаться фундаментальным отличием между геометрией искривлённого и плоского пространства, имеется простая вариация плоского пространства, которое делает его поразительно похожим в этом отношении на сферу.

Чтобы проиллюстрировать это, вспомним одну из тех видеоигр, в которых кажется, что экран имеет края, но на самом деле их нет, поскольку реально вы не можете покинуть пределы экрана: если вы пытаетесь выйти за правый край, вы снова появляетесь на левом; если вы выходите за верхний край, то снова появляетесь на нижнем. Экран «зациклен» путём отождествления верхнего края с нижним, а левого с правым, и, таким образом, форма пространства плоская (неискривлённая), но имеет конечныйразмер и не имеет краёв. Математически эта форма называется двумерным тором, она проиллюстрирована на рис. 8.5 а. {111} Трёхмерный вариант этой формы – трёхмерный тор – обеспечивает другую возможную форму для ткани космоса. Вы можете представить себе эту форму как гигантский куб, который зациклен вдоль всех трёх направлений: когда вы проходите через потолок, вы снова появляетесь снизу, когда вы проходите через заднюю стенку куба, вы снова появляетесь из передней стенки, когда вы проходите через левую сторону, вы снова появляетесь из правой, как показано на рис. 8.5 б. Такая форма – плоская (в том смысле, что не искривлённая, а не в том смысле, что подобна блину), трёхмерная, конечная по всем направлениям и не имеет краёв и границ.

Рис. 8.5.( а) Экран видеоигры является плоским (в смысле «неискривлённым») и имеет конечный размер, но не содержит краёв или границ, поскольку он «зациклен». Математически такая форма называется двумерным тором. ( б) Трёхмерная версия той же формы, называемая трёхмерным тором, также плоская (в смысле «неискривлённая»), имеет конечный объём и тоже не имеет краёв или границ, поскольку зациклена. Если вы проходите через одну сторону куба, вы входите через противоположную сторону

Помимо этих возможностей, остаётся ещё и другая форма, согласующаяся с объяснением открытия Хаббла с помощью симметричного расширяющегося пространства. Хотя это трудно изобразить в трёх измерениях, но, как и в примере сферического пространства, имеется хорошая двумерная модель: бесконечный вариант картофельного чипса «Принглс». Эта форма, часто обозначаемая как седло, является некоей противоположностью сферы: в то время как сфера симметрично выпукла наружу, седловина симметрично вогнута в себя, как показано на рис. 8.6. Используя немного математической терминологии, скажем, что сфера имеет положительную кривизну(выпукла наружу), седловина имеет отрицательную кривизну(вогнута в себя), а плоское пространство – как бесконечное, так и конечное – не имееткривизны (не выпукло и не имеет седловидной формы). [57]57
  Точно так же, как экран видеоигры даёт версию плоского пространства конечного размера, которое не имеет краёв или границ, имеются версии пространства седловидной формы конечного размера, которые также не имеют краёв или границ. Я больше не буду обсуждать это, запомним лишь, что все три возможные кривизны (положительная, нулевая и отрицательная) могут быть реализованы в формах конечного размера без краёв или границ (и тогда космический Магеллан в принципе смог бы осуществить космическую версию своего путешествия во Вселенной, кривизна которой задана любой из трёх возможностей).


[Закрыть]

Рис. 8.6.Использование двумерных аналогий для полностью симметричных пространств, в которых вид из любой точки пространства такой же, как и из любой другой, с тремя различными типами кривизны. ( а) Положительнаякривизна, соответствующая однородной выпуклости, как у сферы. ( б) Нулеваякривизна, которая отвечает полному отсутствию выпуклости, как на бесконечной плоскости или конечном экране видеоигры. ( в) Отрицательнаякривизна, которая отвечает седловидной поверхности

Исследователи доказали, что этот список – однородно положительная, отрицательная или нулевая – исчерпывает возможные виды кривизны для пространства, которое соответствует требованию симметрии между всеми положениями и всеми направлениями. И это действительно потрясающе. Мы говорим о форме всей Вселенной– о чем-то, для чего имеется бесчисленное число возможностей. Однако, призвав великую силу симметрии, исследователи оказались в состоянии резко снизить число возможностей. Так что если вы позволите симметрии направлять ваш ответ, и ваш полуночный интервьюер даст вам несколько шансов для ответа, вы будете в состоянии принять его вызов. {112}

И всё же вы можете спросить: почему мы пришли к нескольким возможным формам для ткани пространства? Мы обитаем в одной Вселенной, так почему мы не можем точно указать на единственную форму? Только перечисленные формы гарантируют, что каждый наблюдатель, независимо от того, где во Вселенной он находится, должен видеть в больших масштабах одинаковый космос. Но такое применение симметрии, хотя и сильно ограничивает отбор, не даёт возможности полностью решить задачу и дать единственный ответ. Для этого нам нужны уравнения общей теории относительности Эйнштейна.

В качестве входных данных уравнения Эйнштейна принимают количество материи и энергии во Вселенной (предполагая, опять же из соображений симметрии, что они распределены равномерно), а на выходе они дают кривизну пространства. Сложность в том, что на протяжении многих десятилетий астрономы не могли прийти к согласию, сколько на самом деле имеется материи и энергии. Если вся материя и энергия во Вселенной была бы однородно распределена по пространству и если после этого оказалось бы, что превышена так называемая критическая плотность, которая составляет около 10 −23г на каждый кубический метр [58]58
  Сегодня материи во Вселенной больше, чем излучения, так что критическую плотность удобно выражать в единицах, наиболее подходящих для измерения массы, – граммы на кубический метр. Отметим также, что хотя плотность 10 −23г на кубический метр может и не выглядит очень большой, в космосе очень многокубических метров пространства. Более того, оглядываясь назад во времени, вы увидите, что чем меньше пространство, по которому распределена материя/энергия, тем более плотной становится Вселенная.


[Закрыть]
– около пяти атомов водорода на кубический метр, – уравнения Эйнштейна дали бы положительную кривизну пространства; если бы плотность оказалась меньше критической, уравнения привели бы к отрицательной кривизне; если плотность была бы в точности равна критической, уравнения показали бы, что пространство не имеет общей кривизны. В то время как эта наблюдательная проблема ещё ждёт определённого решения, наиболее точные данные склоняют стрелку в сторону отсутствия кривизны – плоской формы пространства (но вопрос о том, может ли кролик Энерджайзер всегда двигаться в одном направлении и исчезнуть в темноте или однажды он замкнёт круг и появится у вас за спиной – простирается ли пространство бесконечно или зациклено подобно видеоэкрану, – всё ещё полностью открыт). {113}

Даже без окончательного ответа на вопрос о форме космической ткани совершенно ясно, что симметрия является существеннейшим понятием, позволяющим осмысливать пространство и время применительно ко Вселенной в целом. Без привлечения силы симметрии мы бы застряли в самом начале.


    Ваша оценка произведения:

Популярные книги за неделю