355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Брайан Грин » Ткань космоса. Пространство, время и текстура реальности » Текст книги (страница 15)
Ткань космоса. Пространство, время и текстура реальности
  • Текст добавлен: 19 сентября 2016, 13:25

Текст книги "Ткань космоса. Пространство, время и текстура реальности"


Автор книги: Брайан Грин


Жанр:

   

Физика


сообщить о нарушении

Текущая страница: 15 (всего у книги 52 страниц)

Опыт и течение времени

В рамках таких представлений различные события, независимо от того, когда они происходят, с любой частной точки зрения, просто есть. Все они существуют. Они вечно занимают свою особую точку в пространстве-времени. Здесь нет течения. Если вы провели замечательное время в полночь накануне нового 1999 г., вы всё ещё там, поскольку это просто одно неизменное место в пространстве-времени. Трудно принять такое описание, поскольку наше мировоззрение жёстко проводит различие между прошлым, настоящим и будущим. Но если мы внимательно посмотрим на нашу привычную темпоральную схему и противопоставим ей холодные упрямые факты современной физики, то единственный приют для привычных представлений, кажется, находится в человеческом сознании.

Неоспоримо, что наше сознание способно перемещаться по слоям времени. Это происходит, когда наш разум высвечивает прошлое, так что моменты времени оживают, когда их освещает сила сознания. Ощущение течения от одного момента времени к следующему возникает из нашего сознательного распознавания изменений в наших мыслях, чувствах и ощущениях. И эта последовательность изменений, кажется, непрерывно движется; кажется, что она разворачивается в связанную историю. Но, без какой бы то ни было претензии на психологическую или нейробиологическую точность, можно представить, как мы можем ощущать течение времени, даже если в действительности и нет такого феномена. Чтобы понять, что я имею в виду, представим просмотр фильма «Унесённые ветром»на неисправном DVD-проигрывателе, который хаотически прыгает вперёд и назад: некоторые кадры вспыхивают на мгновение на экране, а за ними моментально следуют другие из совершенно другой части фильма. Когда вы смотрите эту перепутанную версию, вам трудно понять смысл происходящего. Но Скарлетт и Рэтт проблем не имеют. В каждом кадре они делают то, что они всегда делали в этом кадре. Если бы вы могли остановить DVD на некотором отдельном кадре и спросить об их мыслях и воспоминаниях, они бы ответили то же самое, что и в случае, если бы вы проигрывали DVD на нормально функционирующем проигрывателе. Если бы вы спросили, не сбивают ли их с толку события Гражданской войны не в том порядке, они бы недоумённо посмотрели на вас и решили бы, наверное, что вы выпили лишнего. В любом данном кадре они имеют мысли и память, которые всегда имели в этом кадре, – и, в частности, эти мысли и память будут давать им ощущение, что время гладко и последовательно течёт вперёд, как обычно.

Аналогично, каждый момент в пространстве-времени – каждый временной слой – похож на один из кадров в фильме. Он существует независимо от того, освещает ли его некий свет. Так же как для Скарлетт и Рэтта, для вас, находящихся в любом таком моменте, это и есть сейчас, это есть момент, который вы ощущаете в этомгновение. И так будет всегда. Более того, внутри каждого индивидуального слоя ваши мысли и память достаточно богаты, чтобы создать ощущение, что время непрерывно текло к этому моменту. Это чувство, это ощущение течения времени не требует, чтобы предыдущий момент, предыдущий кадр, был «освещён в правильном порядке». {63}

Если вы подумаете об этом ещё немного, то поймёте, что это очень хорошо, поскольку представление о том, что свет прожектора последовательно оживляет моменты времени, чрезвычайно проблематично по другой, даже более важной причине. Если свет прожектора правильно выполняет свою работу и освещает данный момент – скажем, наступление полуночи в канун нового 1999 г., – что будет означать для этого момента затем уйти в темноту? Если момент времени был освещён, то «быть освещённым» становится свойством этого момента, свойством таким же вечным и неизменным, как всё другое, происходящее в этот момент. Подвергнуться освещению – быть «оживлённым», быть настоящим, быть сейчас– и затем подвергнуться темноте – быть «скрытым», быть прошлым, быть тем, что было, – значит подвергнуться изменению. Но понятие изменения не имеет смысла по отношению к отдельному моменту времени.Изменение должно возникать с течением времени, изменение должно отмечать прохождение времени, и разве можно это согласовать с представлением об изменении в один момент времени? По определению, моменты невключают прохождение времени – по меньшей мере того времени, которое мы осознаём, – поскольку моменты времени просто есть, они представляют собой сырой материал времени, они неизменяются. Отдельный момент может изменяться во времени не больше, чем отдельное положение может изменяться в пространстве: если положение сдвинулось, это будет уже другое положение в пространстве; если момент во времени изменился, это будет уже другой момент во времени. Интуитивный образ света прожектора, который вызывает каждое новое сейчаск жизни, просто не выдерживает проверку. Вместо этого, каждый момент времени освещён и остаётся освещённым всегда. Каждый момент есть. При ближайшем рассмотрении текущая река времени больше напоминает гигантский блок льда, причём каждый момент навечно вморожен в своё место. {64}

Эта концепция времени существенно отличается от той, к которой большинство из нас привыкло. Эйнштейн не остался равнодушен к трудности восприятия столь глубокого изменения в представлениях. Рудольф Карнап {65} подробно изложил примечательный разговор, который состоялся с Эйнштейном по этому поводу: «Эйнштейн сказал, что проблема настоящего его сильно беспокоит. Он объяснил, что ощущение настоящего означает для человека нечто специальное, нечто существенно отличное от прошлого и будущего, но что это важное отличие не возникает или не может возникнуть в рамках физики. То, что это ощущение не может быть охвачено наукой, казалось ему фактом болезненного, но неизбежного поражения».

Эта уступка оставляет открытым главный вопрос: действительно ли наука не в состоянии охватить фундаментальное свойство времени, которое человеческий разум видит так же легко, как лёгкие вдыхают воздух, или человеческий разум наделяет время свойством своего собственного, человеческого, изготовления, причём таким, что это свойство является искусственным и поэтому не отражается в законах физики? Если вы зададите мне этот вопрос в течение рабочего дня, я примкну к последней точке зрения, но с наступлением ночи, когда критическое мышление смягчается до обычной жизненной рутины, становится трудно сохранять полную невосприимчивость к первой точке зрения. Время – тонкая вещь, и мы далеки от полного его понимания. Возможно, что некоторая проницательная личность однажды придёт к новому взгляду на время и откроет настоящее физическое обоснование его течения.

И тогда приведённое выше обсуждение, основанное на логике и теории относительности, снова может оказаться полной чепухой. Однако чувство течения времени определённо глубоко укоренилось в наших ощущениях и заполняет наше мышление и язык. До такой степени, что мы прибегали и будем продолжать прибегать к обычному, разговорному образу текущего времени. Но нельзя смешивать язык и реальность. Человеческий язык намного лучше приспособлен для описания человеческого опыта, чем для выражения глубоких физических законов.

Глава 6. Случайность и стрела времени
Имеет ли время направление?

Даже если время не течёт, всё же можно спросить, имеет ли оно направление – имеется ли направление пути, на котором события разворачиваются во времени, имеется ли такое направление, которое можно разглядеть в законах физики. Имеется ли некоторый внутренний порядок в том, как события разбросаны вдоль пространства-времени, и имеется ли существенное научное отличие между таким упорядочением событий и обратным упорядочением? Как каждому известно, огромное различие такого рода определённо имеется; это то, что придаёт жизни перспективу и делает острыми переживания. Но, как мы увидим, объяснение различия между прошлым и будущим труднее, чем вы думали. Замечательно, что ответ, который мы установим, окажется тесно связанным с точными условиями в начале Вселенной.

Загадка

Тысячу раз в день наш опыт обнаруживает различие между прямым и обратным ходом времени. Очень горячая пицца остывает по дороге от пиццерии, но мы никогда не найдём пиццы ещё горячее, чем в момент, когда она была вынута из духовки. Сливки, размешанные в кофе, образуют однородную желтовато-коричневую жидкость, но мы никогда не увидим чашку кофе со сливками, размешанного «назад» и разделённого на белые сливки и чёрный кофе. Яйца падают, разбиваясь и разбрызгиваясь, но мы никогда не увидим расплескавшиеся желток с белком и скорлупки, собирающиеся вместе и объединяющиеся в целое яйцо. Сжатый в бутылке колы углекислый газ вырывается наружу, когда мы откручиваем крышку, но мы никогда не найдём рассеявшийся углекислый газ собравшимся воедино и втянувшимся обратно в бутылку.

Кубик льда, брошенный в стакан воды комнатной температуры, тает, но мы никогда не увидим молекулы в стакане воды комнатной температуры, объединившиеся в твёрдый кубик льда. Эти общие последовательности событий, как и бесчисленные другие, происходят только в одном временно́м порядке. Они никогда не происходят в обратном порядке, поэтому они обеспечивают представление о дои после– они дают нам непротиворечивую и кажущуюся универсальной концепцию прошлого и будущего. Эти наблюдения убеждают нас, что если бы мы исследовали всё пространство-время, находясь снаружи (как на рис. 5.1), мы бы увидели существенную асимметрию вдоль оси времени. Разбившиеся яйца во всём мире будут лежать с одной стороны – стороны, которую мы обычно называем будущим, – по отношению к их целым предкам.

Возможно, наиболее поучительный вывод из всех этих примеров состоит в том, что наш разум имеет доступ к собранию событий, которые мы называем прошлым, – к нашей памяти, – но никто из нас не способен вспомнить набор событий, который мы называем будущим. Очевидно, существует большая разница между прошлым и будущим. Кажется, что наблюдается явное направление в том, как огромное разнообразие вещей разворачивается во времени. Кажется, что есть явное различие между вещами, которые мы можем вспомнить (прошлое), и вещами, которые мы вспомнить не можем (будущее). Это и есть то, что мы подразумеваем под наличием у времени ориентации, направления или стрелы. {66}

Физика, как и наука в целом, основывается на регулярности. Учёные изучают природу, ищут повторяющиеся образцы и кодируют эти образцы в законах природы. Вы могли бы поэтому подумать, что совершенно исключительная регулярность, которая с очевидностью приводит нас к ощущению стрелы времени, будет иметь отражение в фундаментальном законе природы. Наивный способ формулировки такого закона будет заключаться во введении Закона разливающегося молока, согласно которому чашки молока разливаются, но не «сливаются» назад, или Закона разбивающихся яиц, согласно которому яйца разбиваются, но никогда не собираются обратно. Но законы такого рода нам ничего не дают: это просто описание, оно не предлагает никакого объяснения кроме простого наблюдения за тем, что происходит. Мы же ожидаем, что где-то в глубинах физики должен быть менее наивный закон, описывающий движение и свойства частиц, который увязывает пиццу, молоко, яйца, кофе, людей и звёзды – фундаментальные составляющие всего – и который показывает, почему события развиваются в определённом порядке, но никогда в обратном. Такой закон дал бы фундаментальное объяснение наблюдаемой стреле времени.

В полное недоумение приводит то, что никто не открыл такого закона. Более того, законы физики, которые были сформулированы Ньютоном, затем Максвеллом и Эйнштейном и до сегодняшних дней, демонстрируют полную симметрию между прошлым и будущим. [35]35
  К этому утверждению существует исключение, связанное с определённым классом экзотических частиц. Поскольку это относится к обсуждаемым в этой главе вопросам, я должен отметить, что рассматриваю это обстоятельство как не имеющее существенного значения и более не буду этого касаться. Если вы заинтересованы, короткое обсуждение этого вопроса можно найти в примечании 2.


[Закрыть]
Ни в одном из этих законов мы не найдём оговорки, что они применимы в одном направлении во времени, но не в другом. Нигде нет никакого различия между тем, как законы выглядят или ведут себя, когда они применяются к тому или иному направлению времени. Законы рассматривают то, что мы называем прошлым и будущим, совершенно одинаково. Хотя опыт снова и снова выявляет направление, в котором события разворачиваются во времени, эта стрела, кажется, не находит отражения в фундаментальных законах физики.

Прошлое, будущее и фундаментальные законы физики

Как такое может быть? Неужели законы физики не объясняют, чем прошлое отличается от будущего? Как может быть, что нет закона физики, который объяснял бы, почему события разворачиваются в этом порядке, но никогда не в обратном?

Ситуация более чем загадочна. Известные законы физики на самом деле декларируют – в отличие от нашего жизненного опыта, – что кофе со сливками можно разделить на чёрный кофе и белые сливки; растёкшийся желток и мелкие осколки скорлупы могут собраться месте и воссоздать совершенно целое яйцо; растаявший в стакане воды лёд при комнатной температуре может превратиться в кубик льда; газ, выделившийся при открытии колы, может вернуться назад в бутылку. Все физические законы, которые мы бережно храним, полностью поддерживают симметрию по отношению к обращению времени. Это означает, что если некоторая последовательность событий может разворачиваться в одном временном порядке (сливки и кофе смешиваются, яйца разбиваются, газ улетучивается), то эти события могут разворачиваться и в обратном порядке (сливки и кофе разделяются, яйца восстанавливаются, газ втягивается назад). В дальнейшем я это конкретизирую, но обобщение одной фразой таково: известные законы не только не способны сказать нам, почему мы видим события развивающимися только в одном порядке, они также говорят нам, что теоретически события могут разворачиваться и в обратном порядке. [36]36
  Отметим, что симметрия по отношению к обращению времени не означает, что само время разворачивается или «бежит» назад. Вместо этого указанная симметрия заключается в способности событий, происходящих во времени в одном временно́м порядке, происходить также и в обратном порядке. Более подходящим термином может быть симметрия по отношению к обращению событий, или обращению процессов, или обращению порядка событий, но мы будем придерживаться стандартно используемого термина.


[Закрыть]

Животрепещущий вопрос таков: почему мы никогда этого не видим? Я думаю, можно смело заключать пари, что никто никогда на самом деле не был свидетелем восстановления разбитого яйца.

Но если законы физики допускают это, и более того, если эти законы рассматривают разбивание и восстановление яйца одинаково, то почему одно никогда не происходит, в то время как другое имеет место?

Симметрия по отношению к обращению времени

В качестве первого шага к решению этой головоломки нам надо понять в более конкретных терминах, что означает для известных законов физики быть симметричными по отношению к обращению времени. С этой целью представьте, что идёт XXV в. и вы играете в теннис в новой межпланетной лиге с вашим партнёром по имени Вильямс «Мощный удар». Немного не привыкший к уменьшенной гравитации Венеры, «Мощный удар» делает сильнейший удар слева и запускает мяч в глубокую темноту пространства. Пересекающий пространство космический шаттл производит киносъёмку мяча, когда тот пролетает рядом, и посылает ленту в CNN (Celestial News Network – небесная сеть новостей) для телевещания. Возникает вопрос: если техники CNN сделали ошибку и запустили плёнку о теннисном мяче в обратном направлении, есть ли какой-нибудь способ это определить? Если вы знали направление и ориентацию камеры во время съёмок, то вы будете в состоянии распознать их ошибку. Но смогли бы вы распознать ошибку, просмотрев только саму плёнку без дополнительной информации? Ответ: нет. Если в правильном направлении времени (вперёд) плёнка показывает мяч летящим слева направо, то в обратном направлении он будет показан летящим справа налево. И, конечно, законы классической физики позволяют теннисным мячам двигаться как налево, так и направо. Так что движение, которое вы видите, когда плёнка прокручивается как в прямом, так и в обратном направлении, превосходно согласуется с законами физики.

Пока мы считали, что на теннисный мяч не действуют никакие силы, поэтому он двигается с постоянной скоростью. Рассмотрим теперь более общую ситуацию, включив силы. Согласно Ньютону, влияние силы заключается в изменении скорости объекта: силы сообщают ускорения. Представим, что после некоторого времени плавания в пространстве мяч попадает под влияние гравитационного притяжения Юпитера, что заставляет его двигаться с возрастающей скоростью по нисходящей дуге, развёрнутой направо к поверхности Юпитера, как показано на рис. 6.1 аи б. Если вы проигрываете плёнку с этим движением в обратном направлении, теннисный мяч будет двигаться по дуге, которая развёрнута вверх и налево от Юпитера, как на рис. 6.1 в.

Рис. 6.1.( а) Теннисный мяч, летящий от Венеры к Юпитеру. ( б) Окончание полёта. ( в) Движение теннисного мяча, если его скорость изменена на противоположную прямо перед столкновением с Юпитером

Возникает новый вопрос: является ли движение, демонстрируемое на плёнке, которая проигрывается в обратном направлении, – движение, обратное во времени по отношению к движению, в действительности снятому на плёнку, – допустимым по классическим законам физики? Может ли такое движение произойти в реальном мире? На первый взгляд, ответ «да»кажется очевидным: теннисные мячи могут двигаться по нисходящим дугам направо, или по восходящим дугам налево, или по бесконечному количеству других траекторий. Тогда в чём трудность? Хотя ответ, несомненно, «да», наши рассуждения поверхностны и упускают реальную суть вопроса.

Когда вы начинаете прокручивать плёнку в обратном направлении, вы видите, как теннисный мяч отскакивает от поверхности Юпитера и начинает двигаться вверх и налево в точности с той же скоростью (но в точности в противоположном направлении), с которой он падал на планету.

Начальная часть плёнки определённо согласуется с законами физики: например, мы можем представить, что кто-то запустил теннисный мяч с поверхности Юпитера с точно такой же скоростью. Существенный вопрос состоит в том, будет ли и оставшаясячасть обратного движения также согласовываться с законами физики. Будет ли мяч, запущенный с этой начальной скоростью и подвергающийся воздействию притягивающей вниз гравитации Юпитера, действительно двигаться вдоль траектории, изображённой на оставшейся части прокручиваемой в обратном направлении плёнки? Будет ли он в точности очерчивать его оригинальную нисходящую траекторию, но в обратном направлении?

Ответ на этот уточнённый вопрос – да. Во избежание путаницы, разберёмся более детально. На рис. 6.1 а, перед тем, как гравитация Юпитера оказала существенное влияние, мяч двигался точно вправо. Далее, на рис. 6.1 бмощная гравитационная сила захватила мяч и притянула его к центру планеты – притяжение, которое в большей степени направлено вниз, но, как вы можете видеть на рисунке, частично вправо. Это означает, что когда мяч приблизился к поверхности Юпитера, его ориентированная вправо скорость немного увеличилась, а компонента скорости, направленная вниз, значительно увеличилась. Следовательно, в прокручиваемой назад плёнке взлёт мяча с поверхности Юпитера будет происходить в направлении немного влевои преимущественно вверх, как показано на рис. 6.1 в.

При этой стартовой скорости гравитация Юпитера будет оказывать максимальное влияние на скорость мяча, направленную вверх, делая её всё меньше и меньше, тогда как скорость мяча, направленная влево, тоже будет уменьшаться, но в меньшей степени. И с быстро уменьшающейся компонентой скорости, направленной вверх, движение мяча будет становиться преимущественно таким, при котором преобладает скорость, направленная влево, что вынудит мяч следовать влево по выгнутой вверх траектории. Вблизи окончания этой дуги гравитация истощит всё направленное вверх движение, также как и добавочную скорость, направленную вправо, которую гравитация Юпитера добавила мячу во время его пути вниз, оставив движение мяча в направлении влево в точности с той же скоростью, которую он имел при его первоначальном приближении к Юпитеру.

Всё это можно просчитать, но суть в том, что эта траектория в точности совпадает с обратным начальным движением мяча. Просто изменив скорость мяча на противоположную, как на рис. 6.1 в, – отправив его в путь с той же скоростью, но в противоположном направлении, – его можно заставить пройти полностью свою исходную траекторию, но в обратном направлении. Возвращаясь к плёнке, мы видим, что выгнутая вверх траектория, направленная влево, – траектория, которую мы просто сконструировали, основываясь на ньютоновских законах движения, – в точности совпадает с той, что мы видели при прокручивании плёнки назад. Так что движение мяча с обращением времени, как изображено на прокручиваемой назад плёнке, согласуется с законами физики так же хорошо, как и его движение в прямом времени. Движение, которое мы видели, прокручивая плёнку в обратном направлении, есть движение, которое на самом деле может происходить в реальном мире.

Хотя имеется несколько тонкостей, которые я переношу в примечания, этот вывод является общим. {67} Все известные и признанные законы, относящиеся к движению, – от уже обсуждавшейся выше ньютоновской механики до электромагнитной теории Максвелла и специальной и общей теории относительности Эйнштейна (вспомним, что мы исключили из рассмотрения квантовую механику до следующей главы) – заключают в себе симметрию по отношению к обращению времени: движение, которое может происходить в обычном направлении, соответствующем прямому ходу во времени, может так же происходить и в обратном направлении. Поскольку терминология несколько запутанная, позвольте ещё раз подчеркнуть, что мы не изменяем направление самого времени. Время действует так же, как и всегда. Наши выводы таковы, что мы можем заставить объект пройти его траекторию в обратном направлении путём простой процедуры обращения его скорости в любой точке на его пути. Иными словами, обращение скорости объекта в некоторой точке его пути заставит объект совершить движение, которое мы видели на прокручиваемой назад плёнке.


    Ваша оценка произведения:

Популярные книги за неделю